CHAPTER V

GENERALIZED QUOTIENT SEMIFIELDS

In [1] it was show that if S is a O-M.C. semiring then S can be embedded in a O-semifield and, in fact there exists a smallest O-semifield K (up to isomorphism) containing S. K is called the quotient O-semifield of S.

In [2] the concept of semifield was generalized and in Chapter IV we generalized the concept of O-M.C. to A.M.C. We now study the problem of whether or not an A.M.C. semiring can be embedded in a generalized semifield and if so we would like to know whether or not a smallest such semifield exists up to isomorphism. In some cases, in order to find a smallest generalized semifield containing a certain A.M.C. semiring, we shall have to generalized the concept of a quotient semifield by restricting the category of semirings under consideration.

In this Chapter every semiring is assumed to have order greater than two.

Theorem 5.1. Let S be a Classification I semiring.

Then we can embed S in a type I semifield and not in any other type of semifield.

<u>Proof.</u> Let a \in S be such that (S-{a},.) is a cancellative semigroup. Then ax = a for all x \in S. Claim that S is O-M.C. Let x,y,z \in S be such that xy = xz and x \neq a. To show y = z.

If y = a, then z = a. Similarly if z = a then y = a. Suppose $y, z \in S = \{a\}$. Hence y = z, so we have the claim. By Theorem 1.27, S can be embed in a type I semifield.

To show that S cannot be embedded in any other type of semifield, suppose not. Let $f:S\longrightarrow K$ be a monomorphism where K is a type III semifield w.r.t. a' or K is a type III semifield w.r.t. a'.

Case 1. K is a type II semifield w.r.t. a'. Let $x \in S-\{a\}$. Then aa = ax = a. Hence $f(a) \neq a'$. If $f(x) \neq a'$ then f(a)f(a) = f(a)f(x) which implies that f(a) = f(x). Thus x = a, contradiction. Suppose that f(x) = a'. Let $y \in S-\{a,x\}$. Then aa = ay. Hence f(a)f(a) = f(a)f(y) which implies that f(a) = f(y). Hence a = y, a contradiction.

Case 2. K is a type III semifield w.r.t. a'. Let $x \in S - \{a\}$ be such that $f(x) \neq a'$. Since $f(a) \neq a'$ and aa = ax, f(a) = f(x) which implies that a = x, a contradiction. #

Theorem 5.2. Let S be a classification II semiring w.r.t. a. Assume that $1+x \neq 1$ for all $x \neq 1$. Then we can embed S in a type II semifield and not in any other type of semifield.

Proof. First we shall show that S cannot, be embedded in a type I semifield or a type III semifield. To prove this, suppose not. Then there is a monomorphism f:S—K where K is a type I semifield w.r.t. a' or K is a type III semifield w.r.t. a'.

Case 1. K is a type I semifield w.r.t. a'. Let $x \in S = \{1, a\}$, so 1x = ax = x. Hence $f(a) \neq a'$ and $f(1) \neq a'$. Since 1a = aa, f(1)f(a) = f(a)f(a) which implies that f(1) = f(a). Hence 1 = a, a contradiction.

Case 2. K is a type III semifield w.r.t. a'. Since 11 = 1 and aa = a, clearly $f(1) \neq a'$ and $f(a) \neq a'$. Since 1a = aa, f(1)f(a) = f(a)f(a) which implies that 1 = a, a contradiction.

- (a) f(x+y) = f(x)+f(y) and
- (b) f(xy) = f(x)f(y).

To show (a) we shall consider the following cases:

Case 1. x = y = 1.

$$f(x+y) = f(1+1) = \begin{cases} a' & \text{if } 1+1 = 1, \\ f(a+a) & \text{if } 1+1 \neq 1 \text{ by Theorem 4.22 (3).} \end{cases}$$

Hence
$$f(1+1) = \begin{cases} a' & \text{if } 1+1 = 1, \\ f(a)+f(a) = e'+e' & \text{if } 1+1 \neq 1. \end{cases}$$

$$f(1)+f(1) = a'+a' = \begin{cases} a' & \text{if } 1+1 = 1, \\ e'+e' & \text{if } 1+1 \neq 1. \end{cases}$$
 Thus $f(x+y) = f(x)+f(y).$

Case 2. $x = 1, y \neq 1$.

$$f(x+y) = f(1+y) = f(a+y) = f(a)+f(y) = e'+f(y) = a'+f(y) = f(1)+f(y) = f(x)+f(y).$$

Case 3. $x \neq 1$, y = 1 (same proof as Case 2).

Case 4. $x \neq 1$, $y \neq 1$. Done.

To show (b), if x = 1 or y = 1 then f(xy) = f(x)f(y). Suppose that $x \neq 1$ and $y \neq 1$ then clearly f(xy) = f(x)f(y). #

Theorem 5.3. Let S be a classification II semiring w.r.t. a.

Assume that 1+a = 1 (hence $I_{S-\{1\}}(1) = I_{S-\{1\}}(a)$).

Then we can embed S in a type II semifield and not in any other type of semifield.

Proof. Clearly, by Theorem 5.2, S cannot be embedded in a type I or type III semifield. Since 1+a=1, x+x=x for all $x \in S-\{1\}$. By Proposition 4.18, $(S-\{1\},+,\cdot)$ is an M.C. semiring so $QR(S-\{1\})$ exists. Let $D=QR(S-\{1\})$. Let $e'=[(a,a)] \in D$. Then e' is the multiplicative identity of D. Let $f:S-\{1\} \longrightarrow D$ be the natural embedding. By Proposition 1.21, $I_D(e^i)=p$ or $I_D(e^i)$ is additive subsemigroup of D. Claim that $D-I_D(e^i)$ is an ideal of (D,+). Let $G\in D-I_D(e^i)$ and $g\in D$. Choose $(x,y)\in A$, $(z,w)\in \beta$.

Case 1. $\beta \in I_D(e^i)$. Then $(\alpha + \beta) + e^i = \alpha + (\beta + e^i) = \alpha + e^i \neq e^i$. Hence $\alpha + \beta \in D-I_D(e^i)$.

Case 2. $\beta \notin I_D(e^*)$. Then $e^* \neq \beta + e^* = [(z,w)] + [(a,a)] = [(z+w,w)]$. Hence $z+w \neq w$. Similarly $x+y \neq y$. Claim that $yz+xw+yw \neq yw$. To prove this, suppose not. Then yz+yw = yz+yz+xw+yw = yz+xw+yw = yw. Hence y(z+w) = yw which implies that z+w = w, a contradiction. Therefore $([(z,w)] + [(x,y)]) + [(a,a)] = [(yz+xw+yw,yw)] + [(a,a)] = [(yz+xw+yw,yw)] \neq [(a,a)]$.

Hence $D-I_D(e^*)$ is an ideal of (D,+) so we have the claim. Let a' be a symbol not representing any element of D. We can extend the binary operation of D to $K = D \cup \{a'\}$ by defining

(1)
$$a'a = da' = d$$
 for all $a \in K$,

(2)
$$a'+\alpha = \alpha+a' = a'$$
 for all $\alpha \in I_D(e')$
 $a'+\alpha = \alpha+a' = e'+\alpha$ for all $\alpha \in D-I_D(e')$,

(3)
$$a'+a' = \begin{cases} a' & \text{if } 1+1 = 1, \\ e' & \text{if } 1+1 \neq 1. \end{cases}$$

Then K is a type II semifield w.r.t. a'(by Theorem 1.39). Extend $f:S-\{1\}\longrightarrow D$ to $f:S\longrightarrow K$ by defining f(1)=a'. Clearly f is 1-1. We must show that f is a homomorphism. Let $x,y \in S$. We must show that

- (a) f(x+y) = f(x)+f(y),
- (b) f(xy) = f(x)f(y).

The proof of (b) is similar to the proof of (b) in Theorem 5.2.

To show (a), we shall consider the following cases: $\underline{\text{Case 1.}}$ x = y = 1. Subcase 1.1. 1+1 = 1. Then f(1+1) = f(1) = a' = a'+a' = f(1)+f(1).

Subcase 1.2. $1+1 \neq 1$. Then f(1+1) = f(a+a) = f(a) = e' = a'+a' = f(1)+f(1).

Case 2. $x = 1, y \neq 1.$

Subcase 2.1. 1+y = 1. Then f(1+y) = f(1) = a' and f(1)+f(y) = a'+[(y,a)]. Since 1+y = 1, a+y = a. Hence [(y,a)] + [(a,a)] = [(y+a,a)] = [(a,a)] therefore a' + [(y,a)] = a'.

Subcase 2.2. 1+y \neq 1. Then f(1+y) = f(a+y) = f(a)+f(y) = e' + [(y,a)]. Since $1+y \neq 1$, $a+y \neq a$. Hence $|(y,a)| + [(a,a)] \neq [(a,a)]$ therefore f(1)+f(y) = a'+f(y) = a' + [(y,a)] = e' + [(y,a)].

Case 3. $x \neq 1$, y = 1. The proof is the same as Case 2.

Case 4. $x \neq 1$, $y \neq 1$. Done. #

Theorem 5.4. Let S be a Classification III semiring w.r.t. a of form 1. Assume that $a+x\neq a$ for all $x\neq a$. (Hence $I_{S-\{a\}}(a)=6$) or a+e=a (Hence $I_{S-\{a\}}(a)=I_{S-\{a\}}(e)$). Then we can embed S in a type II semifield and not in any other type of a semifield.

Proof. Suppose that a+x=a for all $x\neq a$ i.e. $I_{S-\{a\}}(a)=\beta$. Using a proof similar to the proof of Theorem 5.2 (substitute a for 1 and e for a) we can show that we can embed S in a type II semifield and not in any other type of semifield.

#

Suppose a+e = a. By Proposition 4.32 (2) $I_{S-\{a\}}(a) = I_{S-\{a\}}(e)$. Using a proof similar to the proof of Theorem 5.3 (substitute a for 1 and e for a) we can show that we can embed S in a type II semifield and not inany other type of semifield.

Theorem 5.5. Let S be a Classification III semiring of form 2.

Then S can be embedded in any type of semifield.

Proof. . Since S is a Classification III semiring of form 2 S is an M.C. semiring. By Corollary 1.45, Propostion 1.46 and Proposition 1.47. S can be embedded in all type of semifield.

Theorem 5.6. Let S be a Classification IV semiring w.r.t. a.

If a is not M.C. in S then we cannot embbed S in any semifield.

<u>Proof.</u> Suppose not. Then there exists a monomorphism $f:S \longrightarrow K$ where K is a semifield. Let $a' \in K$ be such that $(K-\{a'\}, \cdot)$ is a group. Let e' be the identity of $(K-\{a'\}, \cdot)$. Since a is not M.C. in S, there exist $x,y \in S$ such that $x \ne y$ and ax = ay. Therefore x = a or y = a (since if $x \ne a$ and $y \ne a$ then $a^2x = a^2y$ which implies that x = y, a contradiction). Assume that x = a. Hence $y \in S-\{a\}$ and we have that a = ay. Claim that $f(a) \ne a'$. To prove this, suppose not.

Case 1. K is a type I ro type II semifield. Then f(aa) = f(a)f(a) = a'a' = a' = f(a). Hence $a^2 = a$, a contradiction.

Case 2. K is a type III semifield. Then a' = f(a) = f(1a) = f(1)f(a) = f(1)a' contradiction Proposition 1.36 (xy $\neq a'$) for all x, y \in K).

Hence we have the claim. Since aa = ay, aaay = ayay = ayya = aayy which implies that ay = yy (since $y \neq 1$). Thus aa = ay = yy. Clearly $yy \neq y$. Thus $f(y) \neq a'$ (the proof is similar to the above proof). Hence f(a)f(a) = f(a)f(y) which implies that f(a) = f(y) so a = y, a contradiction. #

Theorem 5.7. Let S be a Classification IV semiring w.r.t. a. Assume a is M.C. in S but S is not M.C. Then we cannot embed S in any type of semifield.

<u>Proof.</u> Since S is not M.C. there exists an $x \in S - \{a\}$ such that x is not M.C.. Then there exist distinct y, $d \in S$ such that xy = xd. Clearly y = a or d = a. Assume that y = a. Hence $d \in S - \{a\}$ and we have xa = xd. Claim that d = 1. To prove this, suppose not. Then $ad \neq a$ (if ad = a then $a^2d = a^21$ which implies that d = 1, a contradiction). Hence xaa = xda which implies that aa = da. Therefore a = d (since a is M.C. in S), a contradiction. Hence we have the claim, Therefore xa = x and $a^2x = ax = x = 1x$ so we have $a^2 = 1$. Since for all $y \in S - \{1, a\}$, $ay \neq a$, we get that ayx = axy = xy = yx, which implies that ay = y. Suppose that S can be embedded in a semifield. Then there exists a monomorphism $f: S \longrightarrow K$ where K is a semifield. Let $a' \in K$ be such that $(K - \{a'\}, \cdot)$ is a group. Let e' be the identity of $(K - \{a'\}, \cdot)$. Claim that $f(1) \neq a'$ and $f(a) \neq a'$.

Case 1. K is a type I semifield. Clearly $f(a) \neq a'$.

If f(1) = a' then f(a) = f(1a) = f(1)f(a) = a'f(a) = a' = f(1).

Hence a = 1, a contradiction.

Case 2. K is a type II semifield. Clearly $f(a) \neq a'$.

If f(1) = a' then f(a)f(a) = f(aa) = f(1) = a', contradiction the fact that $(K-\{a'\}, \bullet)$ is a group.

Case 3. K is a type III semifield. Clearly $f(1) \neq a'$.

If f(a) = a' then a' = f(a) = f(1a) = f(1)f(a) = f(1)a',

a contradiction.

Hence we have the Claim. Let $z \in S = \{1, a\}$ be such that $f(z) \neq a'$. Then az = 1z = z so f(a)f(z) = f(1)f(z).

Therefore f(a) = f(1). Thus 1 = a, a contradiction.

Theorem 5.8. Let S be a Classification IV semiring w.r.t. a.

If S is M.C. then S can be embedded in all type of semifield.

 $\underline{\text{Proof.}}$ Use Corollary 1.45, Proposition 1.46 and Proposition 1.47.

Theorem 5.9. Let S be a Classification V semiring w.r.t. a.

If a is M.C. in S then S can be embedded in all type of semifield.

Proof. Since a is M.C. in S, S is M.C.. Using Corollary 1,45, Proposition 1.46 and Proposition 1.47 we see that S can be embedded in all type of semifield.

Theorem 5.10. Let S be a ClassificationV semiring w.r.t. a.

If a is not M.C. in S then S cannot be embedded in a type I semifield and S cannot embedded in a type II semifield.

<u>Proof.</u> Since a is not M.C. in S, there exists $d \in S - \{a\}$ such that ax = dx for all $x \in S$. Suppose that S can be embedded

in a type I semifield or a type II semifield. Then there exists a monomorphism $f:S \longrightarrow K$ where K is a type I or type II semifield. Let $a' \in K$ be such that $(K-\{a'\}, \cdot)$ is a group. Clearly $f(a) \neq a'$. Claim that $f(d) \neq a'$. If f(d) = a' then a' = a'a' = f(d)f(d) = f(dd) = f(aa) = f(a)f(a) contradicting the fact that $(K-\{a'\}, \cdot)$ is a group. Hence we have the claim. Since aa = ad, f(a)f(a) = f(a)f(d). Therefore f(a) = f(d). Thus a = d, a contradiction.

Theorem 5.11. Let S be a Classification V semiring w.r.t. a. If a is not M.C. in S and $x+y \neq a$ for all $x,y \in S$. Then S can be embedded in a type III semifield.

Proof. Since a is not M.C. in S, there exists $d \in S - \{a\}$ such that ax = dx for all $x \in S$. Since for all $x, y \in S$, $x+y \neq a$, $(S - \{a\}, +, \cdot)$ is an M.C. semiring. Hence $QR(S - \{a\})$ exists. Let $D = QR(S - \{a\})$. Let $f:S - \{a\} \longrightarrow D$ be the natural embedding i.e. f(x) = [(xd,d)] for all $x \in S - \{a\}$. Let a' be a symbol not representing any element of D. We can extend the binary operation of D to $K = D \cup \{a'\}$ by defining a'x = da' = f(d)d for all $a \in K$ and a' + a = d + a' = f(d) + a for all $a \in K$. Then $(K, +, \cdot)$ is a type III semifield w.r.t. a' (by Theorem 1.42). Extend $f:S - \{a\} \longrightarrow D$ to $f:S \longrightarrow K$ by defining f(a) = a'. Clearly f is 1-1. To show that f is a homomorphism. Since $x+y \neq a$ for all $x,y \in S$, a+x = d+x for all $x \in S$ (by Theorem 4.44 (1)). Let $x,y \in S$. To show that f(x+y) = f(x) + f(y) and f(xy) = f(x)f(y).

Case 1. x = y = a.

f(x+y) = f(a+a) = f(d+d) = f(d)+f(d) = a'+a' = f(a)+f(a) = f(x)+f(y).

f(xy) = f(aa) = f(dd) = f(d)f(d) = a'a' = f(a)f(a) = f(x)f(y).

Case 2. $x = a, y \neq a$.

f(x+y) = f(a+y) = f(d+y) = f(d)+f(y) = a'+f(y) = f(a)+f(y) = f(x)+f(y).

f(xy) = f(ay) = f(dy) = f(d)f(y) = a'f(y) = f(a)f(y) = f(x)f(y).

Case 3. $x \neq a$, y = a. Same proof as Case 2.

Case 4. $x \neq \hat{a}$, $y \neq a$. Done. #

Theorem 5.12. Let S be a Classification V semiring w.r.t. a. Assume that a is not M.C. in S. Let $d \in S-\{a\}$ be such that ax = dx for all $x \in S$. If there exist $x,y \in S-\{a\}$ such that x+y = a and there exist $u,v \in S-\{d\}$ such that u+v = d then S cannot be embedded in a type III semifield.

Proof. Suppose not. Then there exists a monomorphism $f:S\longrightarrow K$ where K is a type III semifield. Let $a'\in K$ be such that $(K-\{a'\},\cdot)$ is a group. Let e be the identity of $(K-\{a'\},\cdot)$. Claim that $f(a) \neq a'$ and $f(d) \neq a'$. Suppose f(a) = a'. Since there exist $x,y\in S-\{a\}$ such that x+y=a, so a'=f(a)=f(x+y)=f(x)+f(y)=f(x)e+f(y)e=(f(x)+f(y))e=a', a contradiction. Similarly $f(d) \neq a'$. Hence we have the claim. But f(a)f(d)=f(ad)=f(dd)=f(d)f(d). Therefore f(a)=f(d) so a=d, a contradiction.

Theorem 5.13. Let S be a Classification V semiring w.r.t. a. Assume that a is not M.C. in S. Let $d \in S-\{a\}$ be such that

ax = dx for all $x \in S$. If there exist $x,y \in S-\{a\}$ such that x+y=a and for all $u,v \in S$ $u+v \neq d$ but there exist $z,w \in S$ such that zw=d then S cannot be embedded in a type III semifield.

Proof. Suppose not. Then there exists a monomorphism $f:S \longrightarrow K$ where K is a type III semifield w.r.t. a'. Using a similar proof to the proof of Theorem 5.12 we can show that $f(a) \neq a'$. Since there exist z,weS such that zw = d, $f(d) \neq a'$. Again, using a similar proof to the one in Theorem 5.12, f(a) = f(d) which implies that a = d, a contradiction. #

Theorem 5.14. Let S be a Classification V semiring w.r.t. a. Assume that a is not M.C. in S. Let $d \in S - \{a\}$ be such that ax = dx for all $x \in S$. If there exist $x, y \in S - \{a\}$ such that x+y = a and for all $u, v \in S$, $u+v \neq d$ and $uv \neq d$ then S can be embedded in a type III semifield.

Proof. Claim that $(S-\{d\},+,\cdot)$ is an M.C. semiring. Clearly $(S-\{d\},+)$ and $(S-\{d\},\cdot)$ are commutative semigroups and $S-\{d\}$ is distributive. To show that $S-\{d\}$ is M.C.. Let $x,y,z\in S-\{d\}$ be such that xy=xz. To show that y=z. We shall consider the following cases:

Case 1. x = a then ay = az.

Subcase 1.1. y = a. Claim that z = a. If $z \neq a$ then dd = aa = az = dz which implies that d = z, a contradiction. Hence we have the claim. Similarly if z = a then y = a. Hence y = z.

Subcase 1.2. $y,z \in S-\{d,a\}$. Then dy = ay = az = dz which implies that y = z.

Case 2. x ≠ a.

Subcase 2.1. y = a. Claim that z = a. If $z \neq a$, xd = xz which implies that d = z, a contradiction. Hence we have the claim. Similarly if z = a then y = a. Hence y = z.

Subcase 2.2. $y,z \in S-\{a,d\}$. Clearly y = z.

Thus we have $(S-\{d\},+,\cdot)$ is an M.C. semiring.

Then $QR(S-\{d\})$ exists. Let $D=QR(S-\{d\})$. Let $f:S-\{d\}\longrightarrow D$ be the natural embedding f(x)=[(xa,a)] for all $x\in D-\{d\}$.

Let a' be a symbol not representing any element of D. We can extend the binary operation of D to $K=D\cup\{a'\}$ by defining a'a=a'=f(a)a for all $a\in K$ and a'+a=a+a'=f(a)+a for all $a\in K$. Then $(K,+,\cdot)$ is a type III semifield. Extend $f:S-\{d\}\longrightarrow D$ to $f:S\longrightarrow K$ by defining f(d)=a'. Clearly f is 1-1. Note that a+x=d+x for all $x\in S$ since $d^2(a+x)=d^2a+d^2x=d^2d+d^2x=d^2(d+x)$ which implies that a+x=d+x (since d^2 , a+x, $d+x\in S-\{d\}$). Using a proof similar to the one in Theorem 5.11 (substitute a for d and d for a) we get that f is a homonorphism. #

Definition 5.15. Let K be a semifield w.r.t. a. If for all $x \in K-\{a\}$, $a+x \neq a$ then K is called almost full. If for all $x \in K$, $a+x \neq a$ then K is called full.

Definition 5.16. Let S be a semiring and a & S. Then (S,a) is called a pointed semiring.

<u>Definition 5.17.</u> Let (S,a) and (T,b) be pointed semirings. Then $f:(S,a) \longrightarrow (T,b)$ is called a <u>pointed homomorphism</u> if and only if

- 1) f(x+y) = f(x)+f(y), f(xy) = f(x)f(y) for all $x,y \in S$,
- 2) f(a) = b.

Definition 5.18. Let \footnotemark be a category whose objects are semirings and whose morphisms are semiring homomorphisms. Let \footnotemark be an object of \footnotemark . A quotient semifield of \footnotemark where \footnotemark is a semifield in \footnotemark and \footnotemark for each semifield object \footnotemark in \footnotemark and for each i \footnotemark where exists a unique \footnotemark for each semifield object \footnotemark in \footnotemark and for each i \footnotemark there exists a unique \footnotemark for each that \footnotemark object \footnotemark is \footnotemark object \footnotemark in \footnotemark and \footnotemark object \footnotemark is a category whose objects are semirings and whose morphisms. Let \footnotemark be an object of \footnotemark and \footnotemark where \footnotemark is a semifield object \footnotemark in \footnotemark or \footnotemark and \footnotemark of \footnotemark of \footnotemark because \footnotemark of \footnotemark of \footnotemark or \footnotemark of \footn

Theorem 5.19. Let S be a Classification I semiring. Let K be the semifield of type I given by the construction and $f:S \longrightarrow K$ the embedding given by the construction. Let K' be any type I semifield and $i:S \longrightarrow K'$ a monomorphism. Then there exists a unique monomorphism $g:K \longrightarrow K'$ such that gof = i.

Proof. Define g:K \rightarrow K' as follows: for de K, choose $(x,y) \in \alpha$ define $g(\alpha) = \frac{i(x)}{i(y)}$. By Theorem 1.29 we have that g is a well defined monomorphism. We must show that gof = i. Let $x \in S$. Then $(g \circ f)(x) = g(f(x)) = g(f(x)) = g(f(x))$ (where $u \in S$ is not a multiplicative zero) = $\frac{i(xu)}{i(u)} = \frac{i(x)i(u)}{i(u)} = i(x)$. Hence gof = i. To show uniquness, suppose that there exists a monomorphism $h: K \rightarrow K'$ such that hof = i must show that h = g. Let $a \in K$. Choose $(x,y) \in \alpha$. Then $g(\alpha) = \frac{i(x)}{i(y)} = \frac{(h \circ f)(x)}{(h \circ f)(y)} = \frac{h(f(x))}{h(f(y))} = h([(xu,u)]) h([(yu,u)])^{-1} = h([(xu,u)]) [(u,yu)]) = h([(xuu,yuu)]) = h([(x,y)]) = h(\alpha)$. Thus g = h. #

Corollary 5.20. Let S be a Classification I semiring, K the type I semifield given by the construction and $f:S \longrightarrow K$ the embedding given by the construction. Let \mathcal{C}_1 be the category whose objects are either Classification I semirings or type I semifields and whose morphisms are semiring homomorphisms. Then (S,f,K) is a quotient semifield w.r.t. \mathcal{C}_1 .

We shall give an example to show that there exists a Classification II semiring S such that $1+x \neq 1$ for all $x \neq 1$ and the type II semifield K given by the construction in Theorem 5.2 is not the smallest type II semifield containing S.

Example 5.21. Consider (Z+, max, .). Then (Z+, max, .) is an M.C. semiring. Let a be a symbol not representing any element of Z+. Let $S = \mathbb{Z}^+ \cup \{a\}$ define ax = xa = x for all $x \in \mathbb{Z}^+ - \{1\}$, 1a = a1 = aa = a, a+x = x+a = x for all $x \in \mathbb{Z}^{+} - \{1\}$ and 1+a = a+1 = a+a = a. Then S is a Classification II semiring w.r.t. a and $1+x \neq 1$ for all $x \neq 1$. By Theorem 5.2 we can embed S in a type II semifield K w.r.t. a'. Let $f:S \longrightarrow K$ be the natural embedding. (Q^+, \max, \bullet) is a ratio semiring. $I_{Q^+}(1) = \{x \in Q^+ | x \le 1\}$. Let $T = \{x \in \mathbb{Q}^+ | x \in \mathbb{Q}^+ | x \in \mathbb{Q}^+ \}$ Let \overline{a} -be a symbol not representing any element of \mathbf{Q}^+ . Define (1) $\mathbf{\bar{a}} \mathbf{x} = \mathbf{x} \mathbf{\bar{a}} = \mathbf{x}$ for all $\mathbf{\bar{x}} \in \mathbf{\bar{K}} = \mathbf{Q}^+ \cup \{\mathbf{\bar{a}}\}$, (2) $\overline{a}+x = x+\overline{a} = \overline{a}$ for all $x \in T$, $\overline{a}+x = x+\overline{a} = 1+x$ for all $x \in \mathbb{Q}^+$ -T and $\bar{a}+\bar{a}=\bar{a}$. Hence $(\bar{K},+,\cdot)$ is a type II semifield w.r.t. \bar{a} (by Theorem 1.39). Define i:S $\rightarrow \overline{K}$ by i(1) = \overline{a} , i(a) = 1 and i(x) = x for all $x \in \mathbb{Z}^+$. Clearly i is 1-1. To show that i is a homomorphism we shall consider the following cases: Let x,y ∈ S.

Case 1.
$$x = y = 1$$
.

$$i(x+y) = i(1+1) = i(1) = \overline{a} = \overline{a+a} = i(1)+i(1) = i(x)+i(y)$$
.

$$i(xy) = i(1) = \overline{a} = \overline{aa} = i(1)i(1) = i(x)i(y).$$

Case 2. $x = 1, y \neq 1$.

$$i(x+y) = i(1+y) = i(y) = 1+i(y) = \overline{a}+i(y) = i(1)+i(y)$$

$$i(xy) = i(y) = \overline{a}i(y) = i(1)i(y) = i(x)i(y).$$

Case 3. $x \neq 1$, y = 1. (the proof similar to Case 2).

Case 4. $x \neq 1$, $y \neq 1$.

$$i(x+y) = \begin{cases} 1 & \text{if } x = a, y = a, \\ y & \text{if } x = a, y \neq a, \\ x & \text{if } x \neq a, y = a, \end{cases} \text{ and } i(x)+i(y) = \begin{cases} 1 & \text{if } x = a, y = a, \\ 1+y = y & \text{if } x = a, y \neq a, \\ x+1 = x & \text{if } x \neq a, y \neq a, \\ x+y & \text{if } x \neq a, y \neq a. \end{cases}$$

$$i(xy) = \begin{cases} 1 & \text{if } x = a, y = a, \\ y & \text{if } x = a, y \neq a, \\ x & \text{if } x \neq a, y = a, \\ xy & \text{if } x \neq a, y \neq a, \end{cases} \text{ and } i(x)i(y) = \begin{cases} 1 & \text{if } x = a, y = a, \\ y & \text{if } x = a, y \neq a, \\ x & \text{if } x \neq a, y = a, \\ xy & \text{if } x \neq a, y \neq a. \end{cases}$$

Claim that there is not a monomorphism $h: K \longrightarrow \overline{K}$ such that hof = i. To prove this, suppose not. Since $(hof)(1) = i(1) = \overline{a}$, $h(a') = \overline{a}$ and 1 = i(a) = hof(a) = h([(a,a)]). Since 2 = i(2) = hof(2) = h([(2,a)]) and 5 = h([(5,a)]), $\frac{2}{5} = \frac{h([(2,a)])}{h([(5,a)])} = h([(2,5)])$. Since h is homomorphism, h(a'+[(2,5)]) = h([(a,a)]+[(2,5)]) = h([(5,5)]) = 1. But $h(a')+h(|(2,5)|) = \overline{a} + \frac{2}{5} = \overline{a}$. Hence $\overline{a} = 1$, a contradiction. #

Theorem 5.22. Let S be a Classification II semiring w.r.t. a. such that $1+x \neq 1$ for all $x \neq 1$. Let K be the type II semifield w.r.t. a' given by the construction and let $f:S \longrightarrow K$ the natural

embedding given by the construction. Let \overline{K} be any type II semifield w.r.t. \overline{a} and i:S $\longrightarrow \overline{K}$ a monomorphism.

Then the following hold:

- (1) if there exist $x, y \in S \{1\}$ such that $\overline{a} + \frac{i(x)}{i(y)} = \overline{a}$ then there is no monomorphism $g: K \longrightarrow \overline{K}$ such that gof = i.
- (2) if \overline{K} is almost full then there exists a unique monomorphism $g:K\longrightarrow \overline{K}$ such that gof=i.

<u>Proof.</u> (1) Suppose not. Then there exists a monomorphism. g:K→ \overline{K} such that gof = i. Claim that i(1) = \overline{a} . To prove this, suppose not. Then i(1) $\neq \overline{a}$. If i(a) = \overline{a} then i(a) = i(1a) = i(1)i(a) = i(1) \overline{a} = i(1) so 1 = a, a contradiction. Hence i(a) $\neq \overline{a}$. Thus i(1)i(a) = i(a) = i(a) = i(a)i(a), so i(1) = i(a) which implices that 1 = a, a contradiction. Thus i(1) = \overline{a} , so we have the claim. Since i(a) = i(aa) = i(a)i(a), i(a) = \overline{a} where \overline{a} is the identity of (\overline{K} -{ \overline{a} },·). Since gof = i, g(a') = \overline{a} and g({(a,a)]} = \overline{a} . Since there exist x,y ∈ S-{1} such that \overline{a} + $\frac{i(x)}{i(y)}$ = \overline{a} , i(y)+i(x) = i(y) which implies that x+y = y. Since g([(x,y)]) = g([(x,a)](a,y)]) = \overline{g} ([(x,a)]) = \overline{g} (f(x)) = \overline{i} (x) , we get that \overline{a} = \overline{a} + \overline{i} (x) = g(a')+g([(x,y)]) = g(a'+[(x,y)]) = g([(a,a)]+[(x,y)]) = g([(x,y,y)])=g([(a,a)])= \overline{a} . Hence \overline{a} = \overline{a} , a contradiction.

(2) Using a proof similar to the proof of (1) we get that $i(1) = \overline{a}$ and $i(a) = \overline{e}$. Let $\alpha \in K - \{a^i\}$. Choose $(x,y) \in \alpha$. Define $g(\alpha) = \frac{i(x)}{i(y)}$ and $g(a^i) = \overline{a}$. To show that g is well-defined, suppose that $(x^i, y^i) \in \alpha$ also. Then $xy^i = x^iy$ which implies that $i(x)i(y^i) = i(x^i)i(y)$. Hence $\frac{i(x)}{i(y)} = \frac{i(x^i)}{i(y^i)}$. Hence g is

well-defined. To show that g is 1-1, let α , $\beta \in K$ be such that $g(\alpha) = g(\beta)$. If $\alpha = a'$ then $\beta = a'$ suppose $\alpha \neq a'$ and $\beta \neq a'$. Choose $(x,y) \in \alpha$ and $(z,w) \in \beta$. Then $\frac{i(x)}{i(y)} = \frac{i(z)}{i(w)}$ so i(xw) = i(yz) which implies that xw = yz i.e. $\alpha = \beta$. Thus g is 1-1. To show that g is a homomorphism, we shall show

(a)
$$g(d\beta) = g(d)g(\beta)$$
 and

(b)
$$g(\alpha + \beta) = g(\alpha) + g(\beta)$$
 for all $\alpha, \beta \in K$.

To show (a) we shall consider the following cases:

Case 1. $\alpha = \beta = a'$.

$$g(\Delta\beta) = g(a'a') = g(a') = \overline{a} = \overline{a}\overline{a} = g(a')g(a') = g(\alpha)g(\beta).$$

Case 2. $\alpha = a'$, $\beta \neq a'$.

$$g(\beta) = g(a'\beta) = g(\beta) = \bar{a}g(\beta) = g(a')g(\beta) = g(\alpha)g(\beta).$$

Case 3. $d \neq a'$, $\beta = a'$. Using a proof similar to the proof in Case 2 we get that $g(d\beta) = g(d)g(\beta)$.

Case 4.
$$\alpha \neq a'$$
, $\beta \neq a'$. Choose $(x,y) \in \alpha$, $(z,w) \in \beta$.
$$g(\alpha \beta) = g([(xz,yw)]) = \frac{i(xz)}{i(yw)} = \frac{i(x)i(z)}{i(y)i(w)} = g(\alpha)g(\beta).$$

To show (b) we shall consider the following cases.

Case 1. $d = \beta = a'$.

Subcase 1.1. 1+1=1. Then $\bar{a}+\bar{a}=\bar{a}$ so $g(\alpha+\beta)=g(a'+a')=g(a')=\bar{a}=\bar{a}+\bar{a}=g(a')+g(a')=g(\alpha)+g(\beta)$.

Subcase 1.2. $1+1 \neq 1$. Then $\overline{a}+\overline{a}\neq \overline{a}$ so by Theorem 1.37, $\overline{a}+\overline{a}=\overline{e}+\overline{e}$. $g(\alpha+\beta)=g(\alpha'+\alpha')=g([(a,a)]+[(a,a)])=g([(a+a,a)])=\frac{i(a+a)}{i(a)}=\frac{i(a)}{i(a)}+\frac{i(a)}{i(a)}=\overline{e}+\overline{e}=\overline{a}+\overline{a}=g(\alpha')+g(\alpha')=g(\alpha')+g(\beta').$

Case 2. d = a', $\beta \neq a'$. Choose $(z,w) \in \beta$. $g(\alpha + \beta) = g(a' + \beta) = g([(a,a)] + [(z,w)]) = g([(w+z,w)]) = \frac{i(w+z)}{i(w)} = \overline{i(w)}$ $\overline{e} + \frac{i(z)}{i(w)} = \overline{a} + \frac{i(z)}{i(w)} = g(a') + g(\beta) = g(\alpha) + g(\beta) \text{ (since } \overline{K} \text{ is an almost full, } \overline{a+u} = \overline{e} + u \text{ for all } u \in \overline{K} - \{\overline{a}\} \text{ by Theorem 1.37).}$

Case 3. $d \neq a'$, $\beta = a'$. The proof is similar to the proof of Case.2.

Case 4. $d \neq a'$, $\beta \neq a'$. Choose $(x,y) \in \emptyset$ and $(z,w) \in \beta$ $g(d+\beta) = g([(xw+yz,yw)]) = \frac{i(xw+yz)}{i(yw)} = \frac{i(x)}{i(y)} + \frac{i(z)}{i(w)} = g(d) + g(\beta).$

Hence g is a homomorphism. Let $x \in S$ be arbitrary. If x = 1 then $(gof)(1) = g(f(1)) = g(a') = \overline{a} = i(1)$ and for all $x \in S - \{1\}$ $(gof)(x) = g(f(x)) = g([(x,a)]) = \frac{i(x)}{i(a)} = i(x)$. Hence gof = i. To show uniquness, let $h: K \longrightarrow \overline{K}$ be a monomorphism such that hof = i. Let $d \in K$ be arbitrary. If d = a' then $g(a') = \overline{a} = i(1) = hof(1) = h(a')$ and for $d \in K - \{a'\}$ choose $(x,y) \in d$. Then $g(d) = \frac{i(x)}{i(y)} = \frac{(hof)(x)}{(hof)(y)} = \frac{h([(x,a)])}{h([(y,a)])} = h([(x,y)]) = h(d)$. Hence g is unique.

Corollary 5.23. Let S be a Classification II semiring w.r.t. a such that $1+x \neq 1$ for all $x \neq 1$. Let K be the type II semifield given by the construction and $f:S \longrightarrow K$ the embedding given by the construction. Let \mathcal{C}_2 be the category whose objects are either Classification II semirings S^+ . w.r.t. a^+ such that $1^++x \neq 1^+$ for all $x \neq 1^+$ (where $1^+ \in S^+ - \{a^+\}$ is such that $1^+x = x$ for all $x \in S^+$) or type II almost full semifields and whose morphisms are semiring homomorphisms. Then (S, f, K) is a quotient semifield w.r.t. \mathcal{C}_2 .

Theorem 5.24. Let S be a Classification II semiring w.r.t. a such that 1+a=1. Let K be the type II semifield given by the construction and let $f:S\longrightarrow K$ be the embedding given by the construction. Let \overline{K} be any type II semifield and $i:S\longrightarrow \overline{K}$ a monomorphism. Then there exists a unique monomorphism $g:K\longrightarrow \overline{K}$ such that gof=i.

Proof. Let a' \(\epsilon \), be such that $(K - \{a'\}, \cdot)$ is a group and let e' be the identity of $(K - \{a'\}, \cdot)$. Let $\overline{a} \in \overline{K}$ be such that $(\overline{K} - \{\overline{a}\}, \cdot)$ is a group and let \overline{e} be the identity of $(\overline{K} - \{\overline{a}\}, \cdot)$. Using the same proof as in Theorem 5.22 we can show that $i(1) = \overline{a}$ and $i(a) = \overline{e}$. Since 1 + a = 1, $\overline{a} + \overline{e} = \overline{a}$. Hence $\overline{e} \in I_{\overline{K} - \{\overline{a}\}}(\overline{a})$. Thus $I_{\overline{K} - \{\overline{a}\}}(\overline{a}) = I_{\overline{K} - \{\overline{a}\}}(\overline{e})$ by Theorem 1.38 (2). Let $g: K \longrightarrow \overline{K}$ be defined as follows: for $A \in K - \{a'\}$, choose $(x,y) \in A$.

Define $g(A) = \frac{i(x)}{i(y)}$ and $g(a') = \overline{a}$. Then the same proof used in Theorem 5.22 shows that g is well-defined, 1-1 and g(A) = g(A)g(A) for all $A, A \in K$.

To show that $g(\alpha+\beta)=g(\alpha)+g(\beta)$ for all α , $\beta\in K$, we shall consider the following cases:

Case 1. 0 = a', $\beta = a'$.

Subcase 1.1. 1+1 = 1. Then $\bar{a}+\bar{a}=\bar{a}$. $g(d+\beta)=g(a'+a')=g(a')=\bar{a}=\bar{a}+\bar{a}=g(a')+g(a')=g(d)+g(\beta)$.

Subcase 1.2. 1+1 \neq 1. Then $\bar{a}+\bar{a}=\bar{e}+\bar{e}=i(a)+(a)=i(a+a)=i(a)=\bar{e}$. $g(a+\beta)=g(a'+a')=g(e')=g([(a,a)])=\frac{i(a)}{i(a)}=\bar{e}=\bar{a}+\bar{a}=g(a)+g(\beta)$.

Case 2. $O \neq a'$, $\beta = a'$. Choose $(x,y) \in A$.

Subcase 2.2. $d \notin I_D(e^i)$. Then $a^i + d = e^i + d$. Claim that $\frac{i(x)}{i(y)} + \overline{a} \neq \overline{a}$. To prove this, suppose not. Then i(x)+i(y)=i(y) which implies that x+y=y so [(x,y)]+[(a,a)]=[(x+y,y)]=[(a,a)]. Hence $d \in I_D(e^i)$, a contradiction. Thus $\frac{i(x)}{i(y)} + \overline{a} = \frac{i(x)}{i(y)} + \overline{e}$. $g(d+\beta) = g(d+a^i) = g(d+e^i) = g([(x,y)]+[(a,a)]) = g([(x+y,y)]) = \frac{i(x+y)}{i(y)} = \frac{i(x)}{i(y)} + \overline{e} = \frac{i(x)}{i(y)} + \overline{a} = g(d) + g(\beta)$.

Case 3. d = a', $\beta \neq a'$. Using the same proof as used in Case 2 we get tgat $g(0+\beta) = g(d) + g(\beta)$.

Case 4. $d \neq a'$, $\beta \neq a'$. Choose $(x,y) \in d$ and $(z,w) \in \beta$. $g(d+\beta) = g([(xw,yz,yw)]) = \frac{i(xw+yz)}{i(yw)} = \frac{i(x)}{i(y)} + \frac{i(z)}{i(w)} = g(d) + g(\beta).$

Hence g is a monomorphism. Using the same proof as in Theorem 5.22 we can show that g is the unique monomorphism from K to \overline{K} such that gof = i. #

Corollary 5.25. Let S be a Classification II semiring w.r.t. a such that 1+a=1. Let K be the type II semifield given by the construction and let $f:S \to K$ be the embedding given by the construction. Let $\binom{*}{2}$ be the category whose objects are either Classification II semirings S w.r.t. a such that 1 + a = 1 (where $1 \in S - \{a^*\}$ is such that $1 \times a = 1$ or type II semifields and whose morphisms are semiring homomorphisms. Then (S,f,K) is a quotient semifield w.r.t. $\binom{*}{2}$.

Theorem 5.26. Let S be a Classification III semiring w.r.t. a of form 1 such that $a+x \neq a$ for all $x \neq a$. Let K be the type II semifield given by the construction and let $f:S \longrightarrow K$ be the embedding given by the construction. Let \overline{K} be any type II semifield w.r.t. \overline{a} and $i:S \longrightarrow \overline{K}$ a monomorphism. Then the following hold:

- (1) If there exist $x, y \in S \{a\}$ such that $\frac{i(x)}{i(y)} + \overline{a} = \overline{a}$ then there is not monomorphism $g: K \longrightarrow \overline{K}$ such that $g \circ f = i$.
- (2) If K is almost full then there exists a unique monomorphism $g:K\longrightarrow \overline{K}$ such that gof=i.

<u>Proof.</u> Let e be the identity of $(S-\{a\}, \cdot)$ use a proof similar to the one used in Theorem 5.22 (substitute a for 1 and e for a).

Corollary 5.27. Let S be a Classification III semiring w.r.t. a of form 1 such that $a+x \neq a$ for all $x \neq a$. Let K be the type II semifield given by the construction and let $f:S \longrightarrow K$ be the embedding given by the construction. Let $f:S \longrightarrow K$ be the category whose objects are either Classification III semirings $f:S \longrightarrow K$ w.r.t. a of form 1 such that $f:S \longrightarrow K$ for all $f:S \longrightarrow K$ or type II almost full semifields and whose morphisms are semiring homomorphisms. Then $f:S \longrightarrow K$ is a quotient semifield w.r.t. $f:S \longrightarrow K$

Theorem 5.28. Let S be a Classification III semiring w.r.t. a of form 1. Let e be the identity of $(S-\{a\}, \cdot)$. Assume that a+e=a. Let K be the type II semifield given by the construction and let $f:S\longrightarrow K$ be the embedding given by the construction. Let \overline{K} be any type II semifield and $i:S\longrightarrow \overline{K}$ a monomorphism. Then there exists a unique monomorphism $g:K\longrightarrow \overline{K}$ such that gof=i.

Proof. Similar to the proof of Theorem 5.24.

Corollary 5.29. Let S be a Classification III semiring w.r.t. a of form 1. Let e be the identity of $(S-\{a\}, \cdot)$ and assume that e+a=a. Let K be the type II semifield given by the construction and let $f:S \rightarrow K$ be the embedding given by the construction. Let \mathcal{C}_3^* be the category whose objects are either Classification III semirings S^* w.r.t. a^* such that $a^*+e^*=a^*$. (e* is the identity of $(S^*-\{a\}, \cdot)$) or type II semifields and whose morphisms are semiring homomorphisms. Then (S, f, K) is a quotient semifield w.r.t. \mathcal{C}_3^* .

Theorem 5.30. Let S be a Classification III (IV,V) semiring w.r.t. a such that S is M.C.. Let K be the O-semifield $[\infty$ -semifield] given by the construction and let $f:S \longrightarrow K$ be the embedding given by the construction. Let \overline{K} be any O-semifield $[\infty$ -semifield] and $i:S \longrightarrow \overline{K}$ a monomorphism. Then there exists a unique monomorphism $g:K \longrightarrow \overline{K}$ such that gof = i.

Proof. We shall prove the O-semifield case (the ∞ -semifield is proven similarly). By the construction of K, $K = QR(S) \cup \{a'\}$ where a' is a zero element of K and the natrual embedding $f:S \rightarrow K$ is given by $f:S \rightarrow QR(S)$. Let \overline{a} be a zero element of \overline{K} . Claim $i(x) \neq \overline{a}$ for all $x \in S$. To prove this, suppose not. Let $x \in S$ be such that $i(x) = \overline{a}$. Let $y \in S - \{x\}$. Then $i(xx) = i(x)i(x) = \overline{aa} = \overline{a} = \overline{a}i(y) = i(xy)$ which implies that xx = xy. Thus x = y, a contradiction. Hence we have the claim. Define $g:K \rightarrow \overline{K}$ as follows: for $a \in K - a'$, choose $(x,y) \in a$. Define $g(a) = \frac{i(x)}{i(y)}$ and $g(a') = \overline{a}$. To show that g(a') = a'.

If $\alpha = a'$ then $\beta = a'$. Suppose that $\alpha, \beta \neq a'$. Choose $(x,y) \in \alpha$ and $(z,w) \in \beta$. Then $\frac{i(x)}{i(y)} = \frac{i(z)}{i(w)}$. Hence i(xw) = i(yz) which implies that xw = yz. Hence $\alpha = \beta$. Let $\alpha, \beta \in K$. We shall show that $g(\alpha + \beta) = g(\alpha) + g(\beta)$ and $g(\alpha + \beta) = g(\alpha) + g(\beta)$.

Case 1. d = 3 = a'.

$$g(\sigma + \beta) = g(a'+a') = g(a') = \bar{a} = \bar{a}+\bar{a} = g(a')+g(a') = g(\sigma)+g(\beta).$$

$$g(\sigma \beta) = g(a'a') = g(a') = \bar{a} = \bar{a}\bar{a} = g(a')g(a') = g(\sigma)g(\beta).$$

Case 2. $\emptyset = a'$, $\beta \neq a'$.

$$g(d+p) = g(a'+p) = g(p) = \bar{a}+g(p) = g(a')+g(p) = g(d)+g(p).$$

 $g(dp) = g(a'p) = g(a') = \bar{a} = \bar{a}g(p) = g(a')g(p) = g(d)g(p).$

Case 3. $\alpha \neq a'$, $\beta = a'$. The proof is similar to the proof of Case 2.

 $\frac{\text{Case 4.}}{g(d+\beta)} = g([(xw+yz,yw)]) = \frac{i(xw+yz)}{i(yw)} = \frac{i(x)}{i(y)} + \frac{i(z)}{i(w)} = g(A)+g(B).$

$$g(AP) = g([(xz,yw)]) = \frac{i(xz)}{i(yw)} \quad \frac{i(x)i(z)}{i(y)i(w)} = g(A)g(P).$$

We must show that gof = i. Let $x \in S$ be arbitrary.

$$gof(x) = g(f(x)) = g([(xa;a)]) = \frac{i(xa)}{i(a)} = \frac{i(x)i(a)}{i(a)} = i(x).$$

Hence gof = i. To show the uniqueness, suppose that there exists a monomorphism $h:K\longrightarrow \overline{K}$ such that hof = i.

Then $h(a') = \overline{a} = g(a')$. Let $d \in K - \{a'\}$ and choose $(x,y) \in d$.

Then
$$g(\alpha) = \frac{i(x)}{i(y)} = \frac{hof(x)}{hof(y)} = \frac{h([(xa,a)])}{h([(ya,a)])} = h([(xa,a)][(a,ya)]) = h([(x,y)]) = h(\alpha).$$
 Thus $g = h$.

Corollary 5.31. Let S be a Classification III (IV, V) semiring such that S is M.C., let K be the O-semifield (∞ -semifield) given by the construction and let $f:S\longrightarrow K$ be the embedding given by the construction. Let $C_0(C_\infty)$ be the category whose objects are either M.C. Classification III semiring or M.C. Classification IV semirings or M.C. Classification V semirings or O-semifields (∞ -semifields) and whose morphisms are semiring homomorphisms.

Then (S,f,K) is a quotient semifield w.r.t. \mathcal{E}_{o} (\mathcal{E}_{∞})

We shall give some example that there exists a Classification III (IV) semiring S such that S is M.C. and the type II semifield given by the construction in Theorem 5.5 (Theorem 5.8) is not the smallest type II semifield containing S. (i.e. there exists a Classification III (IV) semiring S such that S is M.C. and there exists a monomorphism i:S—K' where K' is a type II semifield but there does not a monomorphism g:K—K' such that gof = i where f:S—K is the embedding given by the construction and K is the type II semifield given by the construction.

Example 5.32. Z^+ with the usual addition and multiplication is an M.C. Classification III semiring w.r.t. 1 and also an M.C. Classification IV semiring w.r.t. 2. Let a' be a symbol not representing any element of $QR(Z^+)$.

Define a'+a' = [(2,1)], $a'+\alpha = \alpha+a' = [(1,1)] + 0$ for all $\alpha \in QR(Z^+)$

a'a' = a' and a'd = da' = C for all $d \in QR(Z^+)$. Then $K = QR(Z^+) \cup \{a'\}$ is a type II semifield given by the construction and $f:Z^+ \longrightarrow K$ define by f(x) = [(x,1)] for all $x \in Z^+$ is the embedding given by the construction. \mathbb{Q}^+ with the usual addition and multiplication is a ratio semiring Let a be a symbol not representing any element of \mathbb{Q}^+ .

Define ax = xa = x for all $x \in \mathbb{Q}^+ \cup \{a\}$ and

a+x = x+a = 1+x for all $x \in \mathbb{Q}^+ \cup \{a\}$.

Then $\overline{K} = \mathbb{Q}^+ \cup \{a\}$ is a type II semifield.

Define i: $\mathbb{Z}^+ \to \overline{K}$ by i(x) = x for all $x \in \mathbb{Z}^+ - \{1\}$ and i(1) = a. Clearly i is 1-1 and i(xy) = i(x)i(y) for all $x, y \in \mathbb{Z}^+$ and

$$i(x+y) = x+y = \begin{cases} 1+1 = a+a = i(1)+i(1) & \text{if } x = y = 1, \\ 1+y = a+y = i(1)+i(y) & \text{if } x = 1, y \neq 1, \\ x+1 = x+a = i(x)+i(1) & \text{if } x \neq 1, y = 1, \\ x+y = i(x)+i(y) & \text{if } x = 1, y = 1. \end{cases}$$

Hence i is a homomorphism. Claim that there does not exist a monomorphism $g:K \longrightarrow \overline{K}$ such that gof = i. To prove this, suppose not. Hence a = i(1) = gof(1) = g(f(1)) = g([(1,1)]). Thus g(a') = g(a')a = g(a')g([(1,1)]) = g(a'[(1,1)]) = g([(1,1)]). Therefore a' = [(1,1)], a contradiction.

Example 5.33. (\mathbb{Z}^+ , max, •) is an M.C. Classification III semiring w.r.t. 1 and an M.C. Classification IV semiring w.r.t. 2. Let a' be a symbol not representing any element of $QR(\mathbb{Z}^+)$. Define a'+a' = [(1,1)], a'+ α = α +a' = [(1,1)]+ α for all $\alpha \in QR(\mathbb{Z}^+)$ a'a' = a' and a' α = α a' = α for all $\alpha \in QR(\mathbb{Z}^+)$.

Then $K = QR(\mathbf{Z}^+) \cup \{a'\}$ is a type II semifield given by the construction and $f: \mathbf{Z}^+ \longrightarrow K$ define by $f(\mathbf{x}) = [(\mathbf{x}, 1)]$ for all $\mathbf{x} \in \mathbf{Z}^+$ is the embedding given by the construction.

 (Q^+, \max, \cdot) is a ratio semiring. Let $S = \{x \in Q^+ \mid x < 1/2\}$. Clearly S is an additive subsemigroup of $I_{Q^+}(1)$ and Q^+-S is an ideal of $(Q^+, +)$. Let a be a symbol not representing any element in Q^+ . Extend + and \cdot from Q^+ to $\overline{K} = Q^+ u \{a\}$ by defining

- (1) ax = xa = x for all $x \in K$,
- (2) a+x = x+a = a for all $x \in S$, a+x = x+a = 1+x for all $x \in Q^+-S$
- (3) a+a = 1.

By Theorem 1.39, \overline{K} is a type II semifield.

Define i: $\mathbb{Z}^+ \longrightarrow \overline{K}$ by i(x) = x for all $x \in \mathbb{Z}^+$. Clearly i is a monomorphism and i(1) \neq a. But there does not exist a monomorphism g: $\overline{K} \longrightarrow \overline{K}$ such that gof = i. To prove this, suppose not. Claim that g(a') = a. If g(a') \neq a, then g(a') = g(a')g(a'), Hence g(a') = 1 = i(1) = g(f(1)) = g([(1,1)])

Thus a' = [(1,1)], a contradiction. Hence we have the claim. Since 1 = i(1) = g(f(1)) = g([(1,1)]) and 4 = i(4) = g([(1,4)]), $\frac{1}{4} = \frac{g([(1,1)])}{g([(4,1)])} = g([(1,1)][(1,4)]) = g([(1,4)]).$ Therefore a = a+ $\frac{1}{4}$ = g(a)+g([(1,4)]) = g(a'+[(1,4)]) = g([(1,4)]) = g([(1,1)]]+[(1,4)]) = g([(1,4)]). Thus a = [(4,4)], a contradiction.

Theorem 5.34. Let S be a Classification III semiring w.r.t. a such that S is M.C., K be the type II semifield given by the construction and let $f:S \longrightarrow K$ be the embedding given by the construction. Let \overline{K} be any type II semifield w.r.t. \overline{a} and $i:S \longrightarrow \overline{K}$ a monomorphism. Then the following hold:

- 1) if $i(a) = \overline{a}$ then there is no monomorphism $g: K \longrightarrow \overline{K}$ such that $g \circ f = i$.
- 2) if $i(a) \neq \overline{a}$ and \overline{K} is a full then there is a unique monomorphism $g:K \longrightarrow \overline{K}$ such that gof = i.

Proof. Let a' & K be such that (K-{a'}, .) is a group.

1) Suppose not.

Hence $\bar{a} = i(a) = gof(a) = g(f(a)) = g([(a,a)])$. Thus $g(a') = g(a')\bar{a} = g(a')g([(a,a)]) = g(a'[(a,a)]) = g([(a,a)])$. Therefore a' = [(a,a)], a contradiction.

2) If $i(x) = \overline{a}$ for some $x \in S - \{a\}$ then $\overline{a} = i(x) = i(xa) = i(x)i(a) = \overline{a}i(a) = i(a)$. Hence x = a, a contradiction. Then $i(x) \neq a$ for all $x \in S$.

Define $g: K \longrightarrow \overline{K}$ as follows: for $a \in K - \{a\}$, choose $(x,y) \in a$.

Define $g(a) = \frac{i(x)}{i(y)}$ and $g(a') = \overline{a}$. Using a similar proof to the one used in the proof of Theorem 5.22, we get that g is well-define, 1-1 and $g(a, \beta) = g(a, \beta)$ for all $a, \beta \in K$. We must show that $g(a + \beta) = g(a, \beta)$ for all $a, \beta \in K$.

Let \overline{a} be the identity of $(\overline{K} - \{\overline{a}\}, \bullet)$.

Case 1. $d = \beta = a'$. $g(d + \beta) = g(a' + a') = g([(a,a)] + [(a,a)]) = g([(a+a,a)]) = \bar{e} + \bar{e}$ $= \bar{a} + \bar{a} \text{ (since K is full , } a+a = e+e) = g(d) + g(\beta).$

Case 2. $d = a', \beta \neq a'$. Choose $(z,w) \in \beta$. $g(\alpha + \beta) = g(a' + \beta) = g([(a,a)] + [(z,w)]) = g([(w+z,w)]) = \frac{i(w)}{i(w)} + \frac{i(z)}{i(w)} = \overline{a} + \frac{i(z)}{i(w)} = g(\alpha) + g(\beta).$

Case 3. $0 \neq a'$, $\beta = a'$. Use the same proof as in Case 2.

 $\underline{\text{Case 4.}} \quad \alpha \neq \text{a', } \beta = \text{a'. Choose } (x,y) \in \alpha \text{, } (z,w) \in \beta \text{.}$ $g(\alpha + \beta) = g([(xw+yz,yw)]) = \frac{i(x)}{i(y)} + \frac{i(z)}{i(w)} = g(\alpha) + g(\beta).$

Using a proof similar to the one used in Theorem 5.22, we get that g is the unique monomorphism such that gof = i. #

Corollary 5.35. Let S be an M.C. Classification III semiring w.r.t. a. Then (S,a) is a pointed semiring.

Let K be the type II semifield given by the construction.

Let a' & K be such that (K-{a'}, .) is a group.

Let e' \in K be the identity of $(K-\{a^{\dagger}\}, \cdot)$. Then (K,e^{\dagger}) is a pointed semifield. Let $f:S \longrightarrow K$ be the embedding given by the construction. Let $G:S \longrightarrow K$ be the category whose objects are either pointed semirings (S^*,a^*) where S^* is an M.C. Classification III semiring w.r.t. a^* or a pointed semifields $(\overline{K},\overline{e})$ where \overline{K} is a type II full semifields w.r.t. \overline{a} and \overline{e} is the identity of $(\overline{K}-\{\overline{a}\},\cdot)$ and whose morphism are pointed semiring homomorphisms.

Then ((S,a),f,(K,e')) is a quotient semifield w.r.t. $\binom{6}{3}$,2.

Theorem 5.36. Let S be an M.C. Classification IV semiring w.r.t. a and let 1 be the identity of (S, \cdot) .

Let K be the type II semifield given by the construction and let $f:S\longrightarrow K$ be the embedding given by the construction.

Let \overline{K} be any type II semifield w.r.t. \overline{a} , and $i:S\longrightarrow \overline{K}$ a homomorphism. Then the following hold:

- 1) if $i(1) = \overline{a}$ then there is no monomorphism $g: K \longrightarrow \overline{K}$ such that $g \circ f = i$.
- 2) if $i(1) \neq \overline{a}$ and \overline{K} is full then there exists a unique monomorphism $g:K \longrightarrow \overline{K}$ such that gof = i.

Proof. Similar to the proof of Theorem 5.34. #

Corollary 5.37. Let S be an M.C. Classification IV semiring. Let 1 be the identity of (S, \cdot) . Then (S, 1) is a pointed semiring. Let K be the type II semifield w.r.t. a' given by the construction. Let e' be the identity of $(K-\{a'\}, \cdot)$ then (K, e') is a pointed semifield. Let $f:S \longrightarrow K$ be the embedding given by the construction. Let $G_{4,2}$ be the category whose objects are either pointed semirings $(S^*,1^*)$ where S^* is an M.C. Classification IV semiring and 1^* is the identity of (S^*,\cdot) or a pointed semifields $(\overline{K},\overline{e})$ where \overline{K} is a type II full semifields w.r.t. \overline{a} and \overline{e} is the identity of $(\overline{K}-\{\overline{a}\},\cdot)$ and whose morphisms are pointed semiring homomorphisms.

Then ((S,1),f,(K,e')) is a quotient semifield w.r.t. $\mathcal{L}_{4,2}$.

Theorem 5.38. Let K be any type III semifield w.r.t. a. Let $d \in K - \{a\}$ be such that ax = dx for all $x \in K$. Let \overline{K} be any type III semifield w.r.t. \overline{a} . Let $\overline{d} \in \overline{K} - \{\overline{a}\}$ be such that $\overline{a}x = \overline{d}x$ for all $x \in \overline{K}$. If there exists a monomorphism $g: K \longrightarrow \overline{K}$ then $g(a) = \overline{a}$ and $g(d) = \overline{d}$.

<u>Proof.</u> Let e, \overline{e} be the identities of $(K-\{a\}, \cdot)$ and $(\overline{K}-\{\overline{a}\}, \cdot)$ respectively. Suppose that $g(a) \neq \overline{a}$.

Then g(a)g(a) = g(aa) = g(ad) = g(a)g(d) which implies that $g(a) = \overline{e}g(d)$. Since $g(d) \neq \overline{a}$ so a = d, a contradiction.

Thus $g(a) = \overline{a}$. Since g(d)g(d) = g(a)g(d) so $g(d) = g(a)\overline{e} = \overline{a}\overline{e} = \overline{d}$.

Theorem 5.39. Let S be an M.C. Classification III (IV) semiring w.r.t. a and let K be the type III semifield w.r.t. a' given by the construction. Let $[(d_1,d_2)] \in K-\{a'\}$ be such that $a'd = [(d_1,d_2)]d$ and a'+d = [(d,d)]+d for all $d \in K$ and let $f:S \longrightarrow K$ be the embedding given by the construction.

Let \overline{K} be ant type III semifield w.r.t. \overline{a} . Let $\overline{d} \in \overline{K} - \{\overline{a}\}$ be such that $\overline{a}x = \overline{d}x$ for all $x \in \overline{K}$ and let $i: S \longrightarrow \overline{K}$ be a monomorphism Then the following hold:

- 1) if there exists a y \in S such that $i(y) = \overline{d}$ but $f(x) = [(d_1, d_2)]$ for all x \in S, then there does not exist a monomorphism $g: K \longrightarrow \overline{K}$ such that gof = i.
- 2) if there exist y, u e S such that $y \neq u$ and $i(y) = \overline{d}$, $f(u) = [(d_1, d_2)] \text{ then there does not exist a monomorphism}$ $g: K \longrightarrow \overline{K} \text{ such that gof } = i.$
- 3) if there exists a u \in S such that $f(u) = [(d_1, d_2)]$ but $i(y) \neq \overline{d}$ for all $y \in$ S then there does not exist a monomorphism $g: K \longrightarrow \overline{K}$ such that $g \circ f = i$.
- 4) if $i(x) \neq \overline{d}$ and $f(x) \neq [(d_1, d_2)]$ for all $x \in S$ and $\frac{i(d_1)}{i(d_2)} \neq \overline{d}$ then there does not exist a monomorphism $g: K \longrightarrow \overline{K}$ such that $g \circ f = i$.
- 5) if $i(x) \neq \overline{d}$ and $f(x) \neq [(d_1, d_2)]$ for all $x \in S$ and $\overline{i(d_1)}$ = \overline{d} and \overline{K} is a full then there exists a unique monomorphism $g: K \longrightarrow \overline{K}$ such that $g \circ f = i$.
- 6) if there exists a $y \in S$ such that $i(y) = \overline{d}$ and $f(y) = [(d_1, d_2)]$ and \overline{K} is a full then there exists a unique monomorphism $g: K \longrightarrow \overline{K}$ such that gof = i.

<u>Proof.</u> Note that $i(x) \neq \overline{a}$ for all $x \in S$ since if there exists an $x \in S$ such that $i(x) = \overline{a}$ then $\overline{a} = i(x) = i(xa) = i(x)$ $i(x)i(a) = \overline{a}i(a)$, a contradiction. Similarly, if S is a Classification IV semiring then $i(x) \neq \overline{a}$ for all $x \in S$.

We shall prove the Classification III semiring case the Classification IV semiring is proven similarly.

- 1) Suppose not. Then $gof(y) = i(y) = \overline{d} = g([(d_1, d_2)])$ By Theorem 5.38, we have that $f(y) = [(d_1, d_2)]$, a contradiction.
- 2) Suppose not. Then $i(u) = gof(u) = g([(d_1, d_2)]) = \overline{d} = i(y)$. Hence u = y, a contradiction.
- 3) Suppose not. Then $i(u) = g(f(u)) = g([(d_1, d_2)]) = \overline{d}$, a contradiction.
- 4) Suppose not. Then $i(d_1) = g(f(d_1)) = g([(d_1,a)])$ and $i(d_2) = g(f(d_2)) = g([(d_2,a)])$. Hence $\frac{i(d_1)}{i(d_2)} = \frac{g([(d_1,a)])}{g([(d_2,a)])}$ = $g([(d_1,a)][(a,d_2)]) = g([(d_1,d_2)]) = \overline{d}$, a contradiction.
- 5) Define $g:K \longrightarrow \overline{K}$ as follows: for $d \in K \{a'\}$, Choose $(x,y) \notin d$. Define $g(d) = \frac{i(x)}{i(y)}$ and $g(a') = \overline{a}$. Using the same proof as in Theorem 5.22, we can show that g is well-defined and 1-1. To show that g is a homomorphism, let d, $p \in K$. Since \overline{K} is full, $\overline{a} + x = \overline{d} + x$ for all $x \in \overline{K}$.

 $\begin{aligned} &\underbrace{\text{Case 1}}. \quad d = \beta = a'. \\ &g(\mathbf{0} + \beta) = g(a' + a') = g([(d_1, d_2)] + [(d_1, d_2)]) = g([(d_1 d_2 + d_1 d_2, d_2 d_2)]) \\ &= \underbrace{\frac{i(d_1)}{i(d_2)}} + \underbrace{\frac{i(d_1)}{i(d_2)}} = \overline{d} + \overline{d} = \overline{a} + \overline{a} = g(\mathbf{0}) + g(\beta). \\ &g(d\beta) = g(a'a') = g([(d_1, d_2)][(d_1, d_2)]) = g([(d_1 d_1, d_2 d_2)]) = \underbrace{\frac{i(d_1)}{i(d_2)}} \underbrace{\frac{i(d_1)}{i(d_2)}} = \overline{d} = \overline{a} = g(\mathbf{0}) + g(\beta). \end{aligned}$

Case 2. $\alpha = a'$, $\beta \neq a'$. Choose $(z, w) \in \beta$. $g(\alpha + \beta) = g(a' + \beta) = g([(d_1, d_2)] + [(z, w)]) = g([(d_1w + d_2z, d_2w)]) = \frac{i(d_1)}{i(d_2)} + \frac{i(z)}{i(w)} = \overline{d} + \frac{i(z)}{i(w)} = \overline{a} + \frac{i(z)}{i(w)} = g(\alpha) + g(\beta).$ $g(\alpha \beta) = g(a' [(z, w)]) = g([(d_1, d_2)] [(z, w)]) = g([(d_1z, d_2w)]) = \frac{i(d_1)i(z)}{i(d_2)i(w)} = \overline{d}g(\beta) = \overline{a}g(\beta) = g(\alpha)g(\beta).$ Case 4. $\alpha \neq a'$, $\beta = a'$. The proof is similar to Case 2.

 $\frac{\text{Case }4}{\text{g}(\alpha+\beta)} = g([(xw+yz,yw)]) = \frac{i(xw+yz)}{i(yw)} = \frac{i(x)}{i(y)} + \frac{i(z)}{i(w)} = g(\alpha+\beta).$ $g(\alpha+\beta) = g([(xz,yw)]) = \frac{i(x)}{i(y)} + \frac{i(z)}{i(w)} = g(\alpha+\beta).$

To show that gof = i, let $x \in S$. Then $g(f(x)) = g([(x,a)]) = \frac{i(x)}{i(a)} = i(x)$. Thus gof = i. Using a similar to the one used before, we have a unique monomorphism $g: K \longrightarrow \overline{K}$ such that gof = i.

6) Since $f(y) = [(d_1, d_2)]$, $[(y, a)] = [(d_1, d_2)]$.

Hence $yd_2 = d_1$ so $i(y)i(d_2) = i(d_1)$ which implies that $\frac{i(d_1)}{i(d_2)} = i(y) = \overline{d}.$ By Case 5, there exists a unique monomorphism $g: K \longrightarrow \overline{K}$ such that gof = i.

Theorem 5.40. Let S be an M.C. Classification V semiring, let K be the type II semifield given by the construction and let $f:S \longrightarrow K$ be the embedding given by the construction. Let \overline{K} be any full type II semifield w.r.t. \overline{a} and $i:S \longrightarrow \overline{K}$ a monomorphism. Then there exists a unique monomorphism $g:K \longrightarrow \overline{K}$ such that gof = i.

<u>Proof.</u> Claim that $i(x) \neq \overline{a}$ for all $x \in S$. To prove this, suppose not. Let $x \in S$ be such that $i(x) = \overline{a}$.

Then $i(x) = \overline{a} = \overline{aa} = i(x)i(x)$. Hence x = xx. Since S is M.C., for all $y \in S$, xxy = xy which implies that xy = y.

Thus x is the identity of (S, \cdot) , a contradiction.

Let $a' \in K$ be such that $(K - \{a' \}, \cdot)$ is a group.

Define $g: K \longrightarrow \overline{K}$ as follows, for $d \in K - \{a' \}$, choose $(x,y) \in d$.

Define $g(d) = \frac{i(x)}{i(y)}$ and $g(a') = \overline{a}$. Using a proof similar to the one used in Theorem 5.34 (2), we get that g is the unique monomorphism such that gof = i.

Corollary 5.41. Let S be an M.C. Classification V semiring,

let K be the type II semifield given by the construction and

let f:S—K embedding given by the construction.

Let C_{5,2} be the category whose objects are either M.C.

Classification V semirings or full type II semifields and whose

mophisms are semiring homomorphisms. Then (S,f,K) is a quotient

semifield w.r.t. C_{5,2}.

Theorem 5.42. Let S be an M.C. Classification V semiring w.r.t. a and let K be the type III semifield w.r.t. a' given by the construction. Let $[(d_1,d_2)] \in K - \{a'\}$ be such that $a'd = [(d_1,d_2)]d$ and $a'+d = [(d_1,d_2)]+d$ for all $d \in K$ and let $f:S \longrightarrow K$ be the embedding given by the construction. Let \overline{K} be any type III semifield w.r.t. \overline{a} , let $\overline{d} \in \overline{K} - \{\overline{a}\}$ be such that $\overline{a}x = \overline{d}x$ for all $x \in \overline{K}$ and let $i:S \longrightarrow \overline{K}$ be a monomorphism. Then the following hold:

1) if there exists an $x \in S$ such that $i(x) = \overline{a}$ then $f(x) = \overline{a}$ then there does not exist a monomorphism $g: K \longrightarrow \overline{K}$ such that $g \circ f = i$.

Assume that $i(x) \neq \overline{a}$ for all $x \in S$.

- 2) if there exists a $y \in S$ such that $i(y) = \overline{d}$ and $f(x) \neq [(d_1, d_2)]$ for all $x \in S$ then there does not exists a monomorphism $g: K \longrightarrow \overline{K}$ such that $g \circ f = i$.
- 3) if there exists a $y \in S$ such that $i(y) = \overline{d}$ and there exists a $u \in S$ such that f(u) = [(d,d)] and $u \neq y$ then there does not exist a monomorphism $g: K \longrightarrow \overline{K}$ such that $g \circ f = i$.
- 4) if $i(y) \neq \overline{d}$ for all $y \in S$ and there exists a $u \in S$ such that $f(u) = [(d_1, d_2)]$ then there does not exists a monomorphism $g: K \to \overline{K}$ such that $g \circ f = i$.
- 5) if $i(y) \neq \overline{d}$ for all $y \in S$ and $f(y) \neq [(d_1, d_2)]$ for all $y \in S$ and $\frac{i(d_1)}{i(d_2)} \neq \overline{d}$ then there does not exists a monomorphism $g: K \to \overline{K}$ such that $g \circ f = i$.
- 6) if $i(y) \neq \overline{d}$ for all $y \in S$ and $f(y) \neq [(d_1, d_2)]$ for all $y \in S$ and $\frac{i(d_1)}{i(d_2)} = \overline{d}$ then there exists a unique monomorphism $g: K \longrightarrow \overline{K}$ such that $g \circ f = i$.
- 7) if there exists a $y \in S$ such that $i(y) = \overline{d}$ and $f(y) = [(d_1, d_2)]$ and \overline{K} is full then there exists a unique monomorphism $g: K \longrightarrow \overline{K}$ such that $g \circ f = i$.
- <u>Proof.</u> 1) Suppose not. Then $g(f(x)) = i(x) = \overline{a} = g(a')$ (by Theorem 5.38). Hence f(x) = a', a contradiction.
- 2),3),4),5),6),7) are proven in a similar way to the proofs in Theorem 5.39. #

Theorem 5.43. Let S be a Classification V semiring w.r.t. a such that a is not M.C. in S. If there exists a monomorphism $i:S \longrightarrow \overline{K}$ where \overline{K} is a type III semifield w.r.t. \overline{a} and $\overline{d} \in \overline{K} - \{\overline{a}\}$ is such that $\overline{a}x = \overline{d}x$ for all $x \in \overline{K}$ then either $i(a) = \overline{d}$ or $i(a) = \overline{a}$.

<u>Proof.</u> Let $d \in S - \{a\}$ be such that ax = dx for all $x \in S$. Suppose $i(a) \neq \overline{a}$ and $i(a) \neq \overline{d}$. Let \overline{e} be the identity of $(\overline{K} - \{\overline{a}\}, \bullet)$.

Case 1. There exists an $x \in S-\{a\}$ such that $i(x) = \overline{a}$.

Then $\overline{d}i(a) = \overline{a}i(a) = i(x)i(a) = i(xa) = i(xd) = i(x)i(d) = \overline{a}i(d) = \overline{d}i(d)$.

Hence $i(a) = \overline{e}i(d)$. If $i(d) \neq \overline{a}$ then i(a) = i(d) which implies that a = d, a contradiction. If i(d) = a then $i(a) = \overline{d}$, a contradiction.

Case 2. $i(x) \neq \overline{a}$ for all $x \in S$. Then i(a)i(a) = i(a)i(d). Hence a = d, a contradiction.

We shall give an example of Theorem 5.43.

Example 5.44. By Example 4.38, $S-\{1\}$ is a Classification V semiring w.r.t. a. Consider \mathbb{Q}^+ with the usual addition and multiplication. Let \overline{a} be a symbol not representing any element of \mathbb{Q}^+ . Extend + and from \mathbb{Q}^+ to $\overline{K} = \mathbb{Q}^+ \cup \{\overline{a}\}$ by $\overline{a}x = x\overline{a} = 2x$ for all $x \in \overline{K}$ and $\overline{a}+x = x+\overline{a} = 2+x$ for all $x \in \overline{K}$. Define $h:S-\{1\} \longrightarrow \overline{K}$ by $h(a) = \overline{a}$ and h(x) = x for all $x \in S-\{1,a\}$. Clearly h is a monomorphism. Define $h:S-\{1\} \longrightarrow \overline{K}$ by h(a) = 2, $h:S-\{1\} \longrightarrow \overline{K}$ by $h:S-\{1\} \longrightarrow \overline{K}$ by h:

Case 1. x = y = a. i(x+y) = i(a+a) = i(2+2) = 2+2=i(a)+i(a) = i(x)+i(y). $i(xy) = i(aa) = i(22) = 2\cdot2 = i(a)i(a)$.

Case 2. x= a, y ≠ a.

Subcase 2.1. y = 2. i(x+y) = i(a+2) = i(2+2) = 2+2 = 2+a = i(a)+i(2) = i(x)+i(y). $i(xy) = i(a2) = i(2\cdot2) = 2\cdot2 = 2a = i(a)i(2) = i(x)i(y)$.

Subcase 2.2. $y \neq 2$. i(x+y) = i(a+y) = i(2+y) = 2+y = i(a)+i(y) = i(x)+i(y).

i(xy) = i(2y) = 2y = i(a)i(y) = i(x)i(y).

Case 3. $x \neq a$, y = a. The proof is similar to the proof of Case 2. Case 4. $x \neq a$, $y \neq a$.

Subcase 4.1. x = y = 2. i(x+y) = i(2+2) = 2+2 = a+a = i(2)+i(2) = i(x)+i(y) $i(xy) = i(22) = 2\cdot 2 = aa = i(2)i(2) = i(x)i(y)$.

Subcase 4.2. x = 2, $y \neq 2$. i(x+y) = i(2+y) = 2+y = a+y = i(2)+i(y) = i(x)+i(y). i(xy) = i(2y) = 2y = ay = i(2)i(y) = i(x)i(y).

Subcase 4.3. $x \neq 2$, y = 2. The proof is similar to the proof of Subcase 4.2.

Subcase 4.4. $x \neq 2$, $y \neq 2$. Done.

Hence i is a monomorphism. #

We shall give an example showing that there exists a Classification V semiring S w.r.t. a such that a is not M.C. in S and for all $x,y \in S$, $x+y \neq a$ and the type III semifield K given by the construction in Theorem 5.11 is not the smallest

type III semifield containing S (i.e. it is possible that there exists a monomorphism i:S \longrightarrow K' where K' is a type III semifield but there does not exist a monomorphism g:K \longrightarrow K' such that gof = i).

Example 5.45. Since $(\mathbf{Z}^+ - \{1\}, \max, \bullet)$ is an M.C. semiring. Let a be a symbol not representing any element of $\mathbf{Z}^+ - \{1\}$. Extend + and • from $\mathbf{Z}^+ - \{1\}$ to $S = (\mathbf{Z}^+ - \{1\}) \cup \{a\}$ by $a\mathbf{x} = 2\mathbf{x}$ for all $\mathbf{x} \in S$ and $\mathbf{a} + \mathbf{x} = 2 + \mathbf{x}$ for all $\mathbf{x} \in S$. Then $(S, +, \bullet)$ is a Classification V semiring w.r.t. a such that a is not M.C. in S and for all $\mathbf{x}, \mathbf{y} \in S$ $\mathbf{x} + \mathbf{y} \neq a$. Let $\mathbf{K} = \mathbf{QR}(S - \{a\}) \cup \{a'\}$ where $\mathbf{d} + \mathbf{a}' = \mathbf{a}' + \mathbf{d} = [(4, 2)] + \mathbf{d}$ for all $\mathbf{d} \in K$ and $\mathbf{a}' \cdot \mathbf{d} = \mathbf{d} \cdot \mathbf{a}' = [(4, 2)] \cdot \mathbf{d}$ for all $\mathbf{d} \in K$ and $\mathbf{a}' \cdot \mathbf{d} = \mathbf{d} \cdot \mathbf{a}' = [(4, 2)] \cdot \mathbf{d}$ for all $\mathbf{d} \in K$. Then K is the type III semifield given by the construction. Since $(\mathbf{Q}^+, \max, \bullet)$ is a ratio semiring. Let \mathbf{a} be a symbol not representing any element of \mathbf{Q}^+ . Let $\mathbf{T} = \{\mathbf{x} \in \mathbf{Q}^+ \mid \mathbf{x} \notin \mathbf{1}\}$. Extend + and • from \mathbf{Q}^+ to $\mathbf{K} = \mathbf{Q}^+ \cup \{\mathbf{a} \mid \mathbf{b} \mathbf{y} \in \mathbf{K}\}$.

- (1) $x\bar{a} = \bar{a}x = 2x$ for all $x \in \bar{K}$
- (2) $\overline{a}+x = x+\overline{a} = \overline{a}$ for all $x \in \mathbb{T}$ $\overline{a}+x = x+\overline{a} = 2+x$ for all $x \in \mathbb{Q}^+ T$ $\overline{a}+\overline{a} = 2$

Then \overline{K} is a type III semifield. Define i:S $\longrightarrow \overline{K}$ by i(x) = x for all x \in S-{a} and i(a) = \overline{a} . Clearly i is 1-1. To show that i is a homomorphism, let x,y \in S.

Case 1. x = y = a. Then $i(a+a) = i(2+2) = i(2) = 2 = \overline{a} + \overline{a} = i(a) + i(a)$. $i(aa) = i(2\cdot 2) = 2\cdot 2 = \overline{aa} = i(a)i(a)$.

Case 2. x = a, $y \neq a$. Then i(a+y) = i(2+y) = 2+y = a+y = i(a)+i(y). i(ay) = i(2y) = 2y = ay = i(a)i(y). Case 3. $x \neq a$, y = a. The proof is similar to the proof of Case 2.

Case 4. $x \neq a, y \neq a$. i(x+y) = x+y = i(x)+i(y) and i(xy) = xy = i(x)i(y). Hence i is a homomorphism claim that there is not a monomorphism $g: K \longrightarrow \overline{K}$ such that gof = i.

To prove this suppose not. Then $\overline{a} = i(a) = gof(a) = g(a')$ 5 = i(5) = g(f(5)) = g([(10,2)]). 2 = g([(4,2)]) so $\overline{a} = \overline{a} + \frac{2}{5} = g(a') + g([(2,5)]) = g(a' + [(2,5)]) = g([(4,2)] + [(2,5)]) = g([(4,2)])$. Hence a' = [(4,2)], a contradiction. #

Theorem 5.46. Let S be a Classification V semiring w.r.t. a such that a is not M.C. in S and for all x,y \in S x+y \neq a. Let K be the type III semifield given by the construction and let f:S \rightarrow K be the embedding given by the construction. Let \overline{K} be any type III semifield w.r.t. \overline{a} and let $\overline{d} \in \overline{K} - \{\overline{a}\}$ be such that $\overline{a}x = \overline{d}x$ for all $x \in \overline{K}$ and let i:S $\rightarrow \overline{K}$ be a monomorphism. Then the following hold:

- 1) if $i(a) = \overline{d}$ then there is no monomorphism $g: K \longrightarrow \overline{K}$ such that gof = i.
- 2) if $i(a) = \overline{a}$ and \overline{K} is full then there exists a unique monomorphism $g:K \longrightarrow \overline{K}$ such that gof = i.

<u>Proof.</u> 1) Since $i(a) = \overline{d}$, $i(d) = \overline{a}$ (if $i(d) \neq \overline{a}$ then i(a)i(a) = i(a)i(d) which implies that a = d, a contradiction). Suppose that there exists a monomorphism $g:K \longrightarrow \overline{K}$ such that gof = i. Then $g(f(d)) = i(d) = \overline{a} = g(a')$ (by Theorem 5.38). Hence we have that f(d) = a', a contradiction.

2) Since $i(a) = \overline{a}$, i(d)i(d) = i(d)i(a) which implies that $i(d) = \overline{e}i(a) = \overline{e}\overline{a} = \overline{d}$. Define $g:K \longrightarrow \overline{K}$ as follows: for $\mathbf{d} \in K - \{a'\}$, choose $(x,y) \in \mathcal{A}$. Define $g(\mathcal{A}) = \frac{i(x)}{i(y)}$ and $g(a') = \overline{a}$. Using a proof similar to the one used in ...

Theorem 5.39 (5) (substitute f(d) for $[(d_1,d_2)]$ we get that g(d) is the unique monomorphism such that g(d) = i(d).

Corollary 5.47. Let S be a Classification V semiring w.r.t. a such that a is not M.C. in S and for all $x,y \in S$, $x+y \neq a$. Let K be the type III semifield w.r.t. a' given by the construction and let $f:S \rightarrow K$ be the embedding given by the construction. Let construction be the category whose objects are either pointed semirings (S^*,a^*) where S^* is a Classification V semiring w.r.t. a^* and a^* is not M.C. in S^* and for all $x,y \in S^*$, $x+y \neq a^*$ or pointed semifields $(\overline{K},\overline{a})$ where \overline{K} is a full type III semifield w.r.t. \overline{a} and whose morphisms are pointed semiring homomorphisms. Then $((S,a),f,(K,a^*))$ is a quotient semifield w.r.t. construction V

Theorem 5.48. Let S be a Classification V semiring w.r.t. a such that a is not M.C. in S. Let $d \in S - \{a\}$ be such that ax = dx for all $x \in S$. Assume that for all $u, v \in S$, $u+v \neq d$ and $uv \neq d$. If there exists a monomorphism $i:S \longrightarrow \overline{K}$ where \overline{K} is a type III semifield w.r.t. \overline{a} then $i(d) = \overline{a}$ or $i(d) = \overline{d}$ where $\overline{d} \in \overline{K} - \{\overline{a}\}$ is such that $\overline{a}x = \overline{d}x$ for all $x \in \overline{K}$.

<u>Proof.</u> Let \overline{e} be the identity of $(\overline{K} - {\overline{a}}, \cdot)$. Suppose $i(d) \neq \overline{d}$ and $i(d) \neq \overline{a}$.

Case 1. There exists an $x \in S - \{d\}$ such that $i(x) = \overline{a}$.

Then $\overline{d}i(d) = \overline{a}i(d) = i(xd) = i(xa) = i(x)i(a) = \overline{a}i(a) = \overline{d}i(a)$.

Hence $i(d) = \overline{e}i(a)$. If $i(a) \neq \overline{a}$ then i(d) = i(a), so a = d, a contradiction. If $i(a) = \overline{a}$ then $i(d) = \overline{e}i(a) = \overline{e}\overline{a} = \overline{d}$, a contradiction.

Case 2. $i(x) \neq a$ for all $x \in S$. Then i(a)i(a) = i(a)i(d).

Hence a = d, a contradiction.

Theorem 5.49. Let S be a Classification V semiring w.r.t. a such that a is not M.C. in S and there exist $x,y \in S-\{a\}$ such that x+y=a. Let $d \in S-\{a\}$ be such that ax=dx for all $x \in S$ and assume that for all $u,v \in S$, $u+v \neq d$ and $uv \neq d$. Let K be the type III semifield given by the construction and let $f:S \longrightarrow K$ be the embedding given by the construction. Let \overline{K} be any type III semifield w.r.t. \overline{a} and $i:S \longrightarrow \overline{K}$ a monomorphism. Then the following hold:

- (1) if $i(d) = \overline{d}$ then there is not monomorphism $g: K \to \overline{K}$ such that gof = i.
- (2) if $i(d) = \overline{a}$ and \overline{K} is full then there exists a unique monomorphism $g:K \longrightarrow \overline{K}$ such that gof = i.

<u>Proof.</u> 1) Since $i(d) = \overline{d}$ then $i(a) = \overline{a}$ (if $i(a) \neq \overline{a}$ then i(a)i(a) = i(a)i(d) which implies that a = d, a contradiction). Suppose there exists a monomorphism $g: K \longrightarrow \overline{K}$ such that gof = i. Then $g(f(a)) = i(a) = \overline{a} = g(a')$ (by Theorem 5.38). Hence f(a) = a' = f(d), so a = d, a contradiction.

2) Since $i(d) = \overline{a}$, i(a)i(a) = i(a)i(d)which implies that $i(a) = \overline{e}i(d) = \overline{e}a = \overline{d}$. Define $g:K \longrightarrow \overline{K}$ as follows: for $d \in K - \{a'\}$. choose $(x,y) \in d$. Define $g(C) = \frac{i(x)}{i(y)}$ and $g(a') = \overline{a}$. Using a proof similar to the one in Theorem 5.39

(5) (substitute f(a) for $[(d_1,d_2)]$) we get that g is the unique monomorphism such that $g \circ f = i$.