FORMULATION OF PHASE BOUNDARY EQUATION

In this chapter we will first calculate the spin magnetization
and the pair-correlation function using the Hamiltonian for z + 1
spins in terms of the variables Joi and Hi' The probability distribu-
tion PZ(Jij) is assumed to be given. We will then determine wﬁat the
probability distribution of the fie]ds Pl(Hi) should be. Knowing
pl(Hi) and Ezﬁdij) we will be able to calculate the thermodynamic

variables using the Bethe-Peierls-Weiss approximation.

The internal enefgy is also obtained. The free energy is then
expressed in terms of the internal energy and a constant of integra-
tion S°. Thermodynamic quantities appropriate for the quenched system
can be obtained by first obtaining the appropriate quantity from this
free energy for a given configuration and then averaging it over all
configurations. Finally we obtain the equation which determine the

critical temperature.

2.1 Bethe-Peierls-Weiss (BPW) Approximation

To obtain the thermodynamic quantities in the BPW approximation
(11,14,16) we write the Hamiltonian for outer z particles in the mole-
cular field approximation and then treat the interaction between the z
outer spins with the central spin So’ placed at the origin, exactly.
The interaction potentials Joi between the outer spins and central spin
and the z mean fields Hi-are treated as independent random variables.
We obtain the single spin magnetization <Si> and the pair;correTation

function <Sosi) using the Hamiltonian for the cluster of z + 1 spins



in terms of the variables Joi and Hi as follows.
The BPW Hamiltonian is

z Z ’
N
Hepy S5 7 31 901565 s

Where Hi is the mean field at site i and Joi is the interaction poten-
tial between the spins S0 and Si’ with the S being Ising spins.
It is somewhat difficult to handle with HBPw in the last equa-

tion as it stands so we look instead at a single interaction

HBPN = -H151 - J015051 (241)

From this, we get (SO)

-BH
(S =_Z%e
_ -8H
=¢
+1 +1 ,G(Hls1 + Jolsosl)
i
i} SO-- 1‘*' SO (=
+1 +1 ﬁ(HIS1 + Jolsosl)

S

0=—1 Sl=-1 e

By taking the sum over SO and then the sum over S1 we get

(S5 = tanh (ﬁJOl) . tanh (ﬁHl)
or (SO) = tlgo1
' 1
where t; = tanh (ﬂHl) » 9o1 = tanh (ﬁJol) , B = ;f

(Sl) can find in the same way

-8H
(sp = s e”
-gH
> e
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+1 + BHS, +J 5 S))
_ s,
= So= -1 S1=.1 1
e 2-__4,1 Eﬁ(Hls1 F39,15.5,)
So= -1 §1= -1

We first perform the sum over So and then sum over of S,, we get

(Sl> = tanh (ﬁHl)
or (Sl), = t1
where t, = tanh (ﬁHl)

The spin correlation function (5051) is given by

1 /.7 /8%

Sod7  So= -1

+1 +1

o= -1

+1 +1

"M
‘o
—
=+
—
7]
—
o+
=)
—
w
o
w
—
S

"M
M

e‘B(Hlsl *951551)

o= -1 “1= -1

The summations are carried out as follows

o
S s gsy) A, - Sot),
_ S5 1y 1
(5051) =
+1
= [ Sy 9548)  AULS, ~ Jolsl)]
1= -1



or (SoSf

for H

BPW

we get these

S,

S

1’

(5,57

i PHS1 P11 FaiS
Si1=-1 S; ¢ (e -e )
+1 = )

PHySy Bog1S1 FIatSy
1= -1 © (e + e )
+1 ,
> £H, S, _
S1= .1 Sqe - sinh(BJ ;S,)
+1
22 ﬁHlsl
51= -1 e N cosh(ﬁJ01 1
ﬁHi 'ﬁHl
e . sinh(ﬁJDl) - e °sinh(-ﬁdol)
ﬁHl 'ﬁHl
e . cosh(pd 1) + e ~cosh(-83,¢ )
tanh(8J ;)
g01
~H151=4515%1
set
1%1
4
g01

Rewriting (51) as follows

(S

P

n

t

(1 1901) t, (1- 1901)

1 2 2
(1- tlgol) " 9%1 % 91 - lgol)

11
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n

27 -1 2 2
(1= t1951) "Tey(1 - g5y) + 95, (1= £7) £9,)]

we get

22 -1 2 2
<Sl) (1 = tlgol) [tl (1 = gOl) + 901(1 = tl) (SO) ]

A new form for (SOSI> is similarly obtained, i.e.,

(Sosl> = 91
_ 22 \-1 22\
= (1= ty951) " 95y (1 - t995))
= _ 422 =1 2 2 4oy
(1-t9950) " Lo 11 - t) +t,(1 - g 1)tig ;]
_ 2 2 (-1 2 2
= (1 = tlgol) [901(1 ] tll + tl(l v gOl) (SO) ]
(2.2)
If we have z Ising spins ; Sy 52,..., SZ
z z
Hppw B i

then (SO) is equal to the sum of (SO) of each Ising spin.

God = Y951 TG * e TG,
z
oF G = 3 9.
i=1
and so
tanh;l(S) = tanh™! Ez t.g
0 j=1 1oi

2 <1
- 133 tanh (tigoi)

Z
) = tanh [ = tanh™? (t.g .)] (2.3)
01 i%0i

<51> is in the form



) 2.2 -1 2 2
(sp = (1 -t395,) [t (1 - g;) +g,(1 - t]) <Sp ]

where (S is from Eq.(2.3), so we get

(S.) = (1- tz.gz.

=] 2 2
i i 01) '[ti(l - goi) ¥ goi(1 - ti) <So) ]

(2.4)

For (Sosi) , we generalize Eq. (2.2) to get

‘ _ 2 2 -1 _ 42 2(7 _ 2 :
oS = (1 -t5g0.) Tgp;(1 - t5) + t5(1 - g 5) S ]
(2.5)
where (505 is given by Eq. (2.3)
The internal energy U in the BPW approximation is
- .3 = |
U 3 i Jij (SiSj) (2.6)

In the expression for U there are two independent random variables,

the quantities Joi and ti“

The next task is to determine the probability distribution of
the fields Pl(Hi) when the probability distribution pz(Jij) is given.
We start by letting (S))= tanh(ﬁHo) in Eq.(2.3) gives for the field
H, at spin S|

F4

H = gl =

w
0 {21 tanh (t49,4)

The z variables Hi are assumed to be independent of each other.
The interactions Joi are a priori independent variables of the model.
The Hi’s are also assumed to be independent of the Joi since the fields
Hi arise frqm the spins and interactions existing outside the cluster

of z + 1 spins.
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This assumption neglects the fact that the spins outside the
cluster are not totally independent of the spins in the cluster. With

these assumptions the distribution of_Ho, Po(Ho) can be written as (12,14)

- z m-:" z . .
PolHy) = R SPl(Hj)dHiil;ll- sz(‘_’oi?d“ai-
cs[: il & t-;h':l(i: )] (2.7)
S = R P '

.i

We now require that the distribution Po(H) and Pl(H) be

identical. Rewriting Eq.(2.7) gives

e UDHO 'z “ﬂ _ml
Py(H) = 1 S e’ %dpT ( ]PI(H{)dHi- S;.pz(aoi-) dd;
2 -po M. -, -
? /AL il -1 |
. [- ipB “tanh (t.955)] .
1P H € -
= -0 .
- 1 Se dP(SPI(Hi)dHigPZ(Joi)dooi
= -ipﬁ'ltanh'l(tigoi) 2 C(2.8)

Given P2(J01) we can find Pl(Ho) which we do next.

2.2 Delta Function Distribution of Interaction Strengths

In this part PZ(Joi) is assumed to be a delta function. We

first let the number of neighbors z — o - and let (Joi) & 2'1

-1

and
<J§i) c& 2, where e denotes a configurational average.
(Since we will be taking the 1imit z —e , the average of the inter-
.% in order that (:;JOjSOSj) c
be finite in the 1limit z—e . With this, we find that the con-

action strength, <Joi> 5 must go as

figuration average of Jﬁé must go as 1. This is due to the way the
z
configuration averages are calculated.) In this limit tanh 1(tigoi)

= ptide; 0 (1)
Z



We shall assume that
.PZ(Joi) = cé'(aoi - Jy) + (1 - c)é.(am. ) (2.9)

. where ¢ is the concentration of bonds having the interaction Jl. The
distribution function for the interaction J is the average distribution
fnction,i.e, it ﬁs-thé-diStrﬁbutionffnﬁction_aweraged,over'a11~the'_
cluster in the system. If we are working with a particular cluster,
with given numbers of Jl and J2 bonds, we must work with the distribu-

tion function for that particular cluster, which is

Pz(JO‘i) = PCS(JOi - Jl) + (1 - P)(S(JO‘E - ‘Jz)

where P is the projection operator which takes on the value 1 if a

bond is a J1 type and the value 0 if the bond is a J2 type. The

2

projection operator has the property that P© = P and that the average

of P over all thé bonds in all clusters is c, i.e., P = c.

Substitute Eq. (2.9) into Eq. (2.8) give

(dPfo, ¢ § b i
P (Hy) = ,21_“ S e “dp (. 'S*ﬁ‘”i)‘”’i E[pé (9,5 = 9;)
- -0 .-ua _-iép-ltanh_l(tigoi) -
+(1-p)8 (9g5 = 95)1d0 ;e )

¢ ipH C T
S e d_p[E Pl(Hi)dHij pé (-Jm.l- 3,149

. e—ipﬁpltanh_l(tigoi) ] %+ 1 S e P dp

)
SP (H, )dH, 8(1 - p)d (3g5 = Jp) dIg;

caeln z
, g¥pp “tanh T(tyg.4)

009186
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r ipH T 3
" 12;;] S " DdP [SPI(Hi)dHij d (Jp5 = 97)d9,
P A Ry -
.e—1PP tanh (ti%i)]z
C iP H ¢ v ;
+ (1Zi p) j e’ Cdp [i Pl(Hi)dHi—EcS (Jg5 = 9,)dd_;
.
e~ipp “tanh (tigoi)]z
[ ipH, 2
= p do[1 -V
‘2‘%1_,3 e’ °do[1 - Vy(p)]
e iPHo z
where "1(?) = EPI(Hi)dHi Sé(am. - dy)dd, .
= 77 - -1
(s e-1pp tanh ~ (t.g .) )

S Py (H, )dH, 3 J (Jg5- 9p) dJ_ .

-

Vo {p)

——1 =1
~ipp tanh (tigoi)

(1-e )

We now looking at the first term in the right hand side of Eq.(2.10).Now

A = p "§°eiPH0d [1-V (-"P)]Z
27 ) P 3

expanding the exponential in Vl (?) and keeping only terms of lowest

2 o \ - -
power in 1 (note that (JOF;) o« .z K and («J:‘fl) < z k-1 ) we get
z .
- ! ¢ TPt
V1(P) 5 SPI(Hi)dHi &5(\]01 - Jl)dJm.(l -e )
4 <

: 2
(1P tidgs Hip t12‘331 + .eo)
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where m

n
ﬁc_..--"")

L0
]
—g

-0

In 1imit z —~ we have

[1-v,1° = 1P

® ipH
A = p 5 e E? 9
29 J
= p' . B
21 ¢
where d = J[qz

1‘PmJ1 + 4 P?qdf
Pl(Hi) t_i dHi

Pl(Hi) t? dH_i

d?. -e-Z(1P mJl ! %??QJ‘E)

2
= 3[H - mzd,]. /g2

(2.11)

(2.12)

Similarly, the second term in the right hand side of Eq.(2.10) is

obtained as

B = (1-p)
21 -e
= (1-p). e
21 ¢
where o = Jqz

Finally the distribution function

-3[H
PI(H ) P e
0 jfﬁcj
+ {1=p) @

NS

€ ipH
e P odP [1 - Vz(? )]Z

-3 [H - mzd,]%/g 2

Pl(Ho) is obtairned as

o) = m-ZJl:lzfdz

-3 [H0 - mzdz]zld2



| 18
Tim pl(Ho) = c,é_(H0 - szl) + (1 - c)ékHon.szz) (2.13)

62— 0

2.3' Free Energy

We next discuss the expression for the internal energy and
the free energy of the random system. Solving Eq.(2.3) for (s and
substituting into Eq.(2.5) we get

U = 53 = Jee (5.5 :
1,3 W)l

s =
3 i3 Jij[ <51),(Sj)

PO (1= (s 2)( 1 - t3)] (2.14)

The free energy is obtained in terms of the internal energy

U(R) and a constant of integration S° as follows' (14):

8
F =1 (8 U(p')dp' + S°) (2.15)
ﬁ 3

0
In Eq. (2.15) only the explicit dependence of U(B') upon g’

is taken into account. The phenomenological expression for S° is(14)

5° =T [(.13 <s1.)) ]n(l +2<si?)
+(1 -2<'s1.>) n (_.1 -2<s1.>) ] ~ (2.16)

which 'is the entropy of a set of independent spins constrained to have

a value <Si> - Substituing for Eq. (2.14) into F, we get

v
1 () U(g')dg' + S°)

F = Y
F %



or

Because

(SJ-)2

19

B

-3 = |

(8; b 05 s )
0

1
F
* Pl (L= (P21 - £5)1dg’ + 5°)

£
(30- il <sp s
0

o[

+p10( 1 - <s1.>2)( 1 - t2)]dg' +5°)

=

2 : =]
% (-4 j> i 3,1 - 52) (1 - t3)p?) +%'S

)
E 66

>

/34 % (1-4532)(1-t3) +1 S

B

tanh (ij)

Y

tsf

- &4 9 - <s><s> - 1B T,

(1- <Si) 2 )(1 - (Sj)z) + %_S° (2.17)

The free energy in Eq. (2.17) is the free energy for a given

configuration of the random interactions J . This is a variational

free energy with respect to the variable (Si> and . Thermodynamic

quantities appropriate for the quenched system can be obtained by

first obtaining the appropriate quantity from Eq. (2.17) for a given



configuration and then averaging it over all configurations.

Differentiating Eq.(2.17) with respect to (Si) we get

Edoj

(Sj)

CEi -1
- (S PEZ; (1-¢sp?) = Ttamh™l (s)

0

(2.18)

Eq (2.18) can be obtain in another way by using Eq.(2.3) and (2.4)

From Eq.(2.3) 3 éso>

From Eq.(2.4);

(Sj)

=Jd

0J

(Sj>

Z E
-1
ﬁanh[jfa tanh (tjgoj)]

Z
tanh(5ey%49,5)

z
z.
tanh [j=1 tanh(ij). tanh(ﬁdoj)]
‘
=
tanh [ £ (ﬁJoj). tanh(ﬂHj)]
=
tanh [ﬁj=1 JDj .tanh(ﬁHj)]
= 2 -3 - q2
(1 -t2g2) 7 Tt5(1 = g2,)
+ goj(l - tg) (SO)]
s go5(1-t35) (S

tanh (ﬁHj) + ﬁdoj (SO).

.[1 - tanh? (ﬁHj)]

2
E'Joj tanh(ﬂHj) +zﬁ‘30j .(SO).

.[1 - tanh2 (BHj)]



z

From Eq.(2.3); tanh™* S) tanh"l[tanh(ﬁsfidojtanh@Hj)) ]

= ,ﬁj%{doj tanh(ﬁﬁj)
KT.tanh™} {SO) = jéi Jojtanh(ﬁHj)
KT.tanh™! (s) - = Z o5 (5 - =ZpIzs (SP.
1 - tanhz(ﬂﬂj)]
é:sj> = tanh(gH,)
Ttanh™ () = o5 (= BLS) T 251 - (5p2)

; (we set K = 1)
which is the same as Eq. (2.18)

Since the transitionto the spin glass phase in our prototype
model occurs when non-zero va}ues of q [the order parameter given by
Eq. (2.12)] are possible, Eq.(2.18) must be rewritten in terms of the
order parameter q. This is done by multiplying. Edi(Z.lS) by (So)and
then expand everything in powers of Jij and then keep only thbse terms
which are proportional to z-l. The equation for the order parameter
is then obtained by averaging the expanded Eq.(2.18) over the distribu-

tion of the Jij's and H_i's° The resulting equation is
; i e
[eqy + (1 - c)gp] - [1+ 4 (c+(1 -.c)az) x][ca3 + (1 - c)a3]
+[8(c + (1 - c)a®) x + 5(c + (l—c)a.z-)zle[cq"‘;l FAE = C)qglz

= 0 (2..19)



From Eq. (2.11) we get

/

m-cqy - (1- c)q2 = 0 (2.19)
where 9 = tanh (mzx)
Ay = tanh (mzxa)

L d

The details of the calculation leading to Eq. (2.19) and (2.19)

are given in the Appendix A.
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