CHAPTER Il

THE PROPAGATOR AND FEYNMAN PATH INTEGRAL

Introduction

As discussed in chapter I, the distribution of the density of electron states in the
presence of a random potential due to defects is at present a central point in the
discussion of the energy spectra of atwo-dimensional system in a transverse magnetic
field. Itis customarily assumed that the density of states of an ideal 2D -electron layer
placed in a transverse quantizing magnetic field constitutes a set of equidistant 5
functions with spacing equal to the cyclotron energy fiCl . Each Landau level is
strongly degenerate, and the multiplicity of this degeneracy (disregarding spin and
valley-orbit degeneracy) isequal to N1 = L2/24 25where | =(fzc/eB)12 is the magnetic
length. A random potential (of an homogeneity, of an impurity, etc.) lifts the Landau-
level degeneracy, this is the cause of their finite width r. If this width is related to the
short-range potential of the scatterers, the density of states between Landau levels
should be vanishingly small. On the basis of recent determinations of the electron
states on the Fermi level by measuring the oscillatory dependences of the magnetization,
of the electronic specific heat , and also the thermoactivation conductivity, it was
concluded that the density of states between Landau levels is exponentially small and is
an appreciable fraction of the DOS at B = 0. This conclusion contradicts directly the
results of Ando and Uemura. Although there have been several calculations (2,14) of
the broadening of the Landau levels due to disorder, none of these theories predict a
significant density of states lying between Landau levels. For these reasons, we
propose a simple model of disorder to show that the broadening of Landau levels and a

significant DOS between Landau levels can he obtained in a simple and a consistent
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manner. The method used here is very similar to the procedure that Sritrakool et al. (23)
have used previously in 3D to explain the origin of Urbach tails in optical absorption
near band edges. As before we solve here for (E) using the path integral method,
which at present appears to be the best for obtaining an analytic (E) for arbitrary L
disorder. Before going to the discussion on our work in the next chapter, we devote
this chapter to review the Feynman path integral and some solvable problems that can

be solved by this theory.

The Propagator and Feynman Path Integral

In quantum mechanics, the dynamical information of a quantum mechanical

system is contained in the wave function. It is a function, sometimes called the

probability amplitude, that determines the wave associated with a particle. In practice,

we can obtain this wave function by solving the Schrodinger' equation.

In Schrodinger' picture (24), there exists the state vector bP(t)>that evolves as

( )1¥(0>, (2.)

where (tti) is the time evolution operator satisfying the following properties,

i) iEd_ (1,0 = H U (t,0
at

i) (t" U (t,t0 ‘0



iv) u+(tf) - A0 = (i)

and H is the Hamiltonian. If the Hamiltonian is not an explicit function of time then the

evolution operator is of the form

exp[-(i//i)H (t"-t)]. (2.2)

(1)

In the configuration representation (2.1) becomes

<x F(t > = I <x" () IX'XEW (t')>dV, (23)

=00

where the complete set

J Ixxx'l d3x’ @ (2.4)

00

W e can rewrite equation (2.3) as

LK (X Xt tmoc t)d3x’, (2.5)

-00

y(x ,0

where K(x"x";t"t') = <xMIU(t,t)1x,>. (2.6)

K(x"x,;t,,t') is called the propagator or the probability amplitude of a particle to go

from x"attime t' to x" at time t".

According to Feynman * ideas (25), there are infinitely many paths for a

particle to go from the initial point to the final point under restrictive conditions that
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x(t')=x,x(t") = x" . Each trajectory contributes to the total amplitude, to go from x' to
x" . They contribute equal amounts to the total amplitude, but contribute at different
phases. The phase of the contribution from a given path is the action for that path in
units of action fi. Thatis, to summarise, the probability P(x",x') to go from a point x" at
f to the point x™ at t" is the absolute square P(x" x/) = IK(x" x";f'f)12 of an amplitude

K(x",x";t" f) to go from x' to x". This amplitude is the sum of contributions 0[x(t)]

from each path,

K(x" x5 1) = <DIx(t)]. (2.7)
over all paths
from x' to x"

The contribution of a path has aphase proportional to the action

<D[x(t)] = [constje {(i/£)S [x(t)] (2.8)

and  [x(t)] = ) L(xx)dt, (2.9)
—60

with the Lagrangian L(x,x) = (I/"mx2- V(x). (2.10)

Actually, we can not evaluate K(x",x,;f,,t") from (2.7) directly because of the
infinitely many paths contributing. Feynman (25) proposed another way to perform a
new formalism of K (x" x";f'.f). By dividing the time variable into steps of width £—0,
this gives USa set of values ti spaced at a distance £ apart between the values f and t".
Ateach time tiwe select some special Xjand construct a path by connecting all points.
Itis possible to define a sum over all paths in this manner by taking a multiple integral

over all values of Xifor i between 1 and N -1, where
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tN t

*() : X' XN = X"

The resulting equation is

K(x"x"ff) = lim j 1..Je(i/7)S [x(t)]d 3xid 3X2...d3XN-i, (2.11)
N—O A A A A
where [x(t)J = { L{(xx)dt and the normalizing factor A = (2Tri/2e/m)3/2.
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Fig.10 The sum over paths is defined as a limit, in which at first the path is
specified by giving only its coordinate X at a large number of specified
times separated by very small intervals e. The path sum is then an
intergral over all these specified coordinates. Then to achieve the

correct measure, the limit is taken ase approaches 0.

29
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For small time slices,

= T L(x,x)dt

(m 12e)(xi - Xj-)2 - eV (xj), (2.12)

so that (2.11) can be written as

KO, xSt 1) = lim o (ml27tifie)3N/233 Jexp (i) 2 {( 12e)( Xj-Xi-i)2
N -~°0 =i

-eV(xj) }]d3xid3%..d3xNT. (2.13)

Feynman wrote this sum over all paths in a less restrictive notation as

L(‘-I
KOC, s t0) = D x(D]e0 TS[x(t)],  (2.14)

which is called a path integral.
Path Integral of a Free Particle

From (2.13) we can compute the propagator of a free particle. The Lagrangian

for a free particle is
L (x, x) = (I"m x2. (2.15)
The three-dimensional propagator is simply the product of three one-dimensional

propagators, so that there is no pointin cluttering our equations with vectors. We wish

to evaluate
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K(x", x'; t" t)

1
§.

exp[(im/2/z£)51 (X, - Xi-1)2](m2ra/E £) 2

dx]dx2 ..dxN-1 . (2.16)

0

This is an integral of the form  Jexp [-ax2+bx ]dx which is called a gaussian

integral. Since the integral of a gaussian is again gaussian, we may carry out the

integrations on one variable after the other with the help of the formula

0

_ (J)(m/27nfae)‘2/2exp[(im/2/ie){(x2-X|) -(xi-x0)2)] dxi

= [m/2rafz(2€)]U2exp 1 2i#(2e)}(x2 - x0)2]. (2.17)
After the integrations are completed, the limit may be taken. The resultis
K(x", x5 t" ") = [m/@2Trifi(t"-t")]U2exp [{im [(2/i(t,/-t")}(x"-x")2]. (2.18)
The Quadratic Lagrangian

In principle, if the path integral is still in a gaussian form, it is possible to carry out
the integral over all paths in the way described in the previous section . But in real
practice, it is too complicated to perform, for example, the harmonic oscillator problem.
We now introduce some additional mathematical techniques which help USto sum over
paths in some certain situations. The simplest example to be studied is a quadratic
Lagrangian, this corresponds to a case in which the action involves the path x(t) up to

and including the second power.
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To illustrate how the method works in a such case, consider a particle whose

Lagrangian has the form

L(x,x,t) = a(t)x2+ b(t)xx + c(t)x2+ d(t)x + e(t)x + f(t). (2.19)

The action is the integral of this function with respect to time between two fixed end

points. We wish to determine

[
K(x", x5t f) = Jexp[(il&) jL (x.x,t)dt]D [x(1)], (2.20)

the integral over all paths which go from (x',f) to (x",t"). Ofcourse, itis possible to
carry out this integral over all paths in the way which was first described by dividing
the region into short rime elements, and so on. Butwe shall not go through this tedious
calculation, since we can determine the most important characteristics of the propagator

in the following way.

Let x(t) be the classical path between the specified end points. This is the path

which is an extremum for the action . In the notation we have been using

Scl[x" x'] S[x(1)] . (2.21)

W e can represent Xin terms of X and y,

X X4y, (2.22)
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That is to say, instead of defining a point on the path by its distance x(t) from an
arbitrary coordinate axis, we measure instead the deviation y(t) from the classical path,

as shown in Fig. 11,

)
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Fig.11 The difference between the classical path x(t) and some possible

alternative path y(t). The end points y(t") = y(t') = 0.

At each tthe variable X and y differ by the constant X. Therefore, clearly, dxj =
dyi for each specific point tiin the subdivision of time. In general, we may say D[x(t)]

= D[y(t)]. The integral for the action can be written as

o
S[x(1)] = SIx()+y(1)] = J[a(t)(x2 + 2xy+ y2 )+ .]dt. (2.23)
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[fall terms which do notinvolve y are collected, the result is just [x(t)j = ci[x(t)].
[f all terms which contain y as linear factors are collected, the resulting integral
vanishes. This could be proved by actually carrying the integration, however, such a
calculation is unnecessary, since we already know the result is true. The function x(t) is
determined by this is very requirement. Thatis, X is so chosen that there is no change
in , to first order, for variations of the path around X. All thatremains are the second

order termsin y. These can be easily picked out, so that we can write

tll

S[X ()] =S X+ J[a(t)y2+b(t)yiHc(t)y2 ]t (2.24)

The integral over paths does not depend upon the classical path, so that the

propagator can be written as

K(x"x" t"t) = exp{(il£)Sci[x", x‘]}/l I®exp[r(i//t) Jka(t)y' 2+b'(t)yy+c(t)y 2)]]D [y(t);j

(2.25)

Since all paths y(t) start from and return to the pointy = 0, the integral over paths
can be a function only of time at the end points. This means that the propagator can be

written as
K(x"x5t",0 = F(t" tYexp[(i/H)Scl[x" x/]. (2.26)

So K is determined except for a multiplying factor F(t",t7) which may be

determined by some other known property of the solution. However, for a quadratic
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Lagrangian, van Vileck (26) and Pauli (27) had verified that the pre-factor F(t", f) can

be evaluated exactly by using the formula

FIEA) = det[(ilTridSelx x )2, 0.21)
o'

so that (2.26) becomes

K(x" x5t f) = det[(if2Tro}¢L (Sci[x,,x'])]U2exp[(illz)Sci[x," x']]. (2.28)
dx"0x'

Itis interesting to note that the expression K - exp [(i//i)Scll is exact for the case

that is a quadratic form.
Exact Propagatorofa Two-Dimensional Random System

We now consider the problem of an electron confined in two dimensions under
the influence of a homogeneous transverse magnetic field, a time varying electric field
and a random potential. However, in this problem we represent the random potential by
a nonlocal harmonic oscillator which was first introduced by Feynman (28) in his
evaluation of the polaron problem. The model we use here is rather an idealized one, but
itmay be related to the behaviour of an electron moving in an external magnetic field,
electric field and disorder potential which is of present interest. Although the problem
isone of mathematical com plexity, the Lagrangian of this system is quadratic, and the

propagator can be evaluated analytically.

The Lagrangian of the electron subject to a combination of all potentials

mentioned above with the magnetic field taken in z-direction, is given by
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L(T,rit) = y[x2ty2+ Q(xy -yx)] -

X J[r(t)-r(G)J2da+ eE(t) r(t)

0 (2.29)
Where r = (Xy),Q = e is the cyclotron frequency, QUdenotes the nonlocal

oscillator frequency and E (t) represents the time varying electric field. The required

propagator can be written in the path integral form,

— - —S[b,ﬂ} -
K(F,, T, = [ DF(] 2.0
T
where S[b,a] = jL(F,F,[)dt is the action, D[;(t)] denotes the
0

measure of the path integral to be carried out with the boundary conditions

r(o) = ra and r(T)=rb. The propagator in equation (2.30) can be

rewritten as

K(ThraT) = JjD[x(t)]D[y(t)]exp [i(™ J (X2+y2+Q (xy-yx)

00 (x2+ y2)) dt
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I TT
+2Y QR [j*jx(t)x(a)dtda + JJy(t)y G)dtdo]
00 00
T T
te[ JEX(t)X(t)dt+JEY(t)y (t)dt])]
0 0

(2.31)

Ex(t) and Ey(t) denote the components of E (t) in the X and y directions

respectively. Unfortunately, the Lagrangian of such a system is rather complicated and
the path integration can not be carried out directly. To avoid this difficulty we follow

Stratonovich (29) by using the identity

TT TT
exp (k 2T 0)2 (11 x(L)X(o)dtda + 11 y(t)y(a)dtdo))
00 00
T T
= <exp (1 (fxl X(t)ydt+fy Jy(t)dt))> " 1f (2.32)
0 0

to transform equation (2.31) into a soluble form. Applying (2.32) to (2.31) we have

K(rb,raT) = < Keff(rbraT >f5f (2.33)

where K6 (r &a;T) is the effective propagator. This propagator corresponds to

the system of an electron moving in the presence of a magnetic field and forced

harmonic oscillator potential and is given by

I
Keff b ™a;T) = j*j DX (t)] D[y (t)] exp [*- (YjO(X2+ y2r - (xy -yx)
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T T

sc02(x 2+ y2))ydt o+ J(eE x(t) + fx)x (t)dt + ) (eEy(t) + fy)y (t)ydt.)]

0 0
(2.34)

The notation < . > f J- denotes the Gaussian average defined by

J' J‘ exP [1 ~2wﬁ002-(*x+ *y) ] Adfxdfy
<A > (2.35)

f*' fy

n o exp[- el
Using the van Vleck - Pauli result, we can write the effective propagator as
Keff (rb/ a T) Feff (T, 0 )exp [i ~ (Thr3;T)] (2.36)

where Fgff( T,0 ) is the pre-exponential factor associated with the effective classical

action

gﬁd/”;T>:\|] eff ("0, Lt)dt (2.37)

and is evaluated by using the formula
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F,(T,0) =de.] -L: »
(T,0) [,27111 <O TAt>!1L (2.38)

The rcl appearing inequation (2.37) represents the classical path of an electron in the

effective system which corresponds to an effective Lagrangian,
Leff(r,r,t) = [x2+y 2+ Q(xy-yx) - QR (x2+y2)]

+ (eEx(t) + fx)x + (eEy(t) + fy)y. (2.39)

A. Effective classical action

We now wish to calculate the effective classical action g%f(/r b,ra;T)

corresponding to an effective Largrangian Leff(r ,r t). To simplify this problem we

employ the 2 X 2 matrices introduced by Papadoupoulos (30) in his work on the

magnetization of harmonically bound charges

1 -0'"0' - C O (2.40)

which obey the relation J = -l. Letusrepresent the componentof r perpendicular

to the magnetic field by a 2 X I matrix

1 ( J ) | (241)



Similarly, the driving force of the effective system can be replaced by

p = f +teE = A +ebx<'>)\

(2.42)
1 4 4 y fy+eEy(1l)y
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From (2.39), (2.40), (2.41) and (2.42), we see that the effective Lagrangian in matrix

form can be written as

/\"eﬁ(r’r’ ) = (r~-co2rd- QrAdr™)+ FA (2.43)

where r”~ and F ” denote the transpose of r* and Fi respectively.
(2.43) leads to the equation of classical motion
F

r+QJrq,+ C20r = —

TR ) 1 m (2.44)
subject to the boundary conditions

r£(0) = rx T =

L m .
(2.45)

The solution of (2.44) can be splitinto two parts,

rx (t) = ric(t) + rip(.) (2.46)

where rhc(t) is the solution of a homogenous equation,

T+ Q + a2t 0 (2.47)

Equation
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The auxiliary equation associated with (2.47) is

R2+ 2JR + 21 = 0

(2.49)
which is satisfied by the matrices
RL = -£J +q]
(2.49)
RZ = -fJ-n
|
where - (IZ+ 2) 2 . We then have
T My RUE
ngt) e e VA+e — (2.50)

where A and B are arbitrary constants. Note that a matrix of the form eFIn s the

property
elkp= lcos @z Jsin@ (2.51)

After applying the boundary conditions, equation (2.50) becomes

1 T
nat) = sn( T) [e2 sin(D't)ry+ sin(Q(T-1))r (2.52)

We now consider rp(t) which satisfies the inhomogenous equation



(02+QID+Q2N)r, = (253)
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where D denotes the differential operator " To calculate r (t ) we shall use the

Green ' function method.  After getting the Green * function ¢ (t, ) which

obeys the relation

(D2+QJID +@1)g(t, ) = 8(t-s) (2.54)

we obtain the solution of r"p(t ) . The result is

V'> - AT A (255)

The Green " function g (t ) can be evaluated exactly from (2.54).
We find

ot ) = 1

(T [H(t- )sin( " )sin( (T-t))

+H( -Lsin( - t)sin( - (T-))]e (2.56)

with H(t-s) and H(s-t) being the Heavisice step function obeying the relation
H(x) LX>0

0, X<O0 (2-57)

Finally we obtain the general solution



r(t) = r_LC(t) +1p(t)

J
1.7
. e2 sin(ot) +sin(o (T-1))r
gt CL W00+ (o (T-1)r)
+ . )ds.
(258)
We now focus our attention on the effective classical action
i T),
T T
d , f o2 m f _ . 02
X;J rIdt'f J(n;i,ri+ s (>*
0 0]
.
+ F r dt
J Il
) (2.59)
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Integrating by parts the first term of (2.59) and applying the equation of motion (2.44),

We obtain

T

O-VVT) =yfrx(T)r(T)-'r1(0)r 1(0))+i Jt 1Fldt .a 60)

The complete solution for the effective action is
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Q \ —JT
Self<* \ ' T) 72 sin(i't) (COS(O‘T)(r12 r}z) 2r262 rz)

+p to(t)Fidt+i|J "Fi(,)g(t,s)n <S> s

(261)

The pre-exponential factor associated with the effective propagator can be
evaluated exactly. Itis found that

ff(T.0) = ihg‘nc% 7 262)

From (2.36), (2.51) and (2.62) we obtain the effective propagator

e (1hraT) = € o 2, Jepl-( 1 ft [es(QT)

2k Hissin (Q" 1) ho 2 sin (Q'T)
0 T
H V 2 rj + Jrlc(t)Fe(t)dt
TT
+ JJfﬂt ) dsdt ) |

(2.63)
B. Exact propagator

Let us now go back to the original propagator. From (2.33) we have
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K(i\,r3T) = <Kgffy p’ a'T)>fxfy (2.64)

By splitting Fx into two parts, = f +e  and then performing the Gaussian
average we obtain the desired propagator

K(rbraT) = F(T)exp[* ( €(rbraT) +e6Rlc(t) EL(t)at

2 1T
+ — 66iHUG(LME1()%mH
(2.65)
-QJT
where 4 (rKrQiT) = ---;I-ﬁ--(----’---)-[cos(Q T)(qtr2)-2r ¢ 2 1]

T

psin (o T
. me S|n(Q ) dg FiC(,)riC(S)det

4q: (0 (OT)-c0s (0. T))

A Fl
23|n(Q1T)[COS(QT)( “12)-2r"e2 rj

e oo [(cos( -cos(Q'T)) r}+r



46

+1x (Q'sin(inL)_nsin(Q 'T))"j/
(Q'sin(.QI)-£sin(C!'T))2

n (cos (m”-) - cos(Q'T))

(266)

- V- X sin( 1T) f~ f
Rlc{t) = riclt) + u Jric(a)do Jg( ,t)ds

2ft'(cos (-~-) -cos (Q'T)) O 0
. _ - T 0t
= (sin(ft' (T-2))r +#sin(ft't)l e e
sin (ft' T) 1 1

1 1 1 ( ,sin(™)-Y sin(Q'T))
2sin(q T) Q2  (cos(XOL)-cos(QLT))

X (T-r3 J][(sin (0 (T-t)) + sin(itt)ye2 )e2

- sin (ft'T) ]
(2.67)
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TT
G(t ) = g(t, )+ s T) It rygc yaras
2Q'(cos(%n-cos(Q‘T)) 00

[H(t-s)sin(£s)sin(Q (T-1))

Q'sin(QT)
1 Jst)
+H( -1sin(Qt)sin(Q (T- ))]e’
-n
+[ 1 m][e

2Q sin(Q T)(cos ( )-cos (Q T))

X (sinQ (T-1t))

y JT 1s

+sin(Cit)e2 -sin(QT)][e2 (sin(Q (T-s))

AT
+sin(Q )e2 )-sin(Q.T)]

269

with E (T) mT(2

4ifi7t (cos (*="-) -cos (Q'T))

mT QR
Te8i*sin(1(QI+£)T)sm(i(QL£)T)

(2.69)
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We now consider the special case when the external electric field ¢ (t) is
zero. Equation (2.65) reduces to

T rnTef I m
oo BT = ey awery P F 2 (o)
) —JT
X[cos(L2'T)(/ 2 ™) - 2rre2 r)

+Z“'Sm E\ié"'_l'_;(COS (||p - C0S (12’T))(r1+ r'lZ

+A (12sin (ill) <€ sin (2T))r

1 (2Zsin(02.).0sin(2T))2(/ -ry)2])]
(cos (ill) -cos (12T))
(2.70)

By using the identities e Jp=lcospt Jsinfp, r = (:)

and = (fh) equation (2.70) can be written in a usual representation as
’b

K(rlrgT) = mTa ep»*( m
4 tift(cos(~T)-cos(QLT)) " 2sin(12T)

x [(x2+y2+x2+y2)cos (2T) +2sin(ill) (xayb- xkyd
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-003(C.T) (xaxbt yayh))]

e B( cos (£E€) - 005 (" T)) ((xbt xg2+ (ybrya))

b s (E )Y s (Q'T)) (xya- xab)

1‘2( 15in (EC)-Y sin( *T))2
(cos (£1) --cos (Q'T))

((X-x)2 (y-y 2)]) ]

(2.71)

This is the exact propagator of an electron moving in two dimensions under the
influence of a transverse magnetic field and a nonlocal harmonic oscillator potential. We
consider the two limiting cases :

a) When the nonlocal harmonic oscillator potential approaches zero, the system

of interest corresponds to the case when @— o ,and Q- Uz. First we consider

the pre-exponential factor of (2.71)

4« i cos (-“-)' -¢0s (0'T)) 2.12)

If we take the limit Q'—>7 or M—>0 , then
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mT(Q+Y)(0-Y)
©» 0 Q’->Y S8:tifisin( 2 (Q'--§)T)d (" (0'+= )T)
Y

= (dtlted ) (2 5iRR)) 2.73)

(Note that @ = -Y~=( '-v )( '+ Y )) One can easily verify that

when
) the exponential term of (2.71) reduces to

eXp[]r ——— (cos (YL )(xeex +ybtya)+ 2[sin( )
* dsm (fit) 2 2

X (xayb - cos (-*) (xbxat yoyd)]) ]

=exp[ftf (f Qx(™ ((V X2+ (ybyd2+Q (XaV )]
(2.74)

Thus, from (2.73) and (2.74) we get, when ©@-0

3T) = cauieer Hasiderprep 2 (T @ [Obx2

+ (yorya2] + Q (xayb- xiya) )] (2.75)
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This is the propagator of a charged particle confined in two dimensions in the
presence of a transverse magnetic field.
b) When the magnetic field goes to zero, this limiting case corresponds to the

case when ¢ —0 and o' — o) . We first consider the pre-exponential factor of
(2.71). Inthis case

imF(T) = lim 2L

MM, 2% 8*i**4 (ff-0)T )d»4 (0 +f)T)
B m oT 2
= (minT ;

7 ain ((OT
2.sin (——7 )

(2.76)

and the exponential termof (2.71) when Q —0 becomes

m®

2sin (T)

exp [ = (

* [(V V yi+Yo)cos (o)T)- 2 (xtx3ylya)]

ysin (cor) LLL 608 (CT) (00 a2+ (3o y3)2)])

exp (3 0L () [(xb 32+ (yb ya2).
(2.77)

From (2.76) and (2.77), it follows that
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T = () 9T ) exp (2 T cot(
2tik T oT 4
2sin(—2—)

oT

)

X [(Xb—x | + (yb-y2)2])
(2.78)

This is the propagator of a particle confined in two dimensions under the influence of a
nonlocal harmonic oscillator potential (31).

The Density of States

|f we have a function N(E) which is the total number of states at a given energy E
of an electron-atom system, then a function which is called the density of states is
defined by

E = dNE) 2.79)

or, equivalently,

€ = (V)i 5E-En) (280)

where En is the energy of the nth eigenstate, V is the volume of the system. If the
system is disordered, we must average (2.80) over the statistical ensemble for the
random potential. It is convenient to consider the density of states in the form of (2.80),
and in order to apply the path integral method to (2.80), one converts the right hand side
of (2.80) into an integral form to get (31),
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0
[ = (212 GEIETITT:TIT, (280

where the operator Tr denotes the trace of K. The function K is a retarded propagator
describing the propagation of an electron from point x' to point x", and where x' and X"
are vector positions of the electron in d dimensions. If the propagator K is invariant
under translation of X, this means that

KX"X5T) = K(x"x"T), (2.82)
so that for finding the density of states, the end point x" and the initial point X" must be

the same. It therefore follows that

69)

E) = cvizntiy Je[(IMET]K(00;T)dT.  (2.83)

Now applying (2.83) to (2.71) , one finds the density of states of an electron in the
absence of an electric field,

) = T™A 5| 0B[E-( +i)tia-(n+i)t(3],

2k

(2.84)

where 5’ denotes the derivative of the Dirac delta function with respect to its

argument, A is the area of the sample oi = ¢i+ c. and [3= qi- o . After

employing the relations
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(2.85)

We obtain

ona @ O[( H)fia+( H)fi(GE]

(E) = 2k N = [(S +|)f|ft + (n+|)f|pE] (2'86)

We now consider three limiting cases of this result.

1) When the nonlocal harmonic oscillator potential goes to zero, which

corresponds to the case @3>0, ' —+., i—»f2 and p—»0, equation
(2.86)reduces to
_ QraA - GKOR
(E) = o I:0 S[E-(s +24)bQ] (2.87)

This is exactly the well known density of states of an electron confined in two
dimensions under the influence of a homogeneous transverse magnetic field (16).

2) When the magnetic field approaches zero, Q—0, fl »@
and « - p—>@O. From (2.86) we obtain
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_ mA@ [( +n+1)fi - E] 2.88
E) = 21 '=0 4, [(s+n+1)hco-£] (8

which is the density of the states of a two dimensional nonlocal harmonic oscillator.

3) When all potentials approach zero, namely, ( = Q = X= p—0; one
can verify that (E) in expression (2.86) reduces to the constant density of states of a
two dimensional free particle,
mA
(E) = —: (289)

2k fi'

From the application of the exact propagator for the case of no electric field it is
shown that, when the nonlocal oscillator frequency approaches zero, Eg. (2.86)
reduces to Eq. (2.87) which is the density of states of a free electron confined in two
dimensions under the influence of a transverse magnetic field. Itis known that the (E)
in the expression of Eq. (2.87) gives an experimental density of states of a two
dimensional electron gas such as that on the surface of a semiconductor, for example a
silicon field effect transistor, which is necessary for the observation of the quantized
Hall effect. The density of states expression in Eq. (2.86) which includes the nonlocal
harmonic oscillator potential is seen to consist of the sum of numerous Dirac delta
functions with difference amplitudes. The model presented in this manner is a rather
idealized one and the (E) expression does not show the behaviour of broadening
beyond the Landau levels due to a disordered potential. To obtain a reasonable density
of states including gaussian broadening we must go beyond the zeroth order cumulant

approximation.  The procedure for the calculation of the cumulant approximated
propagator will be found in chapter 11,
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