
CHAPTER IV 

CONCLUSION

Summary

In chapter I, we mentioned two classes o f two-dimensional electron systems., 
the m etal-oxide-sem iconductor (MOS) layers and semiconductor heterojunctions. A 
MOS inversion layer consists o f a metallic layer as an electrode, an oxide layer and a 
sem iconductor layer. W hen w e apply a voltage V g, across the metal and the 
sem iconductor , the valence and conduction bands o f the sem iconductor are bent. 
When the bottom o f the conduction band is pushed down below Ep near the interface of 
semiconductor and insulator, electrons are accumulated at the bottom o f the conduction 
band. The electron system  may be regarded as 2D since the electrons are confined  
within the interface region and m ove relatively freely along the interface. The MOS 
system  is quite convenient in that the concentration ท of 2D electrons can be varied by 
varying the gate voltage, which changes the degree of bending o f the conduction band. 
For the heterojunctions such as semiconductor heterostructures, in which two kinds of 
sem iconductors are put together by molecular beam epitaxy, we have a w ell defined 
interface between the two materials with little disorder. However, it is difficult to attach 
gate electrodes to heterostructures, so that the electron concentration may not be varied 
by V g. Thus sem iconductor heterostructures are characterized by small degree of 
randomness, whereas MOS inversion layers have the advantage o f  variable electron 
concentration.

Then the quantum Hall effect, a direct consequence of Landau quantization, was 
shortly reviewed. This phenomenon was first found by von K litzing et al. in 1980.
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The main features o f the quantum Hall effect are the existence o f the Hall plateau and 
the dissipationless current flow  in the region o f a Hall plateau. It is now believed that 
the impurities o f a 2D system  are responsible for a dissipationless current flow  in the 
region o f the Hall plateaus. The impurities broaden each Landau level into an energy 
band width and it is expected that states near the center o f such a band w ill be 
delocalized whereas the states in the gap between Landau levels are localized. Thus, 
whenever the Fermi level is pinned in the m obility gap (localized states), the diagonal 
com ponent o f the resistivity vanishes and the transport properties remain constant 
explaining the presence o f a Hall plateau. In the next section o f chapter I we have 
mentioned the direct measurement of the density o f states in the MOS Si(100) structure 
which was performed by Kukushkin and Tim ofeev. In this experiment they measured 
directly the energy distribution o f  the intensity radiation spectrum 1(E) which is 
proportional to ท(E), at a fixed filling o f the Landau levels. Their experimental result 
was shown in Fig. 8. For the last section o f  chapter I, we have briefly reviewed the 
SCBA theory o f Ando and the LOCA theory o f Gerhardts. The density o f states of 
their m odels are elliptical shape and Gaussian shape respectively. The theoretical 
results were shown in Fig. 9.

In chapter n , we briefly reviewed the propagator and Feynman path integral. 
The propagator or probability amplitude o f a particle to go from x' at time f  to x" at rime 
t" , according to Feynman' ร ideas can be expressed in the path integral form

K(x",x';t",f) = Hm % r ifc )3N/2 JJ—J e x p [ ^ { Z  (^ (x fX i-i)2

-  e V ( x j ) ) } ]  d 3 x  1d 3 X2- . .d 3 x N . 1. (4.1)

or in a less restrictive notation as
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K (x",x';t",0 = J exp{ ^S[x",x']}D[x(t)]. (4.2)

Then the free particle which can be evaluated exactly using (4.1) has been examined in 
one dim ension. For the system  with a quadratic Lagrangian, it was shown that the 
propagator can be evaluated exactly using van Vleck-Pauli' formula

W e then exam ined the problem o f  an electron confined in two dim ensions under the 
influence o f a homogeneous transverse magnetic field and nonlocal harmonic oscillator 
potential. To apply the van Vleck-Pauli formula, we first transform the actual problem  
into the problem o f an electron m oving in the presence o f magnetic field, electric field  
and harmonic force using Stratonovich transformation. Then the classical action o f the 
transform ed problem  is evaluated exactly  using 2x2  m atrices introduced by 
Papadopoulos in the calculation o f  a harmonically bound charge. The propagator for 
the original problem is obtained by taking the Gaussian average o f the electron  
propagator in the transformed problem. After getting the exact propagator we then 
considered the density o f states o f the electron when the electric field is zero using the 
standard formula,

(4.3)

where
F (t" ,0  = det[ 2 ^ S c l [ x ,  x'] ] 1/2. dx'dx' (4.4)

ท (E) = — 1 je( i/£)ET K(0,0;T)dT, (4.5)
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we found the density o f states o f such an electron ,

„(E) .  ( l / 2 n ) a P m A ^ ^ 5 f e ^ t l S ± | ^ | L .  (4 .6)

W hen the nonlocal harmonic oscillator potential goes to zero, (4.6) reduces to a well- 
known density o f states o f an electron confined in two dim ensions under the influence 
o f a homogeneous transverse magnetic field,

n(E) = I  5 [ E - ( n + l /2 ) « H  (4.7)
ท=0

In chapter III, w e evaluated the density o f  states o f an electron in a two- 
dim ensional system  under the influence o f a transverse magnetic field and disorder 
potential due to impurities. In our model we considered an electron in a system o f very 
dense, random and weak scatterers and we assumed the scattering potential to be a 
Gaussian potential with finite correlation length L. To obtain the electron density of 
states we first evaluated the average propagator o f the electron using the path integral 
method. W e found the average propagator could be taken into the form

K(?',?;T) = J D[r(t)] e (i/rt)S[r(t)]f (4 8)

where ร [r(t)] = y  Jdt (x2+y2 + f2(xy-yx))+ ^  j J dtdaW (f(t)-r(a)), (4.9)

and พ (r(t)-f(a)) = ~ [ 2  exp { - ^ " ^ 2 ^ }. (4.10)
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After expressing the average propagator K in terms o f a zero-order propagator Kc  and 
then performing the first cumulant approximation, we obtained the average propagator,

K i(0,0;T) -  Ko(0,0;T)exp[- (4.11)

where K(0,0;T) -  (2rà/zT^2sin(nT/2))’ (4-12)

and B(T,y) 4i^sin[(f2/2)(T-y)lfsin(Qy/2)l
m£2L2sin(QT/2)

W e then defined EL = /z2/2m L 2, = น2p/nL2 and X = fiQ.1E l , finally obtaining the
density o f  states o f the electron as

ท (E) = (ร/ท?เ) jdTKo(0,0;T)exp [ iET/fi
-oo

£1LxTsin(QT/2) . . 1 r Va(x,T)-l . , ^ 1̂ -, , , 14, 
m S ‘ i > I  0 ,1 1[# ^ “ <0174»- <414>

where a(x,T) = (x/4i)sin(OT/2) - cos(ÜT/2). (4.15)

The density o f states in (4.14) could not be evaluated analytically and we made a large- 
T approximation to investigate the density o f states at low energies and obtained an 
analytic form o f  (4.14) as

ท(v) no x V r (v -(n + l/2 )x )“ 1 ,,1 1 ,-,
w h l0 e x p [ ' ™  >• (4 '16)
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where ร ุ,L = ^i/ E l2> v = E/EL and r '2 = r 2/EL2. The density o f  states from (4.16) for 
รุ,L  =  1, 1<X<4 and X =5, 1<ร ุ,L<5 were shown in Fig. 13 and Fig. 14 respectively.

In the last section o f chapter III w e have shown the com parisons o f our 
numerical results o f  (4 .51) with the magnetooptic experim ents o f  Kukushkin and 
Tim ofeev. W e found that by choosing the correlation length L=97Â and the fluctuation 
parameter รุL -6 .8  meV^, the numerical and experimental results are in good agreement.

Discussion and Conclusion

From the comparison with experiments in Fig. 14, 15, w e see that the present 
model o f the DOS can describe experiments quite accurately. The present model is 
quke sim ple but has som e essentia l features. Firstly, the DO S is evaluated  
nonperturbatively. Thus the DOS ท(E) for large values o f (E - E n ) can be obtained. 
The DOS can therefore be finite for all E and does not vanish between LL’ ร. Secondly, 
n(E) is evaluated for arbitrary correlation length L o f disorder. This corresponds to 
electron-impurity ion potentials V (r - Ri) having a finite range. The importance of 
using a finite-range potential has recently been stressed by Ando and Murayama (39).

H ow ever, to obtain the Gaussian DOS o f (4 .16), we made approximations. 
Particularly, we took the long-time limit o f the electron propagator which means ท(E) is 
valid for the low est-lying Landau levels only. This approximation probably masks 
difficulties that appear with the DOS for higher LL' ร. These questions are carefully 
discussed by Broderix et al. (40).

The m ethod presented in this thesis may be im proved in two different 
directions. One direction is to improve upon the action So in the same spirit as done by



Sa-yakanit (31) on his evaluation o f path-integral theory of a model disordered system. 
Another direction is to go beyond the first cumulant. This means that, the average 
propagator w ill contain a second cumulant ( l /2 ) [  <(S - So)^>o - < ร - ร 0 > 0  ̂ ]•
H owever, from this research, we have shown that the first cumulant approximation is 
sufficient to obtain an appropriate DO S which compares w ell with experiments. 
Furthermore, from our DOS expression, com bined with a m odel o f  impurity 
screening, Esfarjani et al. (41) obtained a self-consistent model o f LL broadening due to 
impurities. This leads to an explanation o f  the quantum Hall oscillation. Finally, we 
mention that the method developed here may be extended to the electrical conductivity 
or the electron mobility calculation. The consideration of the electrical conductivity is o f 
particular interest for it may give us a clue to understanding the nature o f  localization of 
electrons in disordered systems.
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