REFERENCES

- Amine, E.K., and D.M. Hegsted, "Effect of dietary

 Carbohydrates and Fats on Inorganic Iron

 Absorption," J. Agr. Food Chem., 23(2), 204-208,

 1975.
- Bates, G.W., and M.R. Schlabach, "The Reaction of Ferric Salts with Transferrin," J. Biol. Chem., 248, 3228-3232, 1973.
- Bjorn-Rasmussen, E., L. Hallberg, B. Isaksson, and B.

 Arvidsson, "Food Iron Absorption in Man:
 Applications of the Two-Pool Extrinsic Tag Method
 to Measure Heme and Nonheme Iron Absorption from
 the Whole Diet," J. Clin. Invest., 53, 247-255,
 1974.
- Bjorn-Rasmussen, E., L. Hallberg, B. Magnusson, L.

 Rossander, B. Svenberg, and B. Arvidsson,

 "Measurement of Iron Absorption from Composite

 Meals," Am. J. Clin. Nutr., 29, 772-778, 1976.
- Bothwell, T.H., R.W. Charlton, J.D. Cook, and C.A. Finch,

 (eds.) <u>Iron Nutrition</u> in <u>Iron Metabolism in Man</u>,

 Blackwell Scientific Publications, London,

 1979.
- Brise, H., and L. Hallberg, "Absorbability of Different

 Iron Compounds," Acta Med. Scand., 171(Suppl. 376),

 23-38, 1962.
- Brown, E.B., "The Absorption of Iron," Am. J. Clin. Nutr., 12, 205-213, 1963.

- Callender, S.T., B.J. Mallett, and M.D. Smith, "Absorption of Haemoglobin Iron," Br. J. Haemat., 3, 186-192, 1957.
- Callender, S.T., S.R. Marney, and G.T. Warner, "Eggs and Iron Absorption," Br. J. Haemat., 19, 657-665, 1957.
- Charley, H., (ed.) Food Science, 2nd ed., John Wiley, New York, 1982.
- Charley, P.J., B. Sarkar, C. Stitt, and P. Saltman, "The Chelation of Iron by Sugars," Biochim. Biophys.

 Acta, 69, 313-321, 1963.
- Chen, C.C., A.M. Pearson, J.I. Gray, M.H. Fooladi, and
 P.K. Ku, "Some Factors Influencing the Nonheme
 Iron Content of Meat and Its Implications in
 Oxidation," J. Food Sci., 49, 581-584, 1984.
- Clegg, M.S., C.L. Keen, B. Lonnerdal, and L.S. Hurley,

 "Influence of Ashing Techniques on the Analysis of

 Trace Elements in Animal Tissue. I. Wet Ashing,"

 Biological Trace Element Research, 3, 107-115,

 1981.
- Conrad, M.E., and J.C. Barton, "Factors Affecting Iron Balance," Am. J. Hematol., 10, 199-225, 1981.
- Conrad, M.E., B.I. Benjamin, H.L. Williams, and A.L. Foy,
 "Human Absorption of Hemoglobin Iron,"

 Gastroenterology, 53, 5-10, 1967.
- Cook, J.D., M. Layrisse, C. Martinez-Torres, R. Walker, E. Monsen, and C.A. Finch, "Food Iron Absorption Measured by an Extrinsic Tag," J. Clin. Invest.,

- 51, 805-815, 1972.
- Cook, J.D., and E.R. Monsen, "Food Iron Absorption in Man.

 II. The Effect of EDTA on Absorption of Dietary

 Non-Heme Iron," Am. J. Clin. Nutr., 29, 614-620,

 1976 a.
- Cook, J.D., and E.R. Monsen, "Food Iron Absorption in

 Human Subjects. III. Comparison of the Effect of

 Animal Proteins on Nonheme Iron Absorption,"

 Am. J. Clin. Nutr., 29, 859-867, 1976 b.
- Cook, J.D., and E.R. Monsen, "Vitamin C, the Common Cold and Iron Absorption in Man," Am. J. Clin. Nutr., 30, 235-241, 1977.
- Cook, J.D., T.A. Morck, and S.R. Lynch, "The Inhibiting

 Effect of Soy Products on Nonheme Iron Absorption
 in Man," Am. J. Clin. Nutr., 34, 2622-2629, 1981.
- Davidson, S., R. Passmore, J.F. Brock, and A.S. Truswell,

 (eds.) <u>Human Nutrition and Dietetics</u>, 7th ed., pp.

 100-104, Churchill Livingstone, New York, 1979.
- Disler, P.B., S.R. Lynch, R.W. Charlton, J.D. Torrance, and T.H. Bothwell, "The Effect of Tea on Iron Absorption," Gut, 16, 193-200, 1975.
- Eschleman, M.M., (ed.) Introductory Nutrition and Diet

 Therapy, pp.138-143, J.B. Lippincott, Philadelphia,

 1984.
- Field, R.A., L.R. Sanchez, J.E. Kunsman, and W.G. Kruggel,
 "Heme Pigment Content of Bovine Hemopoietic Marrow
 and Muscle," J. Food Sci., 45, 1109-1112, 1980.

- Forrest, J.C., E.D. Aberle, H.B. Hendrick, M.D. Judge, and R.A. Merkel, (eds.) Principles of Meat Science, W.H. Freeman and Company, San Francisco, 1975.
- Goodhart, R.S., and M.E. Shills, (eds.) Modern Nutrition in

 Health and Disease, 6th ed., pp. 324-354, Lea and
 Febiger, Philadelphia, 1980.
- Guthrie, H.A., (ed) <u>Introductory Nutrition</u>, 3rd ed., pp. 145-147, The C.V. Mosby Company, St. Louis, 1975.
- Hallberg, L., and L. Solvell, "Absorption of Haemoglobin Iron in Man," Acta Med. Scand., 181, 335-354, 1967.
- Hallberg, L., and E. Bjorn-Rasmussen, "Determination of Iron Absorption from Whole Diet: A New Two-Pool Modeling Using Two Radioiron Isotopes Given as a Haem and NonHaem Iron," Scan. J. Haemat., 9, 193-197, 1972.
- Hallberg, L., "Bioavailable Nutrient Density: A New Concept Applied in the Interpretation of Food Iron Absorption Data," Am. J. Clin. Nutr., 34, 2242-2247, 1981.
- Hornsey, H.C., "The Colour of Cooked Cured Pork. I.

 Estimation of the Nitric Oxide-Haem Pigments,"

 J. Sci. Food Agric., 7, 534-540, 1956.
- Hussain, R., R.B. Walker, M. Layrisse, P. Clark, and C.A. Finch, "Nutritive Value of Food Iron," Am. J. Clin. Nutr., 16, 465-471, 1965.
- Igene, J.O., J.A. King, A.M. Pearson, and J.A. Gray,
 "Influence of Heme Pigments, Nitrite, and Non-Heme
 Iron on Development of Warmed-Over Flavor (WOF) in

- Cooked Meat," J. Agric. Food Chem., 27(4), 338-341, 1979.
- Jacobs, A., and P.M. Miles, "Role of Gastric Secretion in Iron Absorption," Gut, 10, 226-229, 1969.
- Jansuittivechakul, O., A.W. Mahoney, D.P. Cornforth, D.G.

 Hendricks, and K. Kangsadalampai, "Effect of Heat

 Treatment on Bioavailability of Meat and

 Hemoglobin Iron Fed to Anemic Rats," J. Food Sci.,

 50, 407-409, 1985.
- Kramlich, W.E., A.M. Pearson, and F.W. Tauber, (eds.)

 Processed Meats, pp. 287-289, AVI Publishing

 Company Inc., Westport, Connecticut, 1980.
- Laurell, C.B., "What is the Function of Transferrin in Man?," Blood, 6, 183-187, 1951.
- Lawrie, R.A., (ed.) Meat Science, 3rd ed., Pergamon Press, London, 1979.
- Layrisse, M., J.D. Cook, C. Martinez-Torres, M. Roche,
 I.N. Kuhn, R.B. Walker, and C.A. Finch, "Food
 Iron Absorption: a Comparison of Vegetable and
 Animal Foods," Blood, 33(3), 430-443, 1969.
- Layrisse, M., and C. Martinez-Torres, "Model for Measuring

 Dietary Absorption of Heme Iron: Test with a

 Complete Meal," Am. J. Clin. Nutr., 25, 401-411,

 1972.
- Layrisse, M., C. Martinez-Torres, and M. Roche, "Effect of Interaction of Various Foods on Iron Absorption,"

 Am. J. Clin. Nutr., 21(10), 1175-1183, 1968.

- Lee, K., and F.M. Clydesdale, "Iron Sources Used in Food
 Fortification and Their Changes due to Food
 Processing," CRC Crit. Rev. Food Sci. Nutr., 11(2),
 117-153, 1979 a.
- Lee, K., and F.M. Clydesdale, "Quantitative Determination of the Elemental, Ferrous, Ferric, Soluble and Complexed Iron in Foods," J. Food Sci., 44, 549-554, 1979 b.
- Loria, A., L.S. Medal, and J. Elizondo, "Effect of Sorbitol on Iron Absorption in Man," Am. J. Clin.
 Nutr., 10, 124-127, 1962.
- MacPhail, A.P., T.H. Bothwell, J.D. Torrance, D.P. Derman,
 W.R. Bezwoda, R.W. Charlton, and F. Mayet,
 "Factors Affecting the Absorption of Iron from
 Fe(III)EDTA," Br. J. Nutr., 45, 215-227, 1981.
- Martinez-Torres, C., M. Renzi, and M. Layrisse, "Iron

 Absorption by Humans from Hemosiderin and Ferritin,

 Further Studies," J. Nutr., 106, 128-135, 1976.
- Monsen, E.R., and J.L. Balintfy, "Calculating Dietary Iron Bioavailability: Refinement and Computerization,"

 J. Am. Diet. Assoc., 80, 307-311, 1982.
- Monsen, E.R., and J.D. Cook, "Food Iron Absorption in Human Subjects. IV. The Effects of Calcium and Phosphate Salts on the Absorption of Nonheme Iron,"

 Am. J. Clin. Nutr., 29, 1142-1148, 1976.
- Monsen, E.R., L. Hallberg, M. Layrisse, D.M. Hegsted, J.D. Cook, W. Mertz, and C.A. Finch, "Estimation of Available Dietary Iron," Am. J. Clin. Nutr., 31,

- 134-141, 1978.
- Moore, C.V., and R. Dubach, <u>Iron</u> in <u>Mineral Metabolism</u>,

 (Comar, C.L. and F. Bronner, eds.) Vol.2 pt.B pp.

 287-348, Academic Press, New York, 1962.
- Morck, T.A., and J.D. Cook, "Factors Affecting the

 Bioavailability of Dietary Iron," Cereal Foods

 World, 26, 667-672, 1981.
- Narasinga Rao, B.S., and T. Prabhavathi, "An In Vitto

 Method for Predicting the Bioavailability of Iron
 from Foods," Am. J. Clin. Nutr., 31, 169-175,

 1978.
- Pike, R.L., and M.L. Brown, (eds.) Nutrition: An Intregated

 Approach, 3rd ed., John Wiley and Sons, New York,

 1984.
- Raffin, S.B., C.H. Woo, K.T. Roost, D.C. Price, and R. Schmid, "Intestinal Absorption of Hemoglobin Iron-Heme Cleavage by Mucosal Heme Oxygenase,"

 J. Clin. Invest., 54, 1344-1352, 1974.
- Rossander, L., L. Hallberg, and E. Bjorn-Rasmussen,

 "Absorption of Iron from Breakfast Meals," Am. J.

 Clin. Nutr., 32, 2482-2489, 1979.
- Sayers, M.H., S.R. Lynch, P. Jacobs, R.W. Charlton, T.H.

 Bothwell, R.B. Walker, and F. Mayet, "The Effects

 of Ascorbic Acid Supplementation on the Absorption

 of Iron in Maize, Wheat and Soya," Br. J. Haemat.,

 24, 209-218, 1973.
- Schricker, B.R., D.D. Miller, and J.R. Stouffer,

 "Measurement and Content of Nonheme and Total Iron

- in Muscle," J. Food Sci., 47, 740-743, 1982.
- Schricker, B.R., and D.D. Miller, "Effects of Cooking and Chemical Treatment on Heme and Nonheme Iron in Meat," J. Food Sci., 48, 1340-1343, 1983.
- Snedecor, G.W., and W.G. Cochran, (eds.) Statistical

 Methods, 7th ed., The Iowa State University, Ames,
 Iowa, 1980.
- Turnbull, A., F. Cleton, C.A. Finch, L. Thompson, and J.

 Martin, "Iron Absorption. IV. The Absorption of

 Hemoglobin Iron," J. Clin. Invest., 41(10), 1897
 1907, 1962.
- Turnbull, A., <u>Iron Absorption</u> in <u>Iron in Biochemistry and Medicine</u>, (Jacobs A. and M. Worwood, eds.),

 Academic Press, New York, 1974.
- Van Campen, D. and E. Gross, "Effect of Histidine and Certain Other Amino Acids on the Absorption of Iron-59 by Rats," J. Nutr., 99, 68-74, 1969.
- Van Campen, D., "Enhancement of Iron Absorption from
 Ligated Segments of Rat Intestine by Histidine,
 Cysteine, and Lysine: Effects of Removing Ionizing
 Groups and of Stereoisomerism," J. Nutr., 103,
 139-142, 1973.
- Weintraub, L.R., M.B. Weinstein, and H.J. Huser,

 "Absorption of Hemoglobin Iron: The Role of

 Heme-Splitting Substance in the Intestinal Mucosa,"

 J. Clin. Invest., 47, 531-539, 1968.
- Williams, S.R., (ed.) Nutrition and Diet Therapy, 4th ed., pp.147-153, The C.V. Mosby Company, St. Louis, 1981.

Wilson, E.D., K.H. Fisher, and M.E. Fuqua, (eds.) Principle
of Nutrition, pp.173-179, John Wiley and Sons,
New York, 1975.

APPENDICES

APPENDIX A

Iron Contents of Meat

Table 13. Analysis of Variance for Iron Contents of Meat

	Source of Variance	Degree of Freedom	Mean Square	F-value
Total Iron	kind of meat	15	31525.92	121.52*
	error	144	259.43	
Heme Iron	kind of meat	15	2224.70	92.86*
	error	144	23.96	
Nonheme Iron	kind of meat	15	21740.17	106.98
	error	144	203.21	
Soluble iron	kind of meat	15	137.18	66.82*
	error	144	2.05	

^{*} denotes value of P<0.05.

APPENDIX B

Effects of Heat Treatments on Meat Iron Content

Table 14. Analysis of Variance for Effects of Heat

Treatments on Iron Contents of Meat

	Source of Variation	df 	Mean Squar	e F-value
Heme Iron	heat treatment (H)	4	5897.55	70.29
	kind of meat (K)	15	84134.03	1002.77
	н ж к	60	386.32	4.60
	residual	240	83.90	*
Nonheme Iron	heat treatment (H)	4	6049.48	6.34
	kind of meat (K)	15	805270.26	844.47
	н ж к	60	2337.99	2.45
	residual	240	953.58	
Soluble Iron	heat treatment (H)	4	6888.42	10.52
	kind of meat (K)	15	9563.46	14.61
	Н×К	60	1541.82	2.35
	residual	240	654.74	

df = degree of freedom
*
denotes value of P<0.05.</pre>

Table 15. Comparison of Regression Lines for Effect of Boiling on Heme Iron
Contents of Red Meat

		,			Deviations from Regression			
	df	Σx ²	Σχу	Σy ²	df	SS	MS	
ithin								
beef round	3	1968.75	-561.6	170.66	2	10.46		
pork round	3	1968.75	-1062.3	650.67	2	77.47		
chicken leg	3	1968.75	-1652.4	1525.40	2	138.52		
					6	226.45	37.74	
ooled	9	5906.25	-3276.2	2346.73	8	529.42		
	Diffe	rence betwe	en slopes		2	302.97	151.49	

Table 16. Comparison of Regression Lines for Effect of Boiling on Heme Iron Contents of White Meat

					D	Deviations from Regression		
	df	Σx ²	Σχу	Σy ²	df	SS	MS	
Within								
beef tenderloin	3	1968.75	-570.15	186.07	2	20.95		
pork tenderloin	3	1986.75	-1548.60	1449.02	2	230.91		
chicken breast	3	1968.75	-1396.65	1192.67	2	201.87		
					6	453.73	75.62	
Pooled	9	5906.25	-3515.40	2827.76	8	735.39		
I	Diffe	rence betwe	en slopes		2	281.66	140.83	

Table 17. Comparison of Regression Lines for Effect of Boiling on Heme Iron Contents of Liver

		D	from on				
	df	Σx ²	Σχу	Σy ²	df	SS	MS
lithin							
beef liver	3	1968.75	-620.85	215.36	2	19.57	
pork liver	3	1968.75	-1081.65	696.44	2	102.17	
chicken liver	3	1968.75	-909.30	454.01	2	34.03	
					6	155.77	25.96
ooled	9	5906.25	-2611.80	1365.81	8	210.85	
	Diffe	rence betwe	en slopes		2	55.08	27.54

Table 18. Comparison of Regression Lines for Effect of Boiling on Heme Iron
Contents of Heart

			De	Deviations from Regression			
	df	Σχ ²	Σχу	Σy ²	df	SS	MS
ithin							
beef heart	3	1968.75	-671.10	234.58	2	5.82	
pork heart	3	1968.75	-716.70	311.47	2	50.56	
chicken heart	3	1968.75	-511.95	141.37	2	8.24	
					6	64.62	10.77
ooled	9	5906.25	-1899.75	687.42	8	76.37	
	Diffe	rence betwee	en slopes		2	11.75	5.88

Table 19. Comparison of Regression Lines for Effect of Boiling on Soluble Iron
Contents of Red Meat

				Σy ²	Deviations from Regression			
	df	Σx ²	Σχу		df	SS	MS	
Within								
beef round	3	1968.75	3261.15	5754.73	2	352.77		
pork round	3	1968.75	1704.15	1524.79	2	49.68		
chicken leg	3	1968.75	4077.75	8853.03	2	407.04		
					6	809.49	134.91	
Pooled	9	5906.25	9043.05	16132.55	8	2286.75		
	Differ	rence betwee	n slopes		2	1477.26	738.63	

Table 20. Comparison of Regression Lines for Effect of Boiling on Soluble Iron Contents of White Meat

				Deviations from Regression			
	df	Σx ²	Σχу	Σy ²	df	SS	MS
ithin							
beef tenderloin	3	1968.75	1918.05	1963.79	2	95.13	
pork tenderloin	3	1968.75	2876.25	4428.64	2	226.58	
chicken breast	3	1968.75	4974.30	14660.00	2	2091.79	
					6	2413.50	402.25
ooled	9	5906.25	9768.50	21052.43	8	4896.06	
	Differ	rence betwee	n slopes		2	2482.56	1241.28

Comparison of slopes: F = 1241.28/402.25 = 3.09 (df = 2,6) not significant.

Table 21. Comparison of Regression Lines for Effect of Boiling on Soluble Iron Contents of Liver

			2			Deviations from Regression			
	df 	Σx ²	Σχу	Σy ²	df	SS	MS		
Within									
beef liver	3	1968.75	1150.05	1179.28	2	507.48			
pork liver	3	1968.75	16174.50	134052.86	2	1169.33			
chicken liver	3	1968.75	1446.90	1294.09	2	230.71			
					6	1907.52	317.92		
Pooled	9	5906.25	18771.45	136526.23	8	76866.15			
	Differ	rence betwee	en slopes		2	74958.62	37479.31		
Comparison o	f slope	es: F = 374'	79.31/317.	92 = 117.89	(df	= 2,6) s:	ignificant		

Table 22. Comparison of Regression Lines for Effect of Boiling on Soluble Iron
Contents of Heart

						Deviations from Regression				
	df 	Σχ ²	Σxy	Σy ²	df	SS	MS			
Within										
beef heart	3	1968.75	2792.55	4291.11	2	330.05				
pork heart	3	1968.75	975.30	754.78	2	271.63				
chicken heart	3	1968.75	1835.55	1747.57	2	36.21				
					6	637.89	106.32			
Pooled	9	5906.25	5603.40	6793.46	8	1477.38				
	Differ	rence betwee	n slopes		2	839.49	419.75			

APPENDIX C

Effect of Freezing on Meat Iron Content

Table 23. Analysis of Variance for Effect of Freezing on Iron Contents of Meat

	Source of Variation	df 	Mean Squar	e F-value
Heme Iron	freezing (F)	3	35.13	0.28
	kind of meat (K)	15	92900.87	729.73*
	F x K	45	7.06	0.06
	residual	192	127.31	
Nonheme Iron	freezing (F)	3	48.76	0.15
	kind of meat (K)	15	615735.72	1892.69*
	F x K	45	18.93	0.06
	residual	192	325.32	
Soluble Iron	freezing (F)	3	344.77	4.31 *
22	kind of meat (K)	15	5074.96	63.39 *
	F × K	45	132.56	1.66
	residual	192	80.06	

df = degree of freedom

*
denotes value of P<0.05.

Table 24. Comparison of Regression Lines for Effect of Freezing on Soluble Iron
Contents of Red Meat

					Deviations from Regression			
	df	Σχ ²	Σχy	Σy ²	df	SS	MS	
ithin								
beef round	3	8.75	108.03	1534.73	2	200.96		
pork round	3	8.75	6.75	13.13	2	7.92		
chicken leg	3	8.75	121.70	1889.04	2	196.37		
					6	405.25	67.54	
ooled	9	26.25	236.48	3436.90	8	1306.51		
	Differ	ence between	n slopes		2	901.60	450.63	

Table 25. Comparison of Regression Lines for Effect of Freezing on Soluble Iron Contents of White Meat

						Deviations from Regression	
	df	Σx ²	Σχу	Σy ²	df	SS	MS
Within							
beef tenderloin	3	8.75	63.51	519.10	2	58.13	
pork tenderloin	3	8.75	0.20	145.85	2	99.22	
chicken breast	3	8.75	110.00	1446.19	2	63.33	
					6	220.68	36.78
Pooled	9	26.25	193.71	2111.14	8	681.67	
Difference between slopes				2	460.99	230.49	

Table 26. Comparison of Regression Lines for Effect of Freezing on Soluble Iron
Contents of Liver

	=======		=======	========	======================================		
	df	Σ _X ²	Σχу	Σy ²	df	SS	MS
Within							
beef liver	3	8.75	-2.98	25.80	2	24.79	
pork liver	3	8.75	696.49	75897.27	2	20457.46	
chicken liver	3	8.75	12.50	18.73	2	0.87	
					6	20483.10	3413.85
Pooled	9	26.25	706.01	75941.80	8	56953.22	
	Diffe	rence between	slopes		2	36470.10	18235.05
Comparison o	f slop	es: F = 18235	.05/3413	.85 = 5.34	(df	= 2,6) sig	gnificant.

Table 27. Comparison of Regression Lines for Effect of Freezing on Soluble Iron Contents of Heart

					Deviations from Regression		
	df 	Σx ²	Σχγ	Σy ²	df	SS	MS
Within							
beef heart	3	8.75	58.32	394.03	2	5.32	
pork heart	3	8.75	494.30	34243.85	2	6320.14	
chicken heart	3	8.75	46.91	1484.39	2	1232.90	
					6	7558.36	159.73
Pooled	9	26.25	599.53	36122.27	8	22429.46	
	Differe	ence betweer	slopes	1	2	14871.10	7435.55

Comparison of slopes: F = 7435.55/159.73 = 5.90 (df = 2,6) significant.

Miss Naiyana Wattanapenpaiboon was born on November 8, 1961, in Nakhon Ratchasima. She got her degree in Bachelor of Science in Pharmacy in 1984 from Faculty of Pharmaceutical Sciences, Chulalongkorn University.

