บทที่ 5

การประมวลผล

หลังจากทำการรังวัดดาวเทียมจีพีเอสแล้ว ขั้นตอนต่อไปคือการประมวลผล เพื่อนำผลที่ได้จาก การรังวัดดาวเทียมมาใช้งาน การประมวลผลของการรังวัดดาวเทียมจีพีเอส แบ่งออกเป็น การประมวลผล เส้นฐาน และ การประมวลผลโครงข่าย

5.1 <u>การประมวลผลเส้นฐาน</u>

เป็นการนำเอาข้อมูลการรังวัดดาวเทียม ที่รังวัดด้วยวิธีวัดเฟส และ ตั้งเครื่องรับแบบ STATIC มา ประมวลผลเพื่อหาความยาวเส้นฐาน โดยใช้โปรแกรม TRIMVEC-PLUS ของบริษัท TRIMBLE เป็น โปรแกรมที่บริษัทผู้แทนจำหน่ายเครื่องรับสัญญาณดาวเทียม ให้มาพร้อมกับเครื่องรับ โดยมีข้อกำหนดให้ ใช้บนเครื่องไมโครคอมพิวเตอร์ IBM COMPATIBLE PC COMPUTERS ที่มี HARD DISK อย่างน้อย 40 MEGABYTES หน่วยความจำหลักอย่างน้อย 640 KB. และ สมควรมี MATH COPROCESSOR ด้วย เพื่อ เพิ่มความเร็วในการประมวลผล Trimble navigation (1991) ได้แสดงขั้นตอนการประมวลผลเส้นฐานไว้ดังนี้

5.1.1 เริ่มการประมวลผลเส้นฐาน โดยการเลือกโปรแกรมย่อย 4000 ของโปรแกรมหลัก TRIMVEC จะปรากฏ เมนูการประมวลผลเส้นฐาน บนหน้าจอ ดังรูป 5.1

TRIMBLE NAVIGATION	MODEL 4000S SURVEY SUPPORT
PROCESSING OPTIONS 1:AUTOMATIC Processing 3:Results for All Solutions 5:FIXED,OPTIMUM Solution Results 7:TRIPLE Solution Results	2:SINGLE Baseline Processing 4:MULTI Baseline Processing 6:FLOAT Solution Results
Input option number or use arrow keys t	hen ENTER

รูป 5.1 เมนูการประมวลผลเส้นฐาน

5.1.2 จากเมนูตามรูป 5.1 จะมีการประมวลผลเส้นฐานชนิดต่างๆให้เลือก เลือกข้อ 1. AUTOMATIC Processing ซึ่งเป็นการประมวลผลเส้นฐานที่ง่ายที่สุด หลังจากเลือกข้อ 1. หน้าจอจะเปลี่ยน ไปเป็น เมนูการประมวลผลแบบ AUTOMATIC ดังรูป 5.2

Batch Processing Utility Version 91.091					
Data Directory : c:\tnl\data\proj\nai Output Directory : c:\tnl\data\proj\nai	Data Directory : c:\tnl\data\proj\namyuam\rawgps Output Directory : c:\tnl\data\proj\namyuam\trimvec				
Pseudo Range Processing : NO [NO,YES] Antenna Correction : NONE [Use spacebar to toggle antenna types or press F9 to select from a list]					
Name Generation: Last [First,Full,Last,NoNames]					
Baseline Processor : MBP-Si	ngle [MBP-Single,MBP-Multi,640-Single]				
Display Computations : Yes	[No,Yes]				
Quality Summary:: Yes [No,Yes]					
Esc - Quit F1 - He Space - Toggle Options F2 - Dir	elp F10 - Begin Processing ectory info				

รูป 5.2 เมนูการประมวลผลแบบ AUTOMATIC

จากรูป 5.2 จะให้เราใส่ข้อมูล และ เลือกข้อกำหนดในการประมวลผลเส้นฐานดังนี้

Data Directory ใส่ Drive และ Directory ที่เก็บข้อมูลจากการรังวัดดาวเทียม

Output Directory ใส่ Drive และ Directory ที่ต้องการเก็บผลของการประมวลผล

Pseudo Range Processing เป็นการเลือกการประมวลผลด้วยวิธี Pseudo Range ก่อนเพื่อเพิ่ม ความถูกต้องของพิกัดที่ประมวลผลได้จากการประมวลผลเส้นฐาน เป็นข้อให้เลือก ในที่นี้ไม่จำเป็นเนื่อง จากต้องนำผลจากการประมวลผลเส้นฐาน ไปประมวลผลโครงข่ายและปรับแก้อีกครั้ง

Antenna Correction เลือก Antenna ที่ใช้ในการรังวัดดาวเทียม เพื่อทอนค่าความสูงที่ได้เป็น ความสูงที่หมุดหลักฐาน

Baseline Processor เลือก MBP-Single เพื่อทำการประมวลผลเส้นฐานทุกเส้นที่มีอยู่ใน Session นั้น ทำให้เราสามารถเลือกเส้นฐานที่เป็นอิสระต่อกันเส้นใดก็ได้ใน Session นำมาประมวลผลโครง ข่าย

Name Generation เลือกชื่อเส้นฐานที่ประมวลผลได้เป็น 2 ตัวสุดท้ายของชื่อหมุดหลักฐาน และ Session ทั้งหมดมี 8 ตัว

Coordinate Seeding เป็นการกำหนดค่า Coordinate ให้กับหมุดหลักฐาน เพื่อคำนวณค่าพิกัด ของหมุดหลักฐานอื่นๆ

> Display Computations เลือกแสดงรายการคำนวณบนหน้าจอ ระหว่างประมวลผล หรือไม่ Quality Summary แสดงผลลัพธ์เมื่อสิ้นสุดการประมวลผลเส้นฐาน ซึ่งประกอบด้วย

Session	เป็น Session ของเส้นฐานที่ทำการประมวลผล
From/To station	ชื่อหมุดหลักฐานทั้ง 2 ปลายของเส้นฐาน
Ratio	Quality of fix solution
RMS	Goodness of fit
RDOP	Index of satellite geometry and observation
Length	ความยาวเส้นฐาน

ข้อมูลเหล่านี้จะแสดงเมื่อการประมวลผลสิ้นสุดลง และ จะเก็บอยู่ในไฟล์ชื่อ BL.SUM เมื่อ ต้องการดูรายละเอียด ข้อมูลการรังวัดดาวเทียมและการแก้ไขข้อมูล ให้กด F2 หน้าจอจะเปลี่ยนไปเป็น เมนูแสดงรายละเอียดและการแก้ไขข้อมูลเส้นฐาน ดังรูป 5.3

> 5.1.3 ดูรายละเอียดข้อมูลจากดาวเทียม และ แก้ไขข้อมูลต่างๆ ตามรูป 5.3 ดังนี้ Data Directory แสดง Drive และ Directory ที่เก็บข้อมูล

Session แสดง Session ที่ทำการรังวัดดาวเทียมจีพีเอส และ หมุดหลักฐานที่ตั้งเครื่อง รับสัญญาณดาวเทียม

> Message file คือไฟล์ที่เก็บรายละเอียดการรังวัดดาวเทียมจีพีเอสที่หมุดหลักฐานนั้นๆ Ignore Station การเลือกหมุดหลักฐานบางหมุดที่ไม่ต้องการประมวลผลเส้นฐาน

Mark as Station 1 เลือกหมุดหลักฐานหมุดนั้นเป็นหมุดควบคุมหลักที่ทราบพิกัดแน่นอน ใช้ ในการประมวลผล หาค่าพิกัดของปลายอีกด้านหนึ่งของเส้นฐาน ในที่นี้ไม่จำเป็น เพราะต้องนำไปประมวล ผลโครงข่ายเพื่อปรับแก้ และ หาพิกัดที่แน่นอนอีกครั้งหนึ่ง

รูป 5.3 เมนูแสดงรายละเอียด และ การแก้ไขข้อมูลเส้นฐาน

Edit Station Info แก้ไขรายละเอียดต่างๆของหมุดหลักฐานที่ใส่ข้อมูลผิด หรือ ที่ต้องการ แก้ไข เช่น ชื่อหมุดหลักฐาน,ความสูง Antenna,ค่าแก้ของ Antenna,ค่าละติจูด,ค่าลองจิจูด และ ค่าความสูง เหนือทรงรี

Edit Session Control แก้ไขรายละเอียดต่างๆใน SESSION เช่น เวลาเริ่ม เวลาหยุด เมื่อเรา ทราบเวลาที่เริ่มต้น และ เวลาที่หยุดรับสัญญานจากดาวเทียมที่แท้จริง ของเครื่องรับทุกๆเครื่องใน SESSION เราก็สามารถกำหนดการประมวลผลเส้นฐาน โดยใช้เวลาเริ่มต้น และ เวลาหยุด พร้อมกันทุก เครื่อง เป็นการประหยัดเวลาการประมวลผลในส่วนที่รับข้อมูลจากดาวเทียมที่ไม่พร้อมกัน

Ignore Session เป็นการเลือก Session บาง Session ให้ไม่ต้องประมวลผล

5.1.4 เมื่อแก้ไขรายละเอียดต่างๆทั้งหมดแล้ว ให้กดF10 เพื่อยอมรับที่ข้อมูลที่ทำการแก้ไข แล้วทั้งหมด หน้าจอจะกลับมายังรูป 5.2 อีกครั้งหนึ่ง กด F10 อีกครั้งเพื่อทำการประมวลผลเส้นฐาน ผลลัพธ์การประมวลผลเส้นฐานจะมี 3 ชนิด คือ

- A TRIPLE DIFFERENCE SOLUTION เหมาะสำหรับเส้นฐานขนาดยาว มีระยะทางตั้งแต่ 50 กม.ขึ้นไป - A DOUBLE DIFFERENCE FLOAT SOLUTION เหมาะสำหรับเส้นฐานขนาดกลาง ระยะทาง ระหว่าง 20-50 กม.

- A DOUBLE DIFFERENCE FIXED SOLUTION เหมาะสำหรับเส้นฐานขนาดสั้น มีระยะทาง ตั้งแต่ 20 กม.ลงมา

เมื่อประมวลผลเส้นฐานเสร็จ หน้าจอจะปรากฏผลลัพธ์ดังรูป 5.4 ซึ่งอยู่ใน FILE BL.SUM

Session	From	TO	rms	rdop	ratio	distance(m)	ah1(m)	ah2(m)
210-0	MB04	MB05	0.036	0.035	7.160	2436.618	1.467	1.529
210-0	MB04	MB07	0.030	0.037	8.460	1188.412	1.467	1.449
210-0	MB05	MB07	0.027	0.034	34.120	1258.142	1.529	1.449

รูป 5.4 ผลลัพธ์การประมวลผลเส้นฐาน

จากรูป 5.4 ซึ่งแสดงผลลัพธ์การประมวลผลเส้นฐาน เราสามารถดูคุณภาพของเส้นฐาน ที่ประมวลผลได้จาก rms , rdop และ ratio ซึ่ง ratio จะแสดงผลให้เฉพาะเส้นฐานชนิด A DOUBLE DIFFERENCE FIXED SOLUTION ค่าของ ratio ยิ่งมากความน่าเชื่อถือในคุณภาพของเส้นฐานยิ่งมากส่วน rms และ rdop มีค่ายิ่งน้อยคุณภาพของเส้นฐานยิ่งมาก Trimble navigation (1991) ได้แสดงค่า ratio และ rms ที่เหมาะสมของความยาวเส้นฐานในระยะทางต่างๆ ไว้ดังตารางที่ 5.1

Distance (Km.)	Ratio	RMS Criteria	RMS Range
0 - 10	3.0	0.02 + (0.004 *L)	0.02 - 0.06
10 - 20	2.8	0.03 + (0.003 *L)	0.06 - 0.09
20 - 30	2.6	0.04 + (0.0025*L)	0.09 - 0.115
30 - 40	2.4	0.04 + (0.0025*L)	0.115- 0.14
40 - 60	2.2	0.08 + (0.0015*L)	0.14 - 0.17
60 -100	2.2	0.17	0.17
>100	2.2	0.20	0.20

ตารางที่ 5.1 RATIO และ RMS ตามความยาวเส้นฐาน

L = ความยาวเส้นฐานหน่วยเป็นกิโลเมตร

เส้นฐานที่ประมวลผลได้อยู่ในรูป 3 มิติ เป็นVECTOR โดยบอกค่าเป็น ความยาวเส้นฐาน ตามรูปทรงรี (ELLIPSOID DISTANCE) มุมภาคทิศเหนือจริง (NORMAL AZIMUTH) และ ค่าต่างความสูง (DELTA HEIGHT) เมื่อต้องการค่าตำแหน่ง และ ความสูง ที่มีความถูกต้องมากยิ่งขึ้นสามารถทำได้โดยนำ เส้นฐานที่ประมวลผลได้ทั้งหมด มาประมวลผลโครงข่าย ซึ่งจะมีการปรับแก้ด้วยวิธี LEAST SQUARES ADJUSTMENT ทำให้ผลลัพธ์ที่ได้มีความถูกต้องมากยิ่งขึ้น

5.2 <u>การประมวลผลโครงข่าย</u>

เมื่อสิ้นสุดการประมวลผลเส้นฐาน ต่อไปเป็นการนำเส้นฐานที่ประมวลผลได้นั้น มาประมวลผล โครงข่ายเพื่อให้ได้ผลลัพธ์เป็นค่าพิกัดและความสูง ที่มีความถูกต้องและมีความเชื่อมั่นได้สูง เนื่องจาก ได้ นำเอาเส้นฐานทั้งหมดมาโยงยึดเป็นโครงข่าย และยังปรับแก้ด้วยวิธี LEAST SQUARES ADJUSTMENT การประมวลผลโครงข่ายนี้จะใช้โปรแกรม TRIMNET ซึ่งเป็นส่วนหนึ่งของโปรแกรม TRIMVEC PLUS

ก่อนจะใช้โปรแกรม TRIMNET ต้องนำผลลัพธ์การประมวลผลเส้นฐานทั้งหมด เก็บเข้าไว้ใน DIRECTORY TRIMVEC เสียก่อน ในที่นี้คือ C:\TNL\DATA\PROJ\NAMYUAM\TRIMVEC จากนั้นจึงเรียก โปรแกรม ประมวลผลโครงข่าย TRIMNET มีขั้นตอนดังต่อไปนี้

5.2.1 เรียกโปรแกรม TRIMNET หน้าจอจะเปลี่ยนไปเป็น ดังรูป 5.5 เพื่อให้ใส่ชื่อผู้ใช้งาน หรือจะไม่ใส่ก็ได้

รูป 5.5 เมนูโปรแกรม TRIMNET

5.2.2 ใส่ชื่อผู้ใช้งานแล้วกด ENTER หน้าจอจะเปลี่ยนไปเป็นรูป 5.6 ซึ่งเป็นเมนูหลักของ โปรแกรม TRIMNET เรียกว่า CONTROL MODULE มีรายละเอียดต่างๆดังนี้

View Project Index เป็นการดู Project ต่างๆที่มีอยู่ในหน่วยความจำ

Access Project Index เป็นการดูรายละเอียดของ Project ต่างๆ

Choose Active Project เป็นการเลือก Project ที่ต้องการนำมาประมวลผลโครงข่าย ในที่นี้ เราเลือก Project Namyuam

GPS Network Module เป็นส่วนที่นำเอาผลลัพธ์ของการประมวลผลเส้นฐาน มาสร้างโครง ข่าย และเพิ่มลดเส้นฐาน รวมทั้งการแก้ไขต่างๆ

Network Adjustment Module เป็นส่วนของการปรับแก้ โดยนำเอาโครงข่ายที่สร้างขึ้นจาก ส่วนของ GPS Network Module มาทำการประมวลผลและปรับแก้โครงข่าย โดยผลลัพธ์ที่ได้จะเป็นค่า ตำแหน่งพิกัดทางราบ และ ค่าความสูง

Exit ออกกลับไปสู่ที่เดิม

5.2.3 เลือก Project ที่ต้องการประมวลผลโครงข่ายจาก Choose Active Project จากนั้นจึง เลือกเข้าสู่ GPS Network Module หน้าจอจะเปลี่ยนไปเป็นรูป 5.7 ซึ่งเป็นเมนูหลักของส่วน GPS Network Module ซึ่งในครั้งแรกนี้จะไม่มีเส้นฐานที่ถูกเรียกมาสร้างโครงข่ายอยู่เลย เนื่องจากยังไม่มีการสร้างโครง ข่าย ต้องทำการสร้างโครงข่ายเสียก่อน

รูป 5.7 The GPS Network Module Main Menu Before Load GPS Vectors

5.2.3.1 ทำการสร้างโครงข่ายโดยการเลือกข้อ Build Network from TRIMVEC Directory หน้าจอจะเปลี่ยนไปเป็นแผนที่โครงข่ายที่สร้างจากเส้นฐานดังรูป 5.9

รูป 5.8 THE GPS Network Module Main Menu After Load GPS Vectors

View Contents of TRIMVEC Directory เป็นการดูเส้นฐานที่มีอยู่ใน TRIMVEC

Directory

View Vectors เป็นการดูรายละเอียดของแต่ละเส้นฐาน แสดงชื่อเส้นฐาน หมุด เริ่มต้น หมุดสุดท้าย มุมภาคทิศเหนือจริง ระยะทางระหว่างหมุดบนทรงรี ค่าต่างความสูง และ ค่าส่วน เบี่ยงเบนมาตราฐานของค่าต่างๆ

Summarize Network เป็นการแสดงชื่อ Session,Station,Redundant Vectors,Global Network Closures

> Edit Network เป็นการเพิ่มลดเส้นฐาน แก้ไขชื่อ Session และ Station Network Adjustment เป็นส่วนของการปรับแก้โครงข่าย Save GPS Network to Disk เป็นการเก็บข้อมูลของโครงข่ายลงบนแผ่น Disk

View Map of GPS Vectors เป็นการแสดงแผนที่โครงข่ายของเส้นฐาน ดังรูป 5.9 View TRIMVEC File เป็นการดูรายละเอียดเส้นฐาน

5.2.4 หลังจากสร้างโครงข่าย และ แก้ไขข้อมูลต่างๆของเส้นฐานเรียบร้อยแล้ว ต่อไปก็จะ เป็นส่วนของ Network Adjustment โดยจากรูป 5.8 เลือกหัวข้อ Network Adjustment หน้าจอจะเปลี่ยนเป็น ส่วนของ Network Adjustment Module ดังรูป 5.10 ซึ่งมีรายละเอียดดังนี้

ฐป 5.10 The Network Adjustment Module

Displays เป็นการแสดงค่าตำแหน่งพิกัดทางราบและค่าความสูง ก่อนปรับแก้และหลังปรับ แก้โครงข่าย ค่าที่ได้จากการรังวัดดาวเทียมทั้งหมด ผลลัพธ์ของการปรับแก้โครงข่าย แผนที่โครงข่ายตาม เส้นฐาน การพิมพ์รูปแผนที่โครงข่าย และ รูป Error Ellipses

Adjustment Menu เป็นการปรับแก้โครงข่าย

Change Coordinate System เป็นการเปลี่ยนระบบพิกัดอ้างอิง ในตอนแรกที่ปรากฏจะเป็น ระบบ GEOGRAPHIC หรือที่เราเรียกว่า ระบบ GEODETIC COORDINATE SYSTEM ซึ่งสามารถทำการ เปลี่ยนเป็นระบบอื่นๆได้ เช่น ระบบ UTM LAMBERT NAD-83 NAD-27 ฯลฯ

Datum Definition เป็นการเพิ่ม ลด หรือ ดูรายละเอียด ของพื้นหลักฐานอ้างอิง และสามารถ เปลี่ยนแปลงพื้นหลักฐานอ้างอิงได้ เช่น WGS-84 WGS-72 NAD-83 INDIAN 1975 ฯลฯ

Data Utilities เป็นการแก้ไขข้อมูล ตำแหน่งทางราบ และ ค่าความสูง ของหมุดหลักฐานที่ ได้จากการประมวลผลเส้นฐาน

Data Base Connection เป็นการเปลี่ยนแปลงชื่อหมุดหลักฐาน จากการรังวัดดาวเทียมใน สนาม ไปสู่ชื่อในระบบที่ใช้งานจริงๆ

Save Network to Disk เป็นการเก็บข้อมูลต่างๆทั้งหมดลงแผ่น DISK

GPS Module กลับไปสู่ GPS Network Module ตามรูปที่ 5.8

เมื่อเข้าสู่ Network Adjustment Module ในตอนแรกค่าพิกัดทางราบ และ ค่าความสูงจะเป็น ค่าที่ยังไม่ปรับแก้โครงข่าย เป็นค่าที่ได้จากการประมวลผลเส้นฐาน การจะปรับแก้โครงข่ายจะต้องเลือก หัวข้อ Adjustment Menu จากหน้าจอตามรูปที่ 5.10

5.2.4.1 เลือก Adjustment Menu เพื่อทำการปรับแก้โครงข่าย หน้าจอจะเปลี่ยนไป เป็นเมนู ADJUSTMENT ตามรูป 5.11 ซึ่งมีรายละเอียดดังนี้

MAIN MENU	NETWORK ADJUST	MENT MODULE
Dis Adjust Change Coo Datum Data Data Base Save Net GPS	ADJUSTMENT MENU Adjust Network Coordinate Fix Status Observation Disable/Enable Compute Observation Closures Weighting Strategy Transformation Strategy Special Controls Exit	S ed
ESC = II = MOVE]

รูป 5.11 Adjustment Menu

Adjust Network เป็นการปรับแก้โครงข่ายตามข้อมูลเส้นฐานที่มีอยู่ และ ตามค่า พิกัดทางราบ ค่าความสูง ของหมุดควบคุมหลัก ซึ่งจะมีค่าคงที่

Coordinate Fix Status เป็นการกำหนดค่าพิกัดทางราบ และ ค่าความสูงของหมุด ควบคุมหลัก ให้มีค่าคงที่

Observation Disable/Enable เป็นการเลือกค่ารังวัดว่าค่าใด ต้องการใช้หรือไม่ในการ ปรับแก้ และ ประมวลผลโครงข่าย

Compute Observation Closures เป็นการคำนวณผลลัพธ์วงรอบปิดของโครงข่าย Weighting Strategy เป็นการให้น้ำหนักความเชื่อมั่นแก่ข้อมูลการรังวัดดาวเทียม Transformation Strategy เป็นการเลือกใช้หรือไม่ใช้ค่า PARAMETER สำหรับการ แปลงค่าระบบต่างๆ ในการปรับแก้โครงข่าย PARAMETER เหล่านั้นมี 7 ตัวคือ

- AZIMUTH ROTATION

- DEFLECTION IN LATITUDE
- DEFLECTION IN LONGITUDE
- SCALE
- TRANSLATION IN HEIGHT
- TRANSLATION IN LONGITUDE
- TRANSLATION IN LATITUDE

Special Controls เป็นการให้โปรแกรมแสดงค่า,ภาพ และสามารถกำหนดค่าต่างๆ ตามหมุดหลักฐานใดๆ หรือ ทั้งหมด ได้ตามต้องการ ดังนี้

- แสดงภาพ GRAPHIC ของผลลัพธ์การปรับแก้บนหน้าจอ
- เขียน ERROR ELLIPSES ลง FILE
- เขียน HISTOGRAM ลง FILE
- แสดงค่าความแปรปรวน ของผลลัพธ์
- พิมพ์ค่าการปรับแก้ทั้งหมดออกทางเครื่องพิมพ์
- เขียนแผนที่โครงข่ายลง PLOTTER FILE
- เขียน ERROR ELLIPSES ลง PLOTTER FILE
- คำนวณปรับแก้โครงข่ายทางราบ
- คำนวณปรับแก้โครงข่ายทางดิ่ง(ความสูง)
- บันทึกข้อมูลการปรับแก้โครงข่ายก่อนเลิกทำงาน
- กำหนดค่า UNIVARIATE SIGMA SCALAR
- กำหนดค่า BIVARIATE SIGMA SCALAR

STA	ELEV.(LEVELLING)	ELEV.(GPS.)	DIFF	REMARKS
0776	214.335	184.262	-30.073	
0NGD	299.779	269.879	-29.900	
1132	1073.518	1044.453	-29.065	
1133	1117.841	1088.500	-29.341	
1136	208.603	178.540	-30.063	
BMH8	197.135	167.040	-30.095	
BMN4	167.599	137.709	-29.890	
DSLK	693.053	662.508	-30.545	
MB01	212.660	182.599	-30.061	
MB02	208.980	178.903	-30.077	
MB03	196.693	166.644	-30.049	
MB04	170.629	140.564	-30.065	
MB05	241.764	211.787	-29.977	
MB06	161.542	131.496	-30.046	
MB07	158.412	128.388	-30.024	
MB08	164.114	134.150	-29.964	
MB09	145.003	115.075	-29.928	
MB11	696.688	666.129	-30.559	
NYP1	214.382	184.324	-30.058	
NYP2	77.956	47.025	-30.931	
		MEAN	-30.036	
		SD.	0.386	

ตารางที่ 5.2 เปรียบเทียบค่าระดับความสูงที่ได้จากการเดินระดับและจากการรังวัดดาวเทียม โดยไม่มีหมุดควบคุมทางดิ่งหลัก

- กำหนดจำนวนรอบสูงสุดที่ใช้ในการปรับแก้

กำหนดค่าคลาดเคลื่อนที่ยอมรับ เพื่อหยุดการคำนวณการปรับแก้โครงข่าย
5.2.4.2 เมื่อกำหนดค่าต่างที่ต้องการในการปรับแก้โครงข่ายเรียบร้อยแล้ว ต่อไปก็
จะเป็นการปรับแก้โครงข่าย ในการปรับแก้โครงข่ายชั้นต้น จะยังไม่ใส่ค่าความสูงของหมุดควบคุมทางดิ่ง
หลัก เพียงแต่ทำการปรับแก้โครงข่ายโดยใช้ข้อมูลเส้นฐาน ที่ได้จากการรังวัดดาวเทียมเท่านั้น จากนั้น
เลือกขั้นตอน Adjust Network จากหน้าจอ รูป 5.11 ผลจากการประมวลผลโครงข่าย ค่าระดับความสูงของ
หมุดหลักฐานที่ได้จะแตกต่างกับค่าระดับความสูงจากการทำระดับ ดังแสดงไว้ตาม ตารางที่ 5.2

ELEV.(LEVELLING) เป็นค่าระดับความสูงจากการเดินระดับด้วยเกณฑ์ชั้น 3 ELEV.(GPS.) เป็นค่าระดับความสูงที่ได้จากการรังวัดดาวเทียมจีพีเอส

จากตารางที่ 5.2 ค่าระดับความสูงจากการรังวัดดาวเทียมจีพีเอส เป็นค่าระดับที่ ประมวลผลได้โดยไม่มีหมุดควบคุมทางดิ่งหลักอยู่เลย ค่าระดับที่ได้จึงเป็นค่าระดับเหนือทรงรี ทำให้แตก ต่างจากค่าระดับที่ได้จากการเดินระดับซึ่งเป็นค่าระดับเหนือยีออยมากประมาณ 30 เมตร ซึ่งยังไม่สามารถ นำค่าระดับจากการรังวัดดาวเทียมมาใช้งานได้

5.2.4.3 กำหนดค่าระดับความสูงให้กับหมุดควบคุมทางดิ่งหลัก โดยจากรูป 5.11 เลือก ข้อCoordinate Fix Status ใส่ค่าระดับที่ได้จากการเดินระดับให้กับหมุดหลักฐาน 1136 หนึ่งหมุด และ กำหนดให้มีค่าระดับคงที่ จากนั้นจึงทำการปรับแก้โครงข่ายอีกครั้ง โดยเลือกข้อ Adjust Network จากหน้า จอรูป 5.11 ผลลัพธ์จากการประมวลผลเมื่อกำหนดให้มีหมุดควบคุมหลักทางดิ่งหนึ่งตัว แสดงดังตารางที่ 5.3 การให้หมุดควบคุมทางดิ่งหลักหนึ่งหมุด มีค่าระดับคงที่เท่ากับที่ได้จากการเดินระดับเปรียบเสมือน เป็นการดึงทรงรีมาแตะยีออยที่จุดนั้น ในขณะที่จุดอื่นๆก็ถูกดึงลงมาด้วยความสูงเท่ากัน

จากตารางที่ 5.3 ค่าแตกต่างระหว่าง ค่าระดับที่ได้จากการเดินระดับ และ ค่าระดับ ที่ได้จากรังวัดดาวเทียมจีพีเอส จะลดลงมาก ค่าแตกต่างสูงสุดคือ 0.998 เมตร เนื่องจากมีค่าระดับของ หมุดหมุดควบคุมทางดิ่งหลัก มาช่วยเป็นค่าระดับคงที่ในการประมวลผล แต่ค่าแตกต่างก็ยังมีค่ามากอยู่

5.2.4.4 ทำการปรับแก้โครงข่ายอีกครั้ง โดยเพิ่มหมุดควบคุมทางดิ่งหลักอีก 3 หมุด ให้กระจายอยู่ รอบขอบโครงข่าย เลือกหัวข้อ Coordinate Fix Status จากรูป 5.11 ใส่ค่าระดับที่ได้จากการ เดินระดับ เพิ่มให้กับหมุด 1132 หมุด BMN4 และ หมุด NYP2 กำหนดให้หมุดเหล่านี้มีค่าระดับคงที่ ทำ การปรับแก้โครงข่ายอีกครั้งโดยเลือกหัวข้อ Adjust Network จากหน้าจอรูป 5.11 ผลลัพธ์จากการประมวล ผลเมื่อกำหนดให้มีหมุดควบคุมทางดิ่งหลัก 4 ตัว แสดงดังตารางที่ 5.4 การเพิ่มหมุดควบคุมทางดิ่งหลัก เป็นทั้งหมด 4 หมุด เปรียบเสมือนเป็นการกดทรงรีทั้ง 4 จุดให้แตะกับยีออย ทำให้รูปร่างของทรงรีภายใน จุดทั้ง 4 เปลี่ยนไปแนบสนิทกับยีออยมากขึ้น

จากตารางที่ 5.4 ค่าแตกต่างระหว่าง ค่าระดับจากการเดินระดับ และค่าระดับจาก การรังวัดดาวเทียมมีค่าน้อยลง ค่าแตกต่างมากที่สุดเหลือเพียง 0.091 เมตร เนื่องจากมีหมุดควบคุมทาง

STA	ELEV.(LEVELLING)	ELEV.(GPS.)	DIFF	REMARKS
0776	214.335	214.325	-0.010	
ONGD	299.779	299.941	+0.162	
1132	1073.518	1074.516	+0.998	
1133	1117.841	1118.563	+0.722	
1136	208.603	208.603	-	FIX
BMH8	197.135	197.103	-0.032	
BMN4	167.599	167.772	+0.173	
DSLK	693.053	692.571	-0.482	
MB01	212.660	212.662	+0.002	
MB02	208.980	208.966	-0.014	
MB03	196.693	196.707	+0.014	
MB04	170.629	170.627	-0.002	
MB05	241.764	241.850	+0.086	
MB06	161.542	161.559	+0.017	
MB07	158.412	158.451	+0.039	
MB08	164.114	164.213	+0.099	
MB09	145.003	145.138	+0.135	
MB11	696.688	696.192	-0.496	
NYP1	214.382	214.386	+0.004	
NYP2	77.956	77.087	-0.869	
		MEAN	+0.029	
		SD.	0.397	

ตารางที่ 5.3 เปรียบเทียบค่าระดับความสูงที่ได้จากการเดินระดับและจากการรังวัดดาวเทียม โดยมีหมุดควบคุมทางดิ่งหลักที่หมุด 1136

STA	ELEV.(LEVELLING)	ELEV.(GPS.)	DIFF	REMARKS
0776	214.335	214.315	-0.020	
ONGD	299.779	299.783	+0.004	
1132	1073.518	1073.518	-	FIX
1133	1117.841	1117.795	-0.046	
1136	208.603	208.603	-	FIX
BMH8	197.135	197.141	+0.006	
BMN4	167.599	167.599	-	FIX
DSLK	693.053	693.114	+0.061	
MB01	212.660	212.627	-0.033	
MB02	208.980	208.993	+0.013	
MB03	196.693	196.769	+0.076	
MB04	170.629	170.659	+0.030	
MB05	241.764	241.819	+0.055	
MB06	161.542	161.633	+0.091	- ··· ··
MB07	158.412	158.457	+0.045	
MB08	164.114	164.125	+0.011	
MB09	145.003	145.039	+0.036	
MB11	696.688	696.746	+0.058	
NYP1	214.382	214.365	-0.017	
NYP2	77.956	77.956	-	FIX
		MEAN	+0.023	
		SD.	0.040	

ตารางที่ 5.4 เปรียบเทียบค่าระดับความสูงที่ได้จากการเดินระดับและจากการรังวัดดาวเทียม โดยมีหมุดควบคุมทางดิ่งหลัก 4 ตัว ที่หมุด 1132, 1136, BMN4 และNYP2

STA	ELEV.(LEVELLING)	ELEV.(GPS.)	DIFF	REMARKS
0776	214.335	214.316	-0.019	
ONGD	299.779	299.768	-0.011	
1132	1073.518	1073.518	-	FIX
1133	1117.841	1117.799	-0.042	
1136	208.603	208.603	-	FIX
BMH8	197.135	197.124	-0.011	
BMN4	167.599	167.599	-	FIX
DSLK	693.053	693.100	+0.047	
MB01	212.660	212.620	-0.040	
MB02	208.980	208.971	-0.009	
MB03	196.693	196.693	-	FIX
MB04	170.629	170.593	-0.036	
MB05	241.764	241.756	-0.008	
MB06	161.542	161.583	+0.041	
MB07	158.412	158.398	-0.014	
MB08	164.114	164.065	-0.049	
MB09	145.003	145.001	-0.002	
MB11	696.688	696.734	+0.046	
NYP1	214.382	214.365	-0.017	
NYP2	77.956	77.956	-	FIX
		MEAN	-0.008	
		SD.	0.031	

ตารางที่ 5.5 เปรียบเทียบค่าระดับความสูงที่ได้จากการเดินระดับและจากการรังวัดดาวเทียม โดยมีหมุดควบคุมทางดิ่งหลัก 5 ตัว

STA	ELEV.(LEVELLING)	ELEV.(GPS.)	DIFF	REMARKS
0776	214.335	214.318	-0.017	
ONGD	299.779	299.771	-0.018	
1132	1073.518	1073.518		FIX
1133	1117.841	1117.800	-0.041	
1136	208.603	208.603	-	FIX
BMH8	197.135	197.135	-	FIX
BMN4	167.599	167.599	-	FIX
DSLK	693.053	693.101	+0.048	
MB01	212.660	212.622	-0.038	
MB02	208.980	208.972	-0.008	
MB03	196.693	196.693	-	FIX
MB04	170.629	170.593	-0.036	
MB05	241.764	241.756	-0.008	
MB06	161.542	161.584	+0.042	
MB07	158.412	158.399	-0.013	
MB08	164.114	164.065	-0.049	
MB09	145.003	145.003	-	FIX
MB11	696.688	696.736	+0.048	
NYP1	214.382	214.366	-0.016	
NYP2	77.956	77.956	-	FIX
		MEAN	-0.007	
		SD.	0.031	

ตารางที่ 5.6 เปรียบเทียบค่าระดับความสูงที่ได้จากการเดินระดับและจากการรังวัดดาวเทียม โดยมีหมุดควบคุมทางดิ่งหลัก 7 ตัว

STA	ELEV.(LEVELLING)	ELEV.(GPS.)	DIFF	REMARKS
0776	214.335	214.314	-0.021	
ONGD	299.779	299.800	+0.021	
1136	208.603	208.603		FIX
BMH8	197.135	197.147	+0.012	
BMN4	167.599	167.599	-	FIX
DSLK	693.053	693.124	+0.071	
MB01	212.660	212.637	-0.023	
MB02	208.980	209.010	+0.030	
MB03	196.693	196.789	+0.096	
MB04	170.629	170.683	+0.054	
MB05	241.764	241.850	+0.086	
MB06	161.542	161.655	+0.113	
MB07	158.412	158.485	+0.073	
MB08	164.114	164.162	+0.048	
MB09	145.003	145.078	+0.075	
MB11	696.688	696.757	+0.069	
NYP1	214.382	214.367	-0.015	
NYP2	77.956	77.956	-	FIX
		MEAN	+0.046	
		SD.	0.043	

ตารางที่ 5.7 เปรียบเทียบค่าระดับความสูงที่ได้จากการเดินระดับและจากการรังวัดดาวเทียม เฉพาะบริเวณที่มีการเดินระดับไว้โดยมีหมุดควบคุมทางดิ่งหลักที่ 1136, BMN4 และ NYP2

STA	ELEV.(LEVELLING)	ELEV.(GPS.)	DIFF	REMARKS
0776	214.335	214.314	-0.021	
0NGD	299.779	299.775	-0.004	
1136	208.603	208.603	-	FIX
BMH8	197.135	197.124	-0.011	
BMN4	167.599	167.599	-	FIX
DSLK	693.053	693.103	+0.050	
MB01	212.660	212.623	-0.037	
MB02	208.980	208.976	-0.004	
MB03	196.693	196.693	-	FIX
MB04	170.629	170.597	-0.032	
MB05	241.764	241.764	0.000	
MB06	161.542	161.587	+0.045	
MB07	158.412	158.404	-0.008	
MB08	164.114	164.076	-0.038	
MB09	145.003	145.016	+0.013	
MB11	696.688	696.738	+0.050	
NYP1	214.382	214.365	-0.017	
NYP2	77.956	77.956	-	FIX
		MEAN	-0.001	
		SD.	0.030	

ตารางที่ 5.8 เปรียบเทียบค่าระดับความสูงที่ได้จากการเดินระดับและจากการรังวัดดาวเทียม เฉพาะบริเวณที่มีการเดินระดับไว้โดยมีหมุดควบคุมทางดิ่งหลักที่ 1136, BMN4, MB03 และ NYP2

ดิ่งหลักเพิ่มขึ้นทำให้ตัวโปรแกรม TRIMNET สามารถปรับแก้ค่าระดับความสูง ที่ได้จากการรังวัดดาวเทียม ให้ เข้า ใกล้ค่าระดับที่ได้จากการเดินระดับมากยิ่งขึ้น

5.2.4.5 เพิ่มหมุดควบคุมทางดิ่งหลักอีก 1 หมุด โดยให้อยู่ตรงกลางหมุดควบคุม ทางดิ่งหลักเดิม หมุดที่เพิ่มใหม่คือหมุด MB03 เลือกหัวข้อ Coordinate Fix Status จากรูป4.9 ใส่ค่าระดับที่ ได้จากการเดินระดับให้แก่หมุด MB03 และกำหนดให้เป็นค่าระดับคงที่ เลือกหัวข้อ Adjust Network จาก รูป 5.11 ทำการปรับแก้โครงข่ายอีกครั้งหนึ่ง ผลลัพธ์จากการประมวลผลโครงข่ายที่มีหมุดควบคุมทางดิ่ง หลัก 5 หมุด แสดงดังตารางที่ 5.5 การเพิ่มหมุดควบคุมทางดิ่งหลักเป็นทั้งหมด 5 หมุด ก็เช่นเดียวกันกับ ข้อ 5.2.4.4 เป็นการกดทรงรีให้แตะกับยีออยทั้ง 5 จุด ทำให้รูปร่างของทรงรีเปลี่ยนไปแนบสนิทกับยีออย มากขึ้น

จากตารางที่ 5.5 ค่าแตกต่างระหว่าง ค่าระดับจากการเดินระดับ และค่าระดับจาก การรังวัดดาวเทียมมีค่าน้อยลงอีก ค่าแตกต่างมากที่สุดเหลือเพียง 0.049 เมตร เนื่องจากมีหมุดควบคุม ทางดิ่งหลักเพิ่มขึ้นอีก

5.2.4.6 เพิ่มหมุดควบคุมทางดิ่งหลักอีก 2 หมุด โดยให้อยู่ระหว่างหมุดควบคุมเก่า และที่เพิ่มใหม่อีก 1 หมุดในข้อ 5.2.4.5 หมุดที่เพิ่มใหม่คือ หมุด BMH8 และหมุด MB09 ใส่ค่าระดับที่ได้ จากการเดินระดับให้แก่หมุดควบคุมทางดิ่งหลักทั้ง 2 โดยเลือกหัวข้อ Coordinate Fix Status จากรูป4.9 ทำการปรับแก้โครงข่ายอีกครั้ง โดยเลือกหัวข้อ Adjust Network จากรูป5.11 ผลลัพธ์จากการประมวลผล โครงข่ายที่มีหมุดควบคุมทางดิ่งหลัก 7 หมุด แสดงดังตารางที่ 5.6 การเพิ่มหมุดควบคุมทางดิ่งหลักเป็น ทั้งหมด 7 หมุด เปรียบเสมือนกดทรงรีให้แตะยีออยทั้ง 7 จุด รูปร่างของทรงรีก็จะแนบสนิทกับยีออยมาก ขึ้นอีก แต่ถ้าทรงรีแนบสนิทกับยีออยมากอยู่แล้ว การเพิ่มหมุดควบคุมทางดิ่งหลักอีกก็ไม่ทำให้ทรงรีแนบ สนิทกับยีออยดีกว่าที่เป็นอยู่ ดังค่าแตกต่างที่แสดงไว้ตามตารางที่ 5.6

จากตารางที่ 5.6 ค่าแตกต่างระหว่าง ค่าระดับจากการเดินระดับ และค่าระดับจาก การรังวัดดาวเทียม มีค่าใกล้เคียงกับการใช้หมุดควบคุมทางดิ่งหลัก 5 หมุด ตามตารางที่ 5.5 แสดงให้เห็น ว่าการใช้หมุดควบคุมทางดิ่งหลักมากเกินไป ก็ไม่สามารถทำให้ค่าระดับความสูง ที่ได้จากการรังวัดดาว เทียมมีค่าถูกต้องมากขึ้น

5.2.4.7 ในกรณีที่พิจารณาเฉพาะบริเวณที่มีการเดินระดับไว้ โดยตัดหมุด 1132 และ 1133 ของกรมแผนที่ทหารบริเวณขวามือของโครงข่ายออก หมุดควบคุมทางดิ่งที่เหลืออยู่จะกระจายอยู่ใน รูปสามเหลี่ยม ดังนั้นจึงกำหนดค่าระดับความสูงให้กับหมุดควบคุมทางดิ่งหลักใหม่ โดยใช้หมุด 0776 , หมุด BMN4 และ หมุด NYP2 ซึ่งกระจายอยู่ตามมุมทั้งสามของโครงข่าย จากรูป 5.11 เลือก ข้อCoordinate Fix Status ใส่ค่าระดับที่ได้จากการเดินระดับให้กับหมุดควบคุมทางดิ่งหลักทั้งสาม และกำหนดให้มีค่า ระดับคงที่ จากนั้นจึงทำการปรับแก้โครงข่ายอีกครั้ง โดยเลือกข้อ Adjust Network จากหน้า จอรูป 5.11 ผลลัพธ์จากการประมวลผลเมื่อกำหนดให้มีหมุดควบคุมหลักสามตัว แสดงดังตารางที่ 5.7 การให้มีหมุด ควบคุมทางดิ่งหลักสามหมุด มีค่าระดับคงที่เท่ากับที่ได้จากการเดินระดับเปรียบเสมือน เป็นการกดทรงรี ให้มาแตะยีออยที่จุดทั้งสามนั้น รูปร่างทรงรีจะเปลี่ยนไปแนบสนิทกับยีออย

จากตารางที่ 5.7 จะเห็นได้ว่า ค่าแตกต่างระหว่างค่าระดับที่ได้จากการเดินระดับ และค่าระดับที่ได้จากรังวัดดาวเทียมจีพีเอส มีค่าใกล้เคียงกับที่ได้จากการมีหมุดควบคุมทางดิ่งหลัก 4 หมุด ครอบคลุมทั้งโครงข่ายเดิม (ดูตารางที่ 5.4) ค่าแตกต่างสูงสุดอยู่ที่หมุด MB06 เช่นเดียวกันโดยมีค่า 0.113 เมตร

5.2.4.8 ในกรณีเช่นเดียวกับข้อ 5.2.4.7 ทำการปรับแก้โครงข่ายอีกครั้งโดยเพิ่มหมุด ควบคุมทางดิ่งหลักอีกหนึ่งหมุดตรงกลางโครงข่ายคือหมุด MB03 เลือกหัวข้อ Coordinate Fix Status จากรูป 5.11 ใส่ค่าระดับที่ได้จากการเดินระดับให้กับหมุด MB03 กำหนดให้มีค่าระดับคงที่ ทำการปรับแก้โครง ข่ายอีกครั้ง โดยเลือกหัวข้อ Adjust Network จากหน้าจอรูป 5.11 ผลลัพธ์จากการประมวลผลเมื่อกำหนด ให้มีหมุดควบคุมทางดิ่งหลัก 4 ตัว แสดงดังตารางที่ 5.8 การเพิ่มหมุดควบคุมทางดิ่งหลักเป็นทั้งหมด 4 หมุด เปรียบเสมือนเป็นการกดทรงรีทั้ง 4 จุดให้แตะกับยีออย ทำให้รูปร่างของทรงรีภายในจุดทั้ง 4 เปลี่ยน ไปแนบสนิทกับยีออยมากขึ้น

จากตารางที่ 5.8 ค่าแตกต่างระหว่าง ค่าระดับจากการเดินระดับ และค่าระดับจาก การรังวัดดาวเทียมมีค่าน้อยลง มีค่าใกล้เคียงกับที่ได้จากการมีหมุดควบคุมทางดิ่งหลัก 5 หมุด ครอบคลุม ทั้งโครงข่ายเดิม (ดูตารางที่ 5.5)

ในการประยุกต์ใช้การรังวัดดาวเทียม เพื่อสร้างหมุดควบคุมทางดิ่ง สมควรมีหมุดควบคุมทางดิ่ง หลักแต่เพียงพอเหมาะ ถ้ามีน้อยเกินไปค่าระดับความสูงที่ได้ ก็จะมีความคลาดเคลื่อนสูง ส่วนถ้ามีมาก เกินไป จะทำให้สิ้นเปลืองค่าใช้จ่ายในการเดินระดับหาค่าระดับความสูงของหมุดควบคุมทางดิ่งหลัก ใน พื้นที่ที่ทำการวิจัยนี้สมควรใช้หมุดควบคุมทางดิ่งหลัก 5 หมุด ก็เพียงพอผลลัพธ์ตามตารางที่ 5.5 ค่าระดับ ความสูงที่ได้จาการรังวัดดาวเทียมจะมีค่าแตกต่างจากค่าระดับ ที่ได้จาการเดินระดับอยู่เพียงเล็กน้อย ใน ส่วนที่พิจารณาเฉพาะบริเวณที่ได้มีการเดินระดับไว้ โดยตัดพื้นที่บริเวณ หมุด 1132 และ หมุด 1133 ออก ใช้หมุดควบคุมทางดิ่งหลัก 4 หมุด ก็เพียงพอ ผลลัพธ์ตามตารางที่ 5.8