
CHAPTER 2

THEORETICAL CONSIDERATION

2.1 Gasoline (13)

2.1.1 General C h a ra c te r is tic s

Gasolines are a complex m ixture o f hydrocarbons o f fo u r  

bas ic  types d if fe r in g  in  th e ir  p ro p e rtie s  according to  the number o f 

carbon and hydrogen atoms in  the  molecule and in  the  arrangement o f 

the  atoms, having a b o il in g  range from 30 to  210 c ,  con ta in ing  

compounds in  the range C5 to  c (14). The fo u r bas ic  types o f 

hydrocarbons are p a ra f f in s ,  o le f in s ,  naphthenes, and arom atics. 

W ith the processes a v a ila b le  today the  re f in e r  can use hydrocarbon 

compounds o f these fo u r  types to  t a i lo r  h is  gasoline  to  commercial 

requirements.

By using h igh re s o lu tio n  c a p il la ry  gas chromotography (HRCGC), 

chromatogram o f a s in g le  commercial gaso line  obtained on a squalane 

column shows probably more than 400 de tectab le  components. In  a 

ty p ic a l gasoline, 100 to  150 compounds account fo r  90% o f the  volume 

(15).

In  the in te rn a l combustion engines, gaso line  is  mixed w ith  a i r  

and the m ixture burned in  the  engine c y lin d e r a t the  proper tim e in  

the  engine cyc le . T h e o re t ic a lly , the  proper r a t io  o f a i r  to  gaso line  

fo r  p e rfe c t combustion is  15 p a rts  by weight o f a i r  to  1 p a rt o f
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gaso line . However, when burned in  an engine th is  m ixture g e ne ra lly  

does not g ive  e ith e r  maximum power o r maximum economy. ร. Bennett H i l l  

and John G. Moxey, J r . , (16) po in ted  out th a t to  fu n c tio n

s a t is fa c to r i ly  in  the  in te rn a l combustion engines, the gaso line  must:

1. Burn smoothly and q u ie t ly  in  the  c y lin d e r w ithou t 

detonation  o r knocking.

2. Evaporate re a d ily  enough to  supply a combustible m ix tu re  o f 

fu e l vapor and a ir  to  the  c y lin d e r when the  engine is  s ta rte d  co ld .

3. Not be so v o la t i le  th a t i t  b o ils  in  the  fu e l pump o r fu e l 

l in e s  when the engine is  h o t, re s u lt in g  in  vapor lock .

4. Under normal running, w ith  the  engine warm, i t  must be 

s u f f ic ie n t ly  v o la t i le  so th a t a considerab le  p o rtio n  is  vaporized in  

th e  in take  m anifo ld  and the  d is tu rb in g  e f fe c ts  o f l iq u id  in  the  

m an ifo ld  are minimized.

5. I t  must not con ta in  components o f such low v o la t i l i t y  th a t  

they are not vaporized and burned in  the  hot c y lin d e r.

6. I t  must evaporate com plete ly and c lea n ly  w ithou t leav ing  

s o lid  or gummy deposits  in  e ith e r  the  fu e l o r the  induction  system.

Most re f in e rs  produce and market more than one grade o f motor 

gaso line . The d if fe re n c e  in  these grades, a regu la r and a premium 

grade, is  based on the  octane ra t in g  o f the  fu e ls , d if fe r in g  

p r in c ip a l ly  in  an tiknock q u a li ty .  R efine rs a lso  change the v o la t i l i t y  

p ro p e rtie s  o f th e i r  motor fu e ls , depending on the atmospheric 

temperatures a t which the  ve h ic le  is  to  operate.
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2.1.2 Performance Requirements

Antiknock Q u a lity

This tendency to  knock, o r"p in g " , or explode on compression in  

in te rn a l combustion engines is  q u a n tif ie d  by the octane number. Two 

labo ra to ry  methods, the Research and the Motor method, have been 

standardized fo r  o b ta in ing  octane numbers o f motor fu e ls  by comparing 

th e ir  b lock tendencies in  standard te s t  engines w ith  re fe rence fu e ls  

blended from n-heptane and isooctane. The p ropo rtion  o f " isooctane" in  

the  re ference fu e l which matches the  knock tendency o f the  fu e l under 

te s t  is  termed i t s  octane number (13). Because "isooctane" has b e tte r  

antiknock p ro p e rtie s  than most commercial gasolines, i t  is  a r b i t r a r i ly  

assigned an octane number o f 100. A poor fu e l,  n-heptane, is  assigned 

an octane ra t in g  o f zero. G enera lly , n -p a ra ff in s  have lower octane 

numbers than branched p a ra ff in s , w h ile  o le f in s  and arom atics have h igh  

octane numbers, o le f in s  do not occur in  s ig n if ic a n t  concen tra tions in  

most petroleums, but are formed du ring  re f in in g  opera tions and are 

im portant in  increas ing  the  octane number o f fu e ls  now th a t the  use o f 

lead -con ta in ing  a d d itiv e s  is  being phased out (14).

The Research and the  Motor method use the  same bas ic  te s t  

engine but operate under d if fe re n t  cond itio n s . The Research octane 

number (RON) is  accepted as a b e tte r  quide o f an tiknock q u a li ty  o f 

fu e ls  when veh ic le s  are operated under m ild  co n d itio n s  associa ted  

w ith  low engine speeds, when opera tion  is  a t h igh  engine speed o r 

under heavy load co n d itio n s , the  Motor octane number (MON) may 

become o f equal o r g re a te r importance.
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Table 2.1 Operating cond itions  fo r  Research and Motor methods (17)

Conditions Motor method Research method

In le t  temperature 149 °c  (300 °F) 52 °c; (125 °F)

In le t  pressure Atmospheric
Humidity 0.0036-0 .0072 kg/kg dry a ir
Coolant temperature 100 °c (212 °F)
Engine speed 900 rpm 600 rpm
Spark advance 19-26 °Btc 13 °Btc

(va rie s  w ith ( cons tan t)

comp, ra t io )
A ir - fu e l ra t io Adjusted fo r  maximum knock

The d iffe re n c e  between RON and MON o f a given fu e l is  known 

as i t s  s e n s it iv i ty .  A high d if fe re n c e  is  taken to  in d ic a te  g rea te r 

s e n s it iv i ty  o f the  fu e l to  changes in  s e v e r ity  o f opera ting  cond itions  

o f the engine.

Surface Ig n it io n

This is  another form o f abnormal combustion in  an automobile 

engine th a t is  associated c lo s e ly  w ith  knock but is  a c tu a lly  a 

separate phenomenon. I t  is  de fined  as the  in i t ia t io n  o f a flame fro n t 

by any hot su rface  o ther than the  spark discharge (such as overheated 

exhaust va lves, spark-p lug e le c trod e s , or porce la ins) p r io r  to  the 

a r r iv a l o f the  normal flame f r o n t .  P r in c ip le  offenders are combustion 

chamber depos its . Gasolines have been improved to  remedy th is
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co n d itio n  by more c a re fu l c o n tro l o f ta i l- e n d  v o la t i l i t y  and by use o f 

a d d itive s  th a t a lte r  the  chemical composition o f deposits .

V o la t i l i t y

Gasolines d i f f e r  in  th e i r  d is t i l l a t i o n  range, o r v o la t i l i t y ,  

s ince they are a m ixtu re  o f a la rge  number o f hydrocarbons w ith  

d if fe re n t  b o il in g  p o in ts . Gasoline v o la t i l i t y  co n tro ls  i t s  performance 

fo r  s ta r t in g , vapor lock , warm-up, and crankcase d i lu t io n .

S t a r t i n g

Approximately 10% o f the  gaso line  in  the  fu e l - a i r  stream 

must evaporate and reach the c y lin d e r as a vapor in  order to  g ive  

prompt s ta r t in g .

S ta rtin g  requirements in  a motor fu e l are o f s ig n ific a n c e  when 

the  problem o f vapor lock  is  considered. I f  too  much o f l ig h t  

hydrocarbons is  included to  g ive  s a t is fa c to ry  s ta r t in g  c h a ra c te r is t ic s , 

the m o to ris t may encounter vapor lock  on warmer days. On the  o the r 

hand, i f  the p ropo rtion  o f the  l ig h t  hydrocarbons is  kept low to  

p ro te c t against vapor lock , the  m o to ris t may have d i f f i c u l t y  in  

s ta r t in g .

Vapor Lock

This is  a complex problem re s u lt in g  from the  fa c t th a t 

gaso line  b o ils  and forms vapor somewhere in  the  fu e l system between 

the  fu e l tank and the  ca rb u re to r d ischarge nozzle. B o ilin g  may take 

place in  the  l in e  to  the  pump, in  the  pump, in  the  lin e  from the
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pump to  the  ca rbu re to r, in  the  ca rbure to r bowl, o r even in  the  

ca rbu re to r fu e l passages. The vapor formed in te r ru p ts  the  normal 

flow  o f l iq u id  fu e l,  and th e  engine w i l l  lose power and may m is f ire  

or s t a l l  com pletely.

O x ida tion  s ta b i l i t y

In  c e r ta in  gaso lines, p a r t ic u la r ly  those produced by crack ing , 

e a s ily  o x id iza b le  hydrocarbons may be present which have a tendency to  

form gummy m ate ria ls  a t the  ca rbure to r f lo a t  va lve , in  the  v e n tu r i 

area o f the  ca rbure to r nozzle , around the th r o t t le ,  o r on va lve  stems. 

Today the  re f in e r  removes the  sm all amounts o f undesirab le , o x id iza b le  

hydrocarbons present in  the  raw gaso line . Most r e t a i l  gasolines a lso  

conta in  an o x id a t io n - in h ib ito r  a d d it iv e .

Odor and Colour

While these p ro p e rtie s  have no e ffe c t on the  performance o f 

motor gaso line , they are ob jec tionab le  to  the  m o to r is t. R efiners 

remove o r n e u tra liz e  the  s u lfu r  compounds known as mercaptans, which 

are the  p r in c ip le  sources o f o ffe n s ive  odor. Most motor gasolines 

are a r t i f i c i a l l y  coloured w ith  gaso line -so lub le  dyes.

2 .1 .3  Gasoline A d d itive s

Components are blended to  promote h igh an tiknock q u a lity ,  

ease o f s ta r t in g ,  qu ick  warm-up, low tendency to  vapor lock , and low 

engine depos its . For the  purposes o f p re lim in a ry  p la n t design, 

however, the  compounds used in  blending motor gaso line  can be 

l im ite d  to  l ig h t  s tra ig h t- ru n  gasoline , c a ta ly t ic  reform ate,
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c a ta ly t ic a l ly  cracked gaso line , hydrocracked gasoline, 

a lk y la te , and ท-]วนtane to  achieve the  desired  Reid vapor 

The q u a n tity  and cost o f antiknock agents, i f  used, 

determined by making octane b lend ing c a lc u la tio n s  (18).

polymer, 

pressure, 

must be

Antiknock Compounds

T e trae thy l lead (TEL) was f i r s t  introduced in  1922. The exact 

mechanism by which TEL works to  suppress knock is  not known. In  sim ple 

terms, i t  is  v is u a liz e d  th a t the  compound is  decomposed by the  heat in  

the  combustion chamber, g iv in g  r is e  to  p a r t ic le s  which then in flu e n ce  

the  chemical reac tions  invo lved  in  the combustion o f the fu e l in  such 

a way as to  promote smooth combustion to  the exclusion  o f knock. TEL 

is  used in  concentra tions up to  3 ml per g a l, which is  equ iva len t to  

0.08 percent by volume o f the  fu e l in to  which i t  is  blended.

TEL has c e r ta in  w e ll recognized disadvantages such as 

tend ing to  increase depos its  in  the  combustion chamber, tend ing  to  

increase exhaust va lve  burn ing , tending to  fo u l spark p lugs, and 

re s u lt in g  in  exhaust gases th a t endanger hea lth . In  the absence o f 

TEL i t  is  possib le  to  improve the  antiknock ra t in g  by inc reas ing , 

r e la t iv e  to  s tra ig h t chain hydrocarbons, the p ropo rtion  o f branched, 

c y c l ic ,  and aromatic hydrocarbons, but th is  re s u lts  in  a decrease in  

the  e x tra c tio n  ra te  o f u se fu l fu e l from petroleum. These 

disadvantages have been minim ized through improved engine design, 

improved gasolines, and the  use o f o ther a d d itiv e s . The use o f 

oxygenates in  motor fu e ls  were recognized as octane boosters and 

were accred ited  w ith  g iv in g  "no knock" and "smoother bu rn ing ".
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Dyes

Dyes used in  gaso line  are the  o il- s o lu b le  type. They are 

present to  the exten t o f about 5 ppm.

A n tiox idan ts

A ntiox idants  are used w ide ly to  in h ib i t  the o x id a tio n  

re a c tio n  which forms gums and thereby tend to  improve the s t a b i l i t y  

o f gasoline  in  use o r in  storage. There are two major classes o f 

a n tio x id a n t compounds, arom atic amines and a lk y l-s u b s t itu te d  phenols, 

used in  concentrations o f about 50 ppm.

Metal D eactiva to rs

Metal d e a c tiva to rs  are used in  a d d itio n  to  an tiox id a n ts  to  

des troy  the c a ta ly t ic  e f fe c t  o f copper in  promoting the  gùm-forming 

o x id a tio n  reac tion . The concen tra tion  used is  about 4 ppm.

A n tiru s t Agents

A n tiru s t agents are added to  gaso line  a t the re f in e ry  to  

p ro te c t p ipe lines  and storage tanks from the  co rros ive  co n d itio n  

caused by the minute amounts o f water u s u a lly  present in  gasoline.

A n tip re ig n it io n  Agents

This class o f a d d it iv e s , a lso  known as deposit m o d ifie rs , 

acts to  change the  cha rac te r o f the combustion-chamber deposits to  

g ive  less tendency to  induce p re ig n it io n , thus reducing the tendency
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o f the engine to  knock as the  car b u ild s  up mileage. Phosphorus 

compounds are in c re a s in g ly  used as a n t ip re ig n it io n  agents in  

concentrations o f around 200 ppm.

U pper-cy linder Lubrican ts

Many re f in e rs  incorporate  from 0.2 to  0.5 percent o f l ig h t  

lu b r ic a tin g  o i l  o r s im ila r  m a te ria ls  in to  th e ir  gasolines to  p rov ide  

e x tra  lu b r ic a tio n  fo r  the  engine in take  valves and the  top  r in g  b e lt  

area. This l ig h t  o i l  serves to  prevent the depo s itio n  o f gummy 

deposits in  the in take  system but may co n tr ib u te  to  combustion-chamber 

depos i t s .

2.2 Combustion and Theory o f Knock (1,2)

Spark ig n it io n  engines are operated by the  fo llo w in g  s teps:

1. In take  s tro ke  ะ the  a ir - f u e l  m ixtu re  is  drawn

in to  the c y lin d e r, the  fu e l being present p a r t ly  as a vapor and 

p a r t ly  as small l iq u id  d ro p le ts .

2. Compression s troke  ะ the  a ir - f u e l  m ix tu re  is

ra p id ly  compressed and the  magnitude o f the  compression r a t io  o f the  

engine depends on the  engine.

3. Combustion ะ the spark ig n ite s  the  m ix tu re , 

combustion being e s s e n t ia lly  a t constant volume.

4. Power s tro ke  ะ the  hot combustion gases

expand, the work o f expansion being tra n sm itte d  to  the  c ranksha ft o f 

the  engine.

5. Exhaust s tro ke  ะ the  combustion gases are 

pushed out o f the c y lin d e r  and the above cyc le  is  repeated.
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2 . 2 . 1  N orm al C om b u stion  ( 17 )

Normal combustion 

engine whenever a m ixtu re  

c o n tro lle d  fash ion w ith in  the

occurs in  a sp a rk -ig n ited  

o f hydrocarbon fu e l and a ir  

combustion chamber.

automobile 

burns in  a

'  UN&URNEO

Figure 2.1 Schematic o f normal combustion process (17)

A flame crea ted  a t the spark p lug  advances in to  the  unburned 

m ixture so th a t the  flame fro n t  propagates throughout the  chamber 

u n t i l  i t  is  quenched near the w a ll surfaces. The chemical re a c tio n  

between fu e l and oxygen lib e ra te s  energy th a t causes a r is e  in  

temperature. This temperature r is e  is  p r im a r ily  responsib le  fo r  the  

pressure r is e  th a t d r iv e s  the  p is to n . P a rt o f th is  energy is  converted 

to  usable work by the  expanding gases a c tin g  against the p is to n  top . 

The remainder is  lo s t  by heat re je c t io n  to  the coolant and in  the

exhaust gases.
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Abnormal combustion in  a spark ig n it io n  engine can be

described ธร any chemical re a c tio n  o f an a ir - f u e l  m ixture  th a t 

occurs in  the absence o f a spark and th a t re s u lts  in  a sudden 

re lease o f chemical energy causing a ra p id  r is e  in  temperature and 

pressure. This s e l f - ig n i t io n  process encompasses a general category 

which can describe such phenomena as (F igure  2 . 2 ) ะ

1 . knock ะ an end-gas exp los ion .

2 . run-on ะ a compression ig n it io n  a t id le ,  sometimes 

re fe red  to  as "d ie s e lin g "  o r "a f te r - ru n " .

3. p re - ig n it io n  ะ a surface  ig n it io n  before  spark-

ig n it io n  can occur.

4. m is f ire  ะ flame ke rne l too  weak and so the  flame

dies e a r ly .

5. exhaust va lve  seat recession ะ environment too  h o s t i le  

fo r  the  's o f t ’ m e ta llu rgy .

Knock and run-on are probably the f  orms o f abnormal

combustion most o fte n  noted by d r iv e rs  in  today’ s engines. Knock or 

de tonation  is  u su a lly  id e n t i f ie d  by an audib le  "p in g in g " sound

emanating from the  engine du ring  p a rt- lo a d  or fu l l - lo a d  opera tion . 

This sound is  caused by h igh-frequency (about 500 cyc les/sec) 

v ib ra t io n  o f the  engine s tru c tu re  induced by gas pressure waves 

w ith in  the combustion chamber. These pressure waves are generated by 

"a u to ig n it io n "  o f the  gas ahead o f the  normal flame f ro n t .  Knock 

causes increased heat re je c t io n  to  the  coo lant and a loss o f engine 

power. In severe cases o f susta ined knock, fa i lu r e  o f p is tons  and 

connecting rods can a lso  occur.

2 . 2 . 2  Abnorm al C om b u stion  ( 1 2 , 1 7 )



Figure 2.2 Abnormal combustion characteristics

(a) Knock (an end-gas explosion)

(b) Run-on (a compression ignition at idle)

(c) Pre-ignition (a surface ignition before 

spark-ignition can occur)

(d) Misfire (flame kernel too weak and so 

the flame dies early)

(e) Exhaust valve seat recession (VSR)(environment 

too hostile for the 'so ft’ metallurgy) (12)
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Several engine design and operating va ria b les  a f fe c t  knock. 

In general, the  tendency to  knock usu a lly  changes w ith  changes in  

the va ria b les  l is te d  in  Table 2 .2 .

Table 2.2 Engine a v a ila b le s  which a ffe c t knock (17)

Knock tendency increases Knock tendency decreases

1. Higher compression ra t io 1. Increased quench area
2. Advanced spark tim ing 2. Increased turbu lance

3. Higher in le t  a ir  tempera- 3. Higher engine speed
tu re

4. Increased barometric 4. Higher hum idity
pressure

5. Higher coolant tempera- 5. Increased charge d ilu t io n
tu re ( i .e .  exhaust gas r e c ir -

cu la tio n )
6. Increased load ( th r o t t le 6. A/F r ich e r or leaner than

opening) s to ich io m e tric

Another abnormal combustion problem is  run-on, caused by 

compression ig n it io n  and occurs when a spark ig n it io n  engine continues 

to  run a f te r  the  ig n it io n  is  tu rned  o f f .  Recent in v e s tig a tio n s  (19) 

have shown th a t run-on increases as the  th r o t t le  opening a t the id le  

increases, and decreases w ith  increased octane q u a lity  o f the  fu e l.
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Combustion o f the  fu e l is  p ra c t ic a l ly  complete w ith in  the  

narrow flame fro n t,  y ie ld in g  carbon monoxide, carbon d iox ide , and 

water (21). The traces o f hydrocarbons found in  exhaust gases re s u lt  

from the  thermal decomposition o f unvaporized fu e l and o i l  on the  

c y lin d e r  w a lls , when the  gases behide the  flame fro n t  begin to  cool 

down, readjustments occur in  the  e q u ilib r ia .:

2 .2 .3  C h a ra c te r is t ic s  o f  Knock (20)

2 CO 4 0 2
------- > 2C0Z

CO 4 H„0 — ------- >
C0E 4 H->

and H2 + 20H —------ > 2H20

The spectrum o f the  flame fro n t  in  an engine s im ila r  to  th a t 

o f a Bunsen burner, com prising a number o f well-known bands (eg.C-H 

and C-C) superimposed on a background o f continuous emission; i t s  

u l t r a - v io le t  spectrum shows CO and OH bands (22); i t s  in fra re d  

emission ind ica tes  the presence o f carbon d io x id e  and water.

The occurence o f knock in  the engine is  marked by flame and 

pressure c h a ra c te r is tic s  d is t in c t ly  d if fe re n t  from those o f normal 

combustion. These c h a ra c te r is t ic s  are confined to  a p o rtio n  o f the  

charge, which is  the la s t to  burn; so c a lle d  "end gas".

In  non-knocking opera tion  no in d ic a tio n  is  found o f any 

extens ive  chemical change in  the  end gas. When the  fu e l o f opera ting  

co n d itio n  are changed in  the  d ire c t io n  to  produce knock, absorption 

spec tra  show the presence o f formaldehyde in  the  n o n -in f lamed end 

gas, in  amounts which increase as the  th re sh o ld  o f knock is  

approached. C oncurrently, the  flame spectra  show a decrease in  the
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emission o f C-C and C-H bands, suggesting th a t the  o r ig in a l fu e l 

molecules have been p a r t ia l ly  ox id ized  o r d issoc ia ted  before  the  

a r r iv a l  o f the  flame f ro n t .

In  1918 Ricardo (22) s ta ted  th a t knock re su lte d  from a 

simultaneous and spontaneous ig n it io n  o f the  la s t p a rt o f the  charge 

to  burn. Elbe and Lewis (21) presented the theory o f hydrocarbon 

combustion reactions in  the  in te rn a l combustion engine. The combustion 

process is  p ic tu re d  to  in vo lve  a race between combustion by a moving 

flame and the spontaneous ig n it io n  o f the unburnt charge ahead o f the  

flame.

The se ries  o f fa c t  which brought out by the  experiments 

conducted d ir e c t ly  w ith  engines or in  c lo se ly  re la te d  apparatus 

in d ica te d  th a t the development o f the ch a in -re ac tio n  theory  o f the  

slow o x id a tio n  and exp los ion  o f gases provided a reasonable bas is  

fo r  the  explanation o f the  phenomena observed. Detailed, d iscuss ions 

o f ch a in -re ac tio n  theo ry  are a va ila b le  (5 ,12 ,23 ). G enera lly , i t  

appears th a t the o x id iz a b i l i t y  o f the fu e l is  the  bas ic  fa c to r  in  

determ in ing i t s  knocking tendency.

2 .3  O x y g e n a te s  in  M o to r G a s o lin e s  (24 )

W ith the phasing out o f lead a d d itive s  from g aso line , 

oxygenated supplements, covering a range o f a lcoho l and e ther types , 

have been recognized as a means o f easing the  octane burden on 

re f in e rs ,  fu e l b lenders and marketers. However, s ince these 

m a te ria ls  are not hydrocarbons th e ir  behaviour in  terms o f b lend ing  

and v e h ic le  performance is  d if fe re n t  from hydrocarbon-only gaso lines . 

Furthermore, a lthough many a lcoho ls  and ethers have h igh octane
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numbers they are not as e f fe c t iv e  as lead in  ra is in g  base fu e l 

octane numbers nor do they o f fe r  any valve seat p ro te c tio n . 

Therefore they cannot be regarded as a means o f t o ta l  lead 

replacement. Thus the re  is  a need to  evaluate the performance o f 

oxygenates in  blends w ith  gaso line  in  order to  de fine  th e ir  scope, 

to  e s ta b lish  c r e d ib i l i t y  w ith  e x is t in g  gasoline s p e c if ic a tio n s  and 

to  ensure acceptable market s a t is fa c t io n .

T echn ica lly , Therefore, oxygenates may be regarded as the  

means o f f u l f i l l i n g  th re e  bas ic  needs: extending the gaso line  poo l; 

boosting octane va lues; and p ro v id in g  the re f in e r  w ith  a d d it io n a l 

b lending f l e x i b i l i t y  to  meet e ve r-in c re s in g  demands on q u a lity .

2 . 3 . 1  M a n u fa c tu re  o f  O x y g e n a te s

M e th a n o l

The f i r s t  and o ldes t process fo r  the  production o f methanol 

was the d e s tru c tiv e  d is t i l l a t i o n  o f wood, hence "wood a lc o h o l" . 

However, methanol is  now produced s y n th e t ic a lly  using n a tu ra l gas, 

coal gas, water gas o r sewage gas a t h igh pressure and tem perature 

in  the presence o f m e ta llic  c a ta ly s ts , and can be described by the  

general reac tion  equations:

• 02
2H20  + 2C + CHa + CO--------> 2CO + 4HZ -------- > 2CH30H

D ire c t syn thes is  from carbon monoxide and hydrogen (the  

interm ediate product above) may a lso  be performed a t e leva ted  

temperatures and pressures as fo llo w s :
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CO + 2H2 --------- > CH30H

Ethanol

Commercially, the re  are two major manufacturing routes to  

the  production o f e thano l, namely "n a tu ra l"  and "s y n th e t ic " . The 

n a tu ra l route invo lves the  fe rm entation o f carbohydrates. These 

reac tions  come under the  general heading o f "b io -e th a n o l" and 

g e n e ra lly  fo llo w  the  equation:

CeH120ธ --------- > 2CoH5OH + 2C02

"B io -e thano l" is  wet and requ ires  d ry ing  before i t  can be 

considered as a motor gaso line  supplement. The s yn th e tic  rou te  

g e n e ra lly  involves the  hyd ra tion  o f e thylene to  e thanol, i . e . :

C2Ha + H20 ----------> C2H5OH

Ethylene is  re a d ily  a v a ila b le  from steam cracking  where the prim ary 

use is  in  the manufacture o f po lye thylene.

T e r t ia r y  b u t y l a lc o h o l

T e rtia ry  b u ty l a lcoho l (TBA), the  most commonly used o f the  

methanol cosolvents, is  produced and marketed by Arco Chemicals Inc . 

in  the  from o f gaso line  grade te r t ia r y  b u ty l a lcoho l (GTBA). The 

Arco process cons is ts  o f a c o n tro lle d  o x id a tio n  o f isobutane to  TBA 

and te r t ia r y  b u ty l hydroperoxide fTBHP). The TBHP is  reacted w ith  

propylene to  produce propylene oxide (P0) and a d d it io n a l TBA. The 

r a t io  o f TBA to  P0 is  approxim ately 2 .0 -2 .5  ะ 1, and the general
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reactions are shown as fo llo w s :

4(CH3) 2CHCH3 + 302 — 

isobutane

(CH ) 3œOH + CH3CHCH2 --------> (CH3) 3COH + CH3CH0CH2

TBHP propylene TBA PO

The GTBA tends to  be ra th e r impure, <ca95% v o l.  and

conta ins up to  0.81% v o l.w a te r). However, th is  product is

s a tis fa c to ry  fo r  motor gaso line  b lend ing.

M ix e d  a lc o h o ls

The number o f commercial processes produce m ixtures o f 

a lcoho ls th a t are s u ita b le  as motor gasoline supplements; e .g .

Snamprogetti’ ร MAS (m ixtu re  o f a lcoho ls  superio r) and the  Union

Carbide product "U carno l", both o f which are m ixtures o f methanol 

and h igher a lcoho ls , a c tin g  as cosolvent fo r  the methanol.

M e th y l t e r t i a r y  b u t y l  e th e r  (25 )

Licensed e th e r if ic a t io n  processes a va ila b le  today d i f f e r  in  

technology d e ta ils ,  bu t a l l  are based on the same chem istry . The 

synthesis o f MTBE from isobutene and methanol proceeds according to  

the fo llo w in g  re a c tio n  in  the  presence o f a s tro n g ly  a c id ic  ion 

exchange re s in  c a ta ly s t.  The re a c tion  is  re v e rs ib le  and exotherm ic:

(CH3) 2C=CH2 + CH30H =====ะ (CH3) 3COCH3 

isobutene MTBE __
หอสบุคกลาง สำนักงานวิทยทรัพยากร 

จุฬาลงกรณ์มหาวิทยาลัย
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The MTBE form ation re a c tio n  is  e q u ilib riu m  lim ite d . H igher 

temperatures increase the  rea c tion  ra te , but the conversion le v e l is  

lower. Lower temperatures s h i f t  the  equ ilib rium  toward e ther 

production, but more c a ta ly s t in ve n to ry  is  requ ired. Therefore, 

conventional MTBE u n its  are designed w ith  two reactors in  se rie s . 

Most o f the e th e r if ic a t io n  re a c tio n  is  achieved a t e levated 

temperature in  the  f  i r s t  re a c to r and then f  in ished  a t a

thermodynamically advantageous lower temperature in  the second re a c to r.

The main d iffe re n ce s  among the  licensors are found in  the 

reac tion  sec tion . The rea c tion  sec tio ns  are designed to  e f fe c t iv e ly  

c o n tro l the exotherm ic heat o f re a c tio n .

T e r t ia r y - a m y l m e th y l e th e r

T e rtia ry -am y l methyl e the r (TAME) is  produced com m ercially 

by reacting  an isoamylene, in  which the  double bond is  on the  te r t ia r y  

carbon atom, w ith  methanol. The exotherm ic reaction  is  re v e rs ib le  and 

cata lysed by an a c id ic  ca tio n  exchange re s in :

(CH3) 2C=CHCH3 

2 m ethyl-2-butene

CH2=C(CH3)CH2CH3 

2 m ethyl-1-butene

Commercially, the  feed fo r  th is  process is  e ith e r  the  c_ 

fra c t io n  of a l ig h t  c a ta ly t ic a l ly  cracked gasoline stream o r a 

p a r t ia l ly  hydrogenated l ig h t  steam-cracked gasoline stream.

+ CH3OH ะ= = ^  C2H5C(CH3) 2OCH3

TAME
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Mixed e thers (26)

A number o f processes, in c lu d in g  the BP "E th e ro l"  process, 

use mixed. C4, c  , CQ and C7 o le f in s  derived from c a ta l.y t ic a lly  

cracked o r steam-cracked streams and e th e r ify  the is o -o le f in s  in  the 

presence o f methanol to  produce m ixtures o f MTBE, TAME as w e ll as Cg 
and C7 e thers. This process is  p a r t ic u la r ly  successfu l in  

upgrading the  motor octane q u a li t ie s  o f cracked naphthas and g ives a 

product known as " e th e r if ie d  s p i r i t s "  (24).

The isobutano l is  advantageously not seperated from the 

o the r h igher a lcoho ls  but ra th e r the  whole h igher a lcoho l m ixture  is  

subjected to  dehydration and the  re s u lt in g  m ixture  o f o le f in s  is  

used to  form e the rs . This gives r is e  to  a m ixture o f MTBE and o ther 

e the rs . These m ixtures are p a r t ic u la r ly  use fu l gaso line  a d d itiv e s : 

in  some cases, RON o f the  gaso line  con ta in ing  the  a d d it iv e  e ther 

m ixtu re  is  g rea te r than th a t which would be expected from the  use o f 

the  in d iv id u a l e the rs . A lso, by using a m ixture o f e the rs , the 

b o il in g  range o f the  octane enhancing components o f the  gaso line  is  

advantageously broadened.

I t  has been proposed in  pub lished B r i t is h  Patent A p p lica tio n  

2031886 to  employ m ixtures o f MTBE and t-am yl methyl e the r as 

gasoline a d d itiv e s . However such m ixtures were obtained from a C^-Cs 

hydrocarbon re f in e ry  fra c t io n  and were e s s e n tia lly  on ly  b in a ry  m ixtures.

In UK Patent A p p lica tio n  GB 2123411A (26) provided a process 

fo r  the manufacture o f a m ixtu re  o f ethers u se fu l as gasoline 

a d d itive s  com prising:
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i )  syn thes is ing , from synthesis gas com prising hydrogen, 

carbon monoxide and, o p t io n a lly ,  carbon d iox ide , a m ixture  o f 

a lcoho ls co n s is tin g  o f methanol, ethanol and h igher a lcoho ls .

i i )  dehydrating sa id  h igher a lcohols to  g ive  a m ixture  o f 

o le f in s , and

i i i )  e th e r ify in g  sa id  o le f in  m ixture by re a c tion  w ith

a) methanol, and o p t io n a lly  e thanol, in c lu d in g  a t lea s t p a rt 

o f methanol, and o p t io n a lly  e thano l, in  a lcoho l m ix tu re , and/or w ith

b) d i- a lk y l  e thers re s u lt in g  from dehydration o f methanol, 

and o p tio n a lly  e thano l, in c lu d in g  a t leas t p a rt o f methanol, and 

o p tio n a lly  e thanol, in  a lcoho l m ix tu re .

2 . 3 . 2  M a te r ia ls  C o m p a t ib il i t y

M ate ria ls  c o m p a t ib ili ty  s tud ies  are concerned w ith  metal 

co rros ion , elastomer and p la s t ic  a tta ck  and the e f fe c t  on tank 

l in in g s . In  general term s, fo r  both co rros ion  and elastomer 

c o m p a tib ility  i t  was found th a t the a n ta g on is tic  e f fe c t  o f the  

oxygenated gasolines towards the  te s t  specimens showed the  order o f 

a tta ck  to  be

methanol> e thano l) TBA> MTBE

However, inc reas ing  oxygenate content, temperature and, in  the  

co rros ion  te s ts , water conten t increased the magnetude o f the  a tta ck .

2 . 3 . 3  D is t r ib u t io n  o f  F u e ls  C o n ta in in g  O x y g e n a te s

From p o in t o f manufacture to  po in t o f sa le , most gasolines 

have to  be transpo rted  s ig n if ic a n t  d istances by va rious  means. At 

any p o in t in  the  d is t r ib u t io n  system, the motor gaso line  may come
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in to  contact w ith  water, w ith  w ho lly  hydrocarbon gasolines th is  

presents few problems, as hydrocarbons and water are v i r t u a l ly  

im m iscible. However, a lcoho ls are m isc ib le  w ith  water, and in  the 

presence o f hydrocarbon tend to  show a g reater a f f i n i t y  fo r  water 

than fo r  the  hydrocarbons. Hence, i f  a d is t r ib u t io n  network is  too 

wet, a lcoho ls tend to  be leached out by " fre e "  water, w ith  two 

oxygenate-rich phases form ing. These may e ith e r  be in  the  form o f 

d is t in c t  layers o r as a hazy or cloudy product. E ith e r way, product 

q u i l i t y  is  adversely a ffe c ted .

Methanol is  in f in i t e ly  m isc ib le  w ith  water and in  the 

presence o f hydrocarbons has a low water to le rance , th a t is ,  the 

methanol/hydrocarbon blend cannot re ta in  very much water w ithou t 

separating in to  two d is t in c t  la ye rs . Higher a lcoho ls  such as 

te r t ia ry 7 bu tano l, isobutano l and isopropanol have h igh water 

to lerances and, when added to  methanol/hydrocarbon blends, increase 

the water to le rance  o f the  methanol. Hence h igher a lcoho ls o f th is  

type are o fte n  c a lle d  cosolvents.

There are a number o f ways to  increase the water to le rance  

o f an oxygenated blend, thereby reducing the p ro b a b ili ty  o f phase 

separation. These inc lude increas ing  the  aromatic content o f the 

blend, the oxygenate concen tra tion  and/or the b u lk  temperature of 

the product. I t  is  e sse n tia l th e re fo re , when d is t r ib u t in g  oxygenated/ 

hydrocarbon blends (e s p e c ia lly  a lc o h o ls ), th a t the  pipe and tankage 

network should be as w a te r-fre e  as poss ib le . Ethers (e .g . MTBE) are 

so lub le  in  water but on ly a t low le v e ls  and e x h ib it  c h a ra c te r is tic s  

s im ila r  to  hydrocarbons ra th e r than a lcoho ls .
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2 . 3 . 4  V e h ic le  P e rfo rm a n c e  w ith  F u e ls  C o n ta in in g  O x y g e n a te s

The fo llo w in g  aspects o f ve h ic le  performance can be 

in fluenced  by the  presence o f oxygenates in  the gaso line :

1. Road an ti-knock  performance

2. D r iv e a b il i ty  (hot and co ld  weather)

3. Exhaust emissions

4. Fuel economy

5. In le t  system detergency

6. Evaporative emissions

7. In take  system ic in g  

D e ta iled  d iscussions are a v a ila b le  (24).

E x h a u s t E m is s io n s

Oxygenate supplements in  gasoline can a ffe c t  exhaust 

emission le ve ls  la rg e ly  through "lean ing  e f fe c ts " .  This is  a 

p a r t ic u la r ly  use fu l fe a tu re  in  "o ld e r"  veh ic les , which tend to  run 

w ith  p rog ress ive ly  r ic h e r  fu e l m ixtures w ith  mileage. Th is is  probably 

due to  the fa c t th a t o ld e r cars were genera lly  se t to  r ic h e r  m ixture  

s e tt in g s  and, w ith  general trends in  engine tune w ith  mileage, e tc . ,  

the  m ixture  enrichment th a t would ensure could be counteracted by 

the  leaning e ffe c ts  o f oxygenates.

The net e ffe c ts  from re f in e ry  b lending o f oxygenates must be 

estim ated from the knowledge o f reducing arom atic content o f the  

gaso line , s ince reductions o f gasoline  p ro pe rtie s  such as aromatics 

conten t, heat o f va p o riza tio n  and b o il in g  p o in ts  o f gasoline w i l l  

a lso  c o n tr ib u te  in  lower CO and HC emissions, re f in e ry  blending o f 

h igh octane oxygenates such as ethers are expected to  have a much
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greater o v e ra ll emission reduc tion  b e n e fit than ju s t  splash b lend ing 

o f oxygenates as ty p ic a l ly  done w ith  ethanol (27).

In  the case o f MTBE, w ith  i t s  lower oxygen conten t, i t  

appears th a t the enleanment e f fe c t  plays a sm a lle r ro le . MTBE’ s 

lower flame temperature e f fe c t  begins to  dominate in  apparently  

lowering NOX emissions when the  volume percent o f MTBE exceeds 11 

volume percent (2 wt% oxygen) in  the  fu e l (27).

F u e l Econom y

This is  borne out by F igure  2.3 and 2.4, which show th a t 

the fu e l economy o f commercial oxygenated gasolines is  e s s e n tia lly  

unchanged by increasing amounts o f oxygenates. Indeed, F igure 2.4 

show th a t the re  could be m arginal b e ne fits  in  terms o f reduced 

energy consumption w ith  increased fu e l oxygen content.
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Figure 2.4 Fuel energy consumption (average o f f iv e  veh ic les) (24)

2 .4  O x id a tio n  o f  M e th y l t e r t - B u t y l  E th e r  (28)

The ox id a tio n  o f MTBE is  s tud ied  in  the  P rinceton 

atmospheric pressure flo w  re a c to r a t i n i t i a l  temperatures o f 1028K 

and 1119K, and equivalence ra t io s  near one. The rea c tion  is  

p r im a r ily  governed by the  fo rm ation  o f a fo u r centered complex which 

decomposes to  form isobutene and methanol, as p rev ious ly  determined 

by s ta t ic  rea c to r, lower temperature experiments (below 800K)(29-33).

> iC^H8 + CH3OH (1)

The existence o f a lte rn a t iv e  unimolecule decomposition 

reac tions  and hydrogen a b s tra c tio n  reac tions  is  supported by the 

appearance o f acetone as an in te rm ed ia te , and by the form ation o f 

la rg e r q u a n tit ie s  o f isobutene than methanol.

CH 
[  3

H3C-C.. .o-CH3 —  

H2C .. .H
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Acetone fo rm a tion  can be accounted fo r  by the clevage o f the  

m e thy l-e the r C-0 bond in  MTBE. This is  a r e la t iv e ly  weak bond (ca.83 

kca l/m o l (3 4 )), and the  re s u lt in g  molecule can th e n /^ -s c is s io n  to  form 

acetone and a methyl ra d ic a l:

H3C-C-0-CH3 ----->

CH3

ch3

H3C-C-0' + CH3 (2)

CH
[  3 

H C-C-O*
3 I

CH3

0
II

---- > H3C-C-CH3 + CH3' (3)

The C-H bond s treng ths  o f the m ethy l-e ther group on MTBE are 

approxim ately 93 kca l/m o l (34), which is  the  same as fo r  a t e r t ia r y  

C-H bond. Thus, i t  is  no t s u rp ris in g  th a t a considerable q u a n tity  o f 

MTBE might react th rough abs tra c tion  o f these hydrogen atoms. The 

re s u lt in g  ra d ic a l would u n d e rg o ^-sc iss io n  a t these temperatures, and 

form the  te r t - b u ty l  ra d ic a l and formaldehyde:

CH CH
I 3 I 3

H3C-C-0-CH3 + R* ---- > H3C-C-0-CH2* + RH

CH3 ch3

(4)

CH
[  3

H C-C-O-CH ‘ ----->3 I 2

๓ 3

CH
I.

H3C-C* + CH20 (5)

CH3
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F in a lly , the  te r t - b u ty l  ra d ic a l is  unstable a t h igh 

temperatures, and ra p id ly  decomposes to  form isobutene and H ra d ic a l,  

thus accounting fo r  the  appearance o f la rg e r q u a n tit ie s  o f isobutene 

than methanol, s ince no methanol is  formed in  th is  rou te .

The im p lic a tio n s  are th a t a lthough MTBE acts as an a n t i 

knock agent by in tro d u c in g  two chemical species w ith  h igh b lend ing  

octane ra t in g , isobutene and methanol, i t s  e ffe c t is  less than would 

be expected than i f  on ly  Reaction (1) were present. This is  due to  

the production o f formaldehyde, an extremely re a c tive  compound, v ia  

Reaction (5 ). o f course, the  present re s u lts  are fo r  atmospheric 

pressure, and o ther m echanistic changes may a lso occur as the  pressure 

is  increased to  magnitudes s im ila r  to  th a t in  engines.

2 .5  T in  C h e m ic a ls  ( 3 5 )

Tin  is  one o f the  w orld ’ s most va luab le  metals. A lthough i t s  

annual consumption is  q u ite  sm all compared to  many in d u s tr ia l m etals, 

i t s  importance l ie s  in  the  fa c t  th a t i t  is  a v i t a l  component in  a 

la rge  number o f f ie ld s .  Major uses include t i n  p la te  associa ted w ith  

can-making and food-packing in d u s tr ie s , an in te g ra l p a r t o f the  

e le c t r ic a l and e le c tro n ic  in d u s tr ie s . T in  chemicals represent a 

growing use o f t i n ,  and in  p a r t ic u la r ,  the  growth in  consumption o f 

the  type o f compounds known as organotins has increased d ra m a tic a lly .

T in chemicals become so im portant because they e x h ib it  a 

wide range o f p ro p e rtie s  th a t can o fte n  be ta i lo re d  to  meet the  

requirements o f s p e c if ic  end users. This is  p a r t ic u la r ly  tru e  o f the  

organotin  c lass o f compound, where changing the number o r na tu re  o f 

the  organic moiety can have a dramatic e f fe c t  on the chemical and/or
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b io lo g ic a l p ro p e rtie s . T in  compounds are o fte n  e ffe c t iv e  in  very low 

concentra tions in  many a p p lic a tio n s , which is  advantageous from a 

fo rm u la tion  and. cost e ffec tiveness  p o in t o f view. In  a d d it io n , the re  

are p a r t ic u la r ly  favourab le  environm ental aspects th a t o fte n  g ive  a 

dec is ive  advantage over a lte rn a t iv e  m a te ria ls  (35). Ino rgan ic  t in  

compounds in  p a r t ic u la r  are regarded as not presenting any h e a lth  o r 

environmental problems because, a t p h ys io lo g ica l pH, the  metal does 

not react and the  oxides are in so lu b le  (36).

T in (IV ) c h lo r id e  ESnCl^ว

Tin (IV) c h lo r id e  is  co lo u rless  l iq u id  which freezes 

a t -30.2  c and b o ils  a t 114 c. I t  reacts  v igo rous ly  w ith  water, 

and hence fumes in  moist a i r  due to  h yd ro lys is . By adding the  

anhydrous l iq u id  to  water under c a re fu lly  c o n tro lle d  co n d itio n s , 

w h ite  s o lid  c ry s ta ls  o f the pentahydrate, รทCl^.5H20, are formed. 

The pentahydrate is  a de liquescent s o lid ,  very so lub le  in  water or 

a lcoho l. Anhydrous t in ( IV )  c h lo r id e  is  prepared in d u s t r ia l ly  by the 

rea c tion  o f d ry  c h lo r in e  w ith  m e ta llic  t i n  a t 110 C-115 c.

An im portant use fo r  the  compound is  as a s ta r t in g  m a te ria l 

fo r  the  manufacture o f organotin  compounds, and fo r  o the r t in ( IV )  

compounds g e n e ra lly . In  th is  reserch , i t  is  used as a s ta r t in g  

m a te ria l fo r  the syn thes is  o f te t ra h e x y lt in  compound.

T in  (IV ) ox ide [รทo2:]

T in (IV ) oxide is  one o f the  most in d u s tr ia l ly  im portant t i n  

compounds, and has found a p p lic a tio n s  in  many d if fe re n t  areas as

described below.



32

-  Ceramics indus try

Anhydrous t in ( IV )  oxide has been used as an o p a c if ie r  in  

ceramic glazes.'

-  Glass a p p lica tio n s

A major a p p lic a tio n  o f t in ( IV )  oxide is  fo r  su rface  f ilm s  

on g lass. Transparent รท02 f i lm s  are employed to  strengthen

glassware such as re tu rnab le  and non-re tu rnab le  b o tt le s  and ja rs ,  

and ca te ring  glassware subjected to  rigo rous use.

-  C a ta ly t ic  a p p lica tio n s

T in (IV ) oxide is  one o f the  components o f a number o f 

b ine ry  oxide systems which f in d  extensive use as heterogeneous 

ca ta lys ts  in  in d u s try . The a b i l i t y  o f Sn02 to  o x id is e  carbon 

monoxide has a lso  led  to  a i r  p u r if ic a t io n  a p p lic a tio n s , fo r  example 

in  submarines and sa fe ty  masks.

-  Gas sensors

The semiconductor p ro p e rtie s  o f t in ( IV )  oxide form the 

basis o f i t s  w e ll-e s ta b lis h e d  use in  gas sensors. The increase in  

c o n d u c tiv ity  is  a measure o f the  gas concentra tion , and such gas 

sensors are a v a ila b le  fo r  the  d e te c tio n  o f hydrocarbons, o ther 

combustible gases, a lco h o l, carbon monoxide, ammonia, e tc .

-  Other uses such as ion-exchange res ins .

บทl ik e  lead, t in ( IV )  oxide produced in  the combustion o f 

te trao rgano tin -b lended  gasolines is  regarded as no t p resen ting  

any hea lth  o r environmental problems.
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O rg a n o tin  Com pounds

Organotin compounds are de fined  as those which conta in  a t 

leas t one d ire c t t in -c a rb o n  bond. The great m a jo r ity  o f such 

compounds, and a l l  the in d u s t r ia l ly  important ones, have t i n  in  the  

te tra v a le n t s ta te , and hence they can be conveniently  devided in to  

fo u r c lasses: the  mono-, d i - ,  t r i - ,  and te tra o rg a n o tin s . The t i n -

carbon bond is  more p o la r than carbon bonds to  carbon, s i l ic o n ,  or 

germanium in  Group ( IV ) , and hence is  more re a c tiv e . However, the  

tin -ca rbon  bond is  s ta b le  to  water and atmospheric oxygen a t normal 

temperatures. The number and na ture  o f the organic groups attached

to  the t i n  atom d ra m a tic a lly  a f fe c t  the  p rope rties  o f the  compound

p a r t ic u la r ly  i t s  b io a c t iv i ty ,  and th is  has resu lted  in  organotins

fin d in g  a p p lica tio n s  in  a wide range o f areas.

T e tra o rg a n o t in  C om pounds รท

Tetraorganotins are the  f i r s t  organotin products formed by 

the Wurtz, aluminium a lk y l,  and G rignard synthesis and hence they are 

an important in te rm ed ia te  in  the  manufacture o f most o the r organotin  

compounds. This is  t h e ir  main use, and there  are no o the r

s ig n if ic a n t commercial a p p lic a tio n s  a t present, a lthough they have 

been suggested as c a ta ly s ts  in  va rious processes. T e tra b u ty I t in , 

(nC^H9)4รท, is  marketed as an e s te r if ic a t io n  c a ta ly s t.

T e tram e thy ltin , (CH3) รท, is  another precursor used to  produce 

conductive t in ( IV )  oxide f i lm s  on g lass .
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2 .6  B a s ic  M e thods o f  P r e p a ra t io n  o f  O rg a n o tin  C om pounds (38 )

The th ree  p r in c ip a l ways in  which the ca rb o n -tin  bond can be 

formed invo lve  the reaction  between an organom eta llic  compound and a 

t i n  d e r iv a tiv e  (eq .2 -1 ), o r between a t in -m e ta l compound and an 

a lk y l h a lid e  (eq.2'-2), o r between a t i n  hydride and an alkene (eq .2 -3 ). 

The a c id o ly s is  reac tion  (eq .2-4) is  o f more l im ite d  scope (37).

RM + ^SnX ----------> ^S nR  + MX (2-1)

RX + ^SnM ----------> ^ รทR + MX (2-2)

o c  + ^S nH  ----------> ^SnCCH (2-3)

RH + HrSnNR’ 2 --------> ^SnR + HNR’ (2-4)

Organotin compounds ( R^Sn, R3SnX, R2รทX2, and RSnX3 )

are prepared by va rious k inds o f s yn th e tic  methods such as the  

G rignard rea c tion , Wurtz re a c tio n , reactions w ith  organoaluminums 

and d ire c t  reac tions . The G rignard re a c tion , Wurtz reac tion  and 

reac tions  w ith  organoaluminums are gene ra lly  s u ita b le  fo r  the 

p repara tion  o f R^Sn, and, on the  o ther hand, d ire c t  reactions are 

s u ita b le  fo r  the p repara tion  o f R2รทX2

2 . 6 . 1  G r ig n a rd  R e a c tio n

The Grignard re a c tio n  has been used fo r  a long tim e as the  

s y n th e tic  method fo r  o rgano tin  compounds, and now i t  is  w ide ly used 

both experim enta lly  and in d u s t r ia l ly .

4RMgX + SnXA ------------> R4รท + 4MgX2 (2-5)
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This is  probably because the  Grignard re a c tio n  e a s ily  g ives 

R^รท in  high y ie ld  in  excess Grignard reagent, and the o the r 

organotin  d e r iv a tiv e s  are produced the Kocheskov re a c tion . In  

general the y ie ld s  o f the organotin  compounds are between 50 and 95 

percent except in  cases where they are in fluenced by s te r ic  fa c to rs .

In  the  G rignard re a c tio n , a fo u r - fo ld  excess o f G rignard 

reagent as an a lk y la t in g  agent over stann ic  h a lid e  is  th e o re t ic a l ly  

requ ired  as shown in  e q .(2 -5 ), and the stann ic  ha lides  are a lk y la te d  

stepwise as shown in  e q .(2 -6 ), But a c tu a lly , the re s u lt in g  product 

is  a m ixture  o f R^รท, R3รnX, R2รทX2, and RSnX3 when a fo u r molar r a t io  

o f G rignard reagent to  SnX^ is  used. So, g e n e ra lly , by using more 

than a fo u r molar r a t io  o f G rignard reagent to  รทX^, the G rignard 

rea c tion  can be used to  prepare te tra o rg a n o tin  (R^Sn) on ly .

RMgX RMgX RMgX RMgX

รทX4 ------ > RSnX3 -------> R2SnX2 -------> R3SnX-------> RAรท (2-6)

-MgX2 -MgX2 -MgX2 -MgX2

C hlo rina ted  or brominated hydrocarbons are u su a lly  used as 

the s ta r t in g  m a te ria ls . On the  o ther hand, iod ides are ra re ly  used 

because o f the  low y ie ld .

The conventional so lven t fo r  the Grignard re a c tio n  is  e th y l 

e ther o r an e th y l ether-hydrocarbon m ixtu re . But re c e n tly

te trahyd ro fu ran  and b u ty l e the r have been found to  be good so lven ts  

and they g ive  improved y ie ld s . P henyltin  compounds and v in y l t in  

compounds have been e a s ily  synthesized in  te tra h y d ro f uran. The

Grignard re a c tio n  can be c a rr ie d  out in  high y ie ld  in  to luene  

con ta in ing  the  minimum amount o f e ther needed to  d isso lve  the

JL 'IP 0  6 ช อ ^
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Grignard reagent on an in d u s t r ia l  scale.

2 .6 .2  Wurtz Reaction

The Wurtz re a c tio n , which re lie s  on in  s i tu  form ation o f an 

a c tive  organosodium species, is  a reaction  fo r  synthesiz ing R̂1 รท by 

the rea c tion  o f s ta n n ic  h a lid e  w ith  a halogenated hydrocarbon and 

sodium metal. One disadvantage is  th a t large volumes o f so lvent have 

to  be used to  suppress the  conversion o f the a lk y l ch lo rid e  RCl to  the  

hydrocarbon R-R.

ร ท +  4RX + 8 N a ----------- > RA รท + 8NaX (2-7)

This reac tion  proceeds stepwise by the  reac tion  o f รทXA 

w ith  a lk y la t in g  agents and f in a l l y  RAรท forms in  the same way as 

in  the  Grignard re a c tio n .

RX+2Na RX+2Na RX+2Na RX+2Na

SnXA --------- > RSnX3 --------- > R2รทX2 ---------- > R3S n X ----------> R^รท ( 2 - 8 )

-2NaX -2NaX -2NaX -2NaX

Various kinds o f s ide  reac tions  a lso proceed.

R2SnX2 + 2Na ----------- > Rgรท + 2NaX (2-9)

2R3SnX + 2Na ----------- > R3รทรทR3 + 2NaX (2-10)

2RX + 2Na ----------- > R-R + 2NaX (2-11)

SnXA + 2Na ----------- > SnX2 + 2NaX (2-12)
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The basic Wurtz re a c tio n  is  app licab le  to  almost a l l  simple 

a lk y l and a ry l ch lo rid e s . But, there  are many disadvantages: 

degradation o f so lvent through fu r th e r  a lk y la t io n  o r a ry la t io n , 

form ation o f h igh b o il in g  hydrocarbon by-products, the requ ired  

c o n tro l o f sodium g ra n u la tio n , form ation o f Rzรท and R3รทรทR3

compounds which are d i f f i c u l t  to  convert econom ically to  the des ired  

products, the  hazard o f excess sodium (because any reagent used to  

destroy excess sodium tends to  a lso destroy some products) and 

d i f f i c u l t y  in  c o n tro ll in g  temperatures.

2.6.3 Organoalum inuins

Organotin compounds are prepared by reac tion  o f 

organoaluminums w ith  s tann ic  ha lides  as shown in  eq .(2 -13)

4R3A l + 3รทX^ ----------- > 3Raรท + 4AlX3 (2-13)

This reac tion  is  a lso  always accompanied by the  form ation o f 

R3SnX, R2รทX2 and RSnX3- Koster (39) reported  th a t the AlX3, 

formed by a lk y la t io n  o f the  organoaluminum compound as shown in  eq. 

(2 -13), prevents stepwise a lk y la t io n  w ith  R3A l because o f the  

re a c tio n  o f AlX3 w ith  the  in te rm ed ia te  products R รทx^_ , ท=1-3,

s im ila r  to  the  reactions shown in  eq .(2 -6) and (2 -8 ).

The reac tion  o f an organoaluminum g ives R^รท e a s ily  in  the 

presence o f a complexing agent such as an e th e r, amine or sodium 

c h lo r id e . This method is  u se fu l fo r  syntheses o f h igher a lk y l t in  

compounds because the  y ie ld  o f the G rignard method is  lower. 

A lk y la t io n  w ith  an organoaluminum compound has th e  advantage th a t i t  

can be c a rr ie d  out in  the  absence o f so lven t.
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2 . 6 . 4  D ir e c t  R e a c tio n

The o rganotin  h a lid e  may be synthesized d ir e c t ly  from t in

m eta l.

2RX + รท ------------> R 2;SnX 2 (2-14)

The order o f r e a c t iv i t y  o f the  a lk y l h a lid e  is  RI> RBr> RCl

and, fo r  a given halogen, MeX> Etx> PrX, e tc .

Rochow m ethod

The d ire c t  re a c tio n  o f o rganos ilicon  compounds, d iscovered 

by Rochow in  1944, was app lied  to  the  p repara tion  o f m e th y ltin  (eq.

2-15) and p h e n y ltin  compounds in  1953.

3 0 0 -3 3 0 °C , Cu

รท + CH3Cl -------------------------> Me3SnCl (2-15)

S is id o  m e th od

In 1953, S is id o  and h is  co-workers found th a t d ib e n z y lt in  

d ic h lo r id e , t r ib e n z y l t in  ch lo rid e  and d ia l l y l t i n  dibromide were 

prepared in  high y ie ld s  by re flu x in g  re a c tive  ha lides such as benzyl 

c h lo rid e  or a ll.y l bromide w ith  t i n  powder in  water, o r in  to luene  in  

the  presence o f a tra c e  amount o f water. The rea c tion  in  a s tro n g ly  

p o la r so lven t g ives the  tr io rg a n o tin  compounds; on the o the r hand, 

th a t in  a weakly p o la r so lven t g ives d io rg a n o tin  compounds. The 

in te rconvers ion  re a c tio n  proceeds in  the  respective  so lve n t. For 

example, treatm ent a t h igher temperatures o f the  d io rg a n o tin



39

compound in  water g ives the  t r io rg a n o t in  compound.

1 1 0 °c , 88%

2PhCH2Cl + รท -------------------- > (PhCH2) 2SnClz (2-16)

in  to luene

100°c, 94%

3PhCH2Cl + 2ร ท -------------------- > (PhCH2) 3SnCl + SnCl2 (2-17)

in  water

Matsuda-Matsuda method

Sumio Matsuda and Haruo Matsuda ex tens ive ly  s tud ied  the  

d ire c t  reac tion  o f a lk y l t in  ha lides  w ith  t i n  f o i l .  The re a c t iv i t y  o f 

a lk y l ch lo rides  w ith  m e ta llic  t i n  is  lower than th a t o f a lk y l 

bromides. The b u ty l t in  compounds are u se fu l fo r  in d u s tr ia l

a p p lica tio n s , but the  re a c tio n  y ie ld  w ith  b u ty l ch lo rid e  is  low. On 

the  o ther hand, the r e a c t iv i t y  o f lower a lk y l ch lo rides  such as 

methyl ch lo rid e  and e th y l c h lo r id e  is  h igh.

2 .6 .5  R edistribution  Reaction (Kocheskov Reaction)

The re d is t r ib u t io n  re a c tio n  cons is ts  o f the fo llo w in g  th re e  

bas ic  reactions o f a te tra o rg a n o tin  w ith  anhydrous t in ( IV )  c h lo r id e . 

I t  is  app lied  in d u s t r ia l ly  s ince  the  des ired  pure organotin  c h lo r id e  

is  e a s ily  prepared.

3R4รท + รทC l4  > 4R3SnC l (2 -1 8 )

RAรท + S nC lA ----------------- > 2R2ร n C l2 (2 -1 9 )

R4รท + 3S nC lA ----------------> 4RSnCl 3 (2-20)
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In  th is  re a c tio n , which runs a t e levated temperatures 

0150 C), no so lven t is  used but i t  requ ires  the presence o f 

c a ta ly s ts  such as aluminum ch lo rid e  and magnesium butanoate.

2 .6 .6  In d u stria l Preparations

Organotin compounds have been prepared in d u s t r ia l ly ,  u su a lly  

by the  Matsuda-Matsuda process in  Japan, on the  o ther hand, by the  

Grignard process and organoaluminum process in  the United s ta te d  and 

Europe.

In  th is  study the  se lected  o rganotin  compound is  a compound 

which tend to  decompose re a d ily  form ing t i n  metal or t i n  oxide 

p a r t ic le s  in  the  combustion chamber. Therefore, te t r a a lk y l t in  was 

in ve s tig a te d  in  o rder to  determ ine the an tiknock p roperty .

The te t r a a lk y lt in s  are c o lo r le s s , and the  compounds o f lower 

m olecular weight are liq u id s  a t room temperature and are so lu b le  in  

the  common organic so lve n ts . They are q u ite  s ta b le  in  the presence o f 

a i r  o r water and are un reac tive  in  such o rganom eta llic  reac tions  as 

a d d itio n  to  a carbonyl group. They are not h ig h ly  s e n s it iv e  toward 

s trong aqueous bases, bu t clevage o f the  ca rb on -tin  bond occurs 

re a d ily  w ith  halogens, hydrogen h a lides , o r s trong aqueous acids (12).
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