PREPARATION AND CHARACTERIZATION OF POLYPYRROLE-LAYERED SILICATE NANOCOMPOSITES

Ms. Acharaporn Thuimthad

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with Case Western Reserve University, The University of Michigan, The University of Oklahoma, and Institut Français du Pétrole 2004 ISBN 974-9651-47-2

I 21616589

Thesis Title:	Preparation and Characterization of Polypyrrole-Layered
	Silicate Nanocomposites
By:	Ms. Acharaporn Thuimthad
Program:	Polymer Science
Thesis Advisor:	Asst. Prof. Rathanawan Magaraphan

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

K. Bunyahint.

College Director

(Assoc. Prof. Kunchana Bunyakiat)

Thesis Committee:

R. Maganen

(Asst. Prof. Rathanawan Magaraphan)

Nantaya Janunit.

(Assoc. Prof. Nantaya Yanumet)

(Dr. Marit Nithitanakul)

ABSTRACT

4572001063: POLYMER SCIENCE PROGRAM

 Acharaporn Thuimthad: Preparation and Characterization of
 Polypyrrole-Layered Silicate Nanocomposites
 Thesis Advisor: Assistant Professor Rathanawan Magaraphan, 94
 pp. ISBN 974-9651-47-2
 Keywords: Nanocomposites / Polypyrrole / Octadecylammonium
 Montmorillonite

Polypyrrole (PPy) was synthesized in the presence of octadecylammoniummontmorillonite (OC-MMT) 1-9 wt% using ferric chloride as an initiator. XRD results revealed that among these compositions, intercalated nanocomposites of OC-MMT and PPy were generated with a significant amount of expanded Na-MMT remaining in the mixture. TGA results showed that the PPy had much improved in thermal resistance with a higher degradation temperature and lower weight loss compared to pure PPy. By FTIR, it was revealed that the materials prepared were intercalated nanocomposites with both OC-MMT and unmodified Na-MMT. After doping PPyC3 with DBSA, XRD patterns showed that the doped one was the nanocomposites containing intercalated OC-MMT and exfoliated Na-MMT. It has better thermal resistance than undoped ones. The conductivity of the nanocomposites in ambient condition increased with OC-MMT content. Doping is less efficient to enhance conductivity in the presence of OC-MMT. Resistance and response time to CO₂, CH₄ and C₂H₄ increased with sample thickness. PPyC9 and DPPyC3 showed the lowest resistance to CO₂ and only PPyC9 to C₂H₄ while all samples except nDPPyC3 showed the lowest resistance to CH₄. From cross sensitivity, it was found that these samples are good sensors but not selective for these gases.

บทคัดย่อ

อัจฉราพร เทียมทัด: การเตรียมและการตรวจสอบลักษณะเฉพาะทางพอลิเมอร์ของนาโน คอมโพสิตระหว่างพอลิไพรอลและชั้นผลึกแร่ดิน (Preparation and Characterization of Polypyrrole-Layered Silicate Nanocomposites) อ. ที่ปรึกษา: ผศ. คร. รัตนวรรณ มกรพันธุ์ 94 หน้า ISBN 974-9651-47-2

นาโนคอมโพสิตระหว่างพอลิไพรอล และชั้นผลึกแร่ดินปรับสภาพอินทรีย์ 1-9 เปอร์เซ็นต์ โดยน้ำหนักที่เตรียมได้มีลักษณะเป็นผงละเอียดสีดำ จากการวิเคราะห์ด้วยเทคนิค XRD, TGA และ FTIR พบว่า นาโนคอมโพสิตที่เตรียมได้เป็นชนิดอินเตอร์คาเลทที่มีชั้นผลึก แร่ดินที่เหลือจากการปรับสภาพอินทรีย์ที่มีการขยายชั้นของแร่ดินมากขึ้นปนอยู่ และพอลิไพรอล สามารถทนความร้อนได้ดีขึ้น โดยเริ่มสลายตัวที่อุณหภูมิสูงกว่าและมีการสลายตัวที่อุณหภูมิสูง น้อยกว่าเมื่อเทียบกับพอลิไพรอลบริสุทธิ์ หลังจากทำการเพิ่มประจุแก่นาโนคอมโพสิตที่มีชั้น ผลึกแร่ดินปรับสภาพอินทรีย์ 3 เปอร์เซ็นต์โดยน้ำหนักแล้วพบว่า เป็นนาโนคอมโพสิตระหว่าง ชนิดอินเตอร์คาเลทของชั้นผลึกแร่ดินปรับสภาพอินทรีย์ และชนิดเอ็กซ์ไฟลิเอทของชั้นผลึกแร่ดิน ที่เหลือจากการปรับสภาพอินทรีย์ โดยสามารถทนความร้อนได้สูงกว่าชนิดอื่นๆ ปริมาณของชั้น

ผลึกแร่ดินมีผลทำให้ก่าการนำไฟฟ้าของนาโนคอมโพสิตเพิ่มขึ้นและมีอิทธิพลต่อการนำไฟฟ้า มากกว่าการเพิ่มประจุ ก่าความต้านทานการนำไฟฟ้าและเวลาที่ใช้ในการตอบสนองต่อก๊าซ การ์บอนไดออกไซด์ ก๊าซมีเทนและก๊าซเอทิลีนของแผ่นฟิล์มนาโนคอมโพสิตที่ใช้เป็นตัวตรวจวัด ก๊าซมีก่าเพิ่มมากขึ้นเมื่อแผ่นฟิล์มนาโนคอมโพสิตมีความหนาเพิ่มมากขึ้น โดยนาโนคอมโพสิตที่ มีชั้นผลึกแร่ดินปรับสภาพอินทรีย์ 9 เปอร์เซ็นต์โดยน้ำหนัก และนาโนคอมโพสิตชนิดที่ทำการ เพิ่มประจุให้ก่าความด้านทานการนำไฟฟ้าต่ำที่สุดต่อการตรวจวัดก๊าซการ์บอนไดออกไซด์ นอก จากนี้นาโนคอมโพสิตที่มีชั้นผลึกแร่ดินปรับสภาพอินทรีย์ 9 เปอร์เซ็นต์โดยน้ำหนัก ยังให้ก่าความ ด้านทานการนำไฟฟ้าต่ำที่สุดต่อการตรวจวัดก๊าซมีเทนอีกด้วย นาโนคอมโพสิตระหว่างพอลิไพ รอลและชั้นผลึกแร่ดินปรับสภาพอินทรีย์ 1-9 เปอร์เซ็นต์โดยน้ำหนัก และนาโนคอมโพสิตชนิดที่ มีการเพิ่มประจุให้ก่าความด้านทานการนำไฟฟ้าต่ำที่สุดในช่วงใกล้เกียงกัน สำหรับกรณีที่ใช้ตรวจ วัดก๊าซเอทิลีน จากการทดลองพบว่า นาโนคอมโพสิตที่เตรียมได้นี้สามารถใช้เป็นด้วตรวจวัดก๊าซ การ์บอนไดออกไซด์ ก๊าซมีเทน และก๊าซเอทิลีนได้ดี แต่ยังไม่สามารถตรวจวัดก๊าซได้อย่างเฉพาะ เจาะจงเมื่อมีก๊าซเหล่านี้ผสมกันอยู่

ACKNOWLEDGEMENTS

The author is deeply indebted to her advisor Assistant Professor Rathanawan Magaraphan who has been extremely supportive during her graduate study. The author received much advice from her advisor who taught her how to do research and gave valuable feedback to her research. Oceans of thanks go to Associate Professor Nantaya Yanumet and Dr. Manit Nithitanakul who sacrificed their time for being on her thesis committee and for taking the time to read this thesis. Without their unfailing support, this thesis would not have been possible.

Special thanks go to Ms. Jintana Chumnunmanoonthum, Ms. Pastra Somboonthanate, C. P. O. Poon Arjpru, and all of the Petroleum and Petrochemical College's staff for giving her valuable advice and teaching her how to operate the equipment for doing research. It is her luck to have lovely friends and lovely Ph.D. students who were always there when she needed help. The author had the most enjoyable time working with all of them. The author is also extremely grateful to the Petroleum and Petrochemical College, Chulalongkorn University. This thesis work is partially funded by Postgraduate Education and Research Programs in Petroleum and Petrochemical Technology (PPT Consortium). Without this financial support, the author would never have an opportunity to study in one of the best colleges like here.

Lastly, the author's family has her deepest gratitude. Her parents never fail to unconditionally support her on all the decisions she has made in her life. Without their encouragement and their emotional and financial support, the author would never have the chance to pursue any studies.

TABLE OF CONTENTS

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	ix
List of Figures	x
Abbreviations	xiii

CHAPTER

I	INTROD	UCTION	1
II	BACKGI	ROUND AND LITERATURE REVIEWS	3
	2.1 Polyp	pyrrole	
	2.2 Polyn	ner-clay Nanocomposites	
III	EXPERI	MENTAL	12
	3.1 Mater	rials	12
	3.2 Expen	imental Equipment	12
	3.2.1	Fourier-Transform Infrared Spectrometer (FT-IR)	12
	3.2.2	Wide-Angle-X-ray Diffractometer (WAXS)	13
	3.2.3	Thermogravemetric Analyzer (TGA)	13
	3.3.4	Keithey Electrometer Model 6510	13
	3.3 Exper	imental Methods	15
	3.3.1	Purification of Pyrrole	15
	3.3.2	Preparation of Organically Modified Montmorillonite	15

	3.3.3	Synthesis of Polypyrrole	16
	3.3.4	Preparation of PPy/OC-MMT Nanocomposites	16
	3.3.5	Preparation of DBSA-doped PPy/OC-MMT	
		Nanocomposite	16
IV	PREPARA	ATION AND CHARACTERIZATION OF	
	POLYPY	RROLE-LAYERED SILICATE	
	NANOCO	OMPOSITES	19
	Abstract		19
	Introductio	on	20
	Experimen	ntal	22
	Results and	d Discussion	25
	Conclusion	ns	32
	Acknowled	dgements	33
	References	5	33
V	CONCLU	SIONS AND RECOMMENDATIONS	52
	REFERE	NCES	53
	APPENDI	CES	57
	Appendix .	A Characterization of organically modified MMT	57
	Appendix	B Response time to CO_2 , CH_4 , and C_2H_4 at	
		room temperature for all of the sensor	
		samples	60
	Appendix	C Resistance (at response time) to CO_2 , CH_4 ,	
		and C_2H_4 at room temperature for all of the	
		sensor samples	62
	Appendix	D Response time to $CO_2:CH_4$ and $CO_2:C_2H_4$	
		at room temperature for all of the sensor	

	samples	64
Appendix E	Resistance (at response time) to CO ₂ :CH ₄	
	and $CO_2:C_2H_4$ at room temperature for all	
	of the sensor samples	65
Appendix F	Calculation of cross sensitivity to	
	$CO_2:CH_4$ and $CO_2:C_2H_4$ at room temperature	
	for all of the sensor samples	66
Appendix G	Raw data of resistance vs. times obtained from	
	the electrometer	69
Appendix H	Characterization of nDPPyC3	93

CURRICULUM VITAE

viii

94

LIST OF TABLES

TABLE

PAGE

CHAPTER IV

1	Compositions of PPy/OC-MMT nanocomposites.	36
2	The basal spacing of Na-MMT and OC-MMT.	36
3a	The value of DTGA, T_d at starting point, % moisture, and % residue	
	of all the samples under N_2 atmosphere up to 650°C	37
3b	The value of DTGA, T_d at starting point, % moisture, and % residue	
	of all the samples under O_2 atmosphere up to 650°C	37
4	Cross sensitivity ratio of CO_2 to CH_4 in the gas mixture of CO_2	
	and CH_4 at room temperature for all of the sensor samples	38
5	Cross sensitivity ratio of CO_2 to C_2H_4 in the gas mixture of CO_2	
	and C_2H_4 at room temperature for all of the sensor samples	39

LIST OF FIGURES

FIGURE

PAGE

CHAPTER II

2.1	The idealized structure of polypyrrole	3
2.2	The mechanism for chemical and electrochemical preparation	
	of polypyrrole via radical cation formation	4
2.3	Montmorillonite clay structure	7
2.4	Schematic illustration of the three possible types of polymer-clay	
	nanocomposites	7

CHAPTER III

3.1	Chemical structure of octadecylamine (a modifying agent)	12
3.2	Electrode of resistance chamber	14
3.3	Keilthey Electrometer (model 6510) for resistance measurement	14
3.4	A diagram of the preparation of organically modified	
	montmorillonite	18

CHAPTER IV

1	FT-IR spectra of OC-MMT, PPy, DBSA, and PPy/OC-MMT	
	nanocomposites at various wt% of OC-MMT	40
2	XRD patterns of pure PPy and PPy/OC-MMT nanocomposites	
	at various wt% of OC-MMT	40
3a	TGA curves of pure PPy and PPy/OC-MMT nanocomposites	
	at various wt% of OC-MMT under N ₂ atmosphere	41
3b	TGA curves of pure PPy and PPy/OC-MMT nanocomposites	
	at various wt% of OC-MMT under O ₂ atmosphere	41
4	Resistance to CO ₂ at room temperature at various times for pure	
	PPy of 0.5mm thick	42
5	Resistance to CO ₂ at room temperature at various times for pure	
	PPyC3 of 0.5mm thick	42

6	Resistance versus wt% of OC-MMT in the nanocomposites	
	(1mm thickness) under ambient air atmosphere measured after	
	60 seconds	43
7a	Effect of thickness on response time to CO_2 at room temperature	
	for PPy and all of the nanocomposites	43
7b	Effect of thickness on response time to CH ₄ at room temperature	
	for PPy and all of the nanocomposites	44
7c	Effect of thickness on response time to C_2H_4 at room temperature	
	for PPy and all of the nanocomposites	44
8a	Effect of thickness on resistance to CO ₂ at response time (room	
	temperature) for PPy and all of the nanocomposites	45
8b	Effect of thickness on resistance to CH_4 at response time (room	
	temperature) for PPy and all of the nanocomposites	45
8c	Effect of thickness on resistance to C_2H_4 at response time (room	
	temperature) for PPy and all of the nanocomposites	46
9a	Response time to CO_2 , CH_4 and C_2H_4 at room temperature for	
	DPPyC3 and nDPPyC3 of 0.5mm thick	46
9b	Resistance to CO_2 , CH_4 and C_2H_4 at response time (room	
	temperature) for DPPyC3 and nDPPyC3 of 0.5mm thick	47
10	Resistance to CO_2 at the gas pressure of 0.1, 0.2 and 0.3 bars for	
	all samples of 0.5mm thick	47
11	Resistance to CH_4 at the gas pressure of 0.1, 0.2 and 0.3 bars for	
	all samples of 0.5mm thick	48
12	Resistance to C_2H_4 at the gas pressure of 0.1, 0.2 and 0.3 bars for	
	all samples of 0.5mm thick	48
13a	Response time to CO_2 :CH ₄ at the ratio of 1:1, 1:2 and 1:3 at room	
	temperature for PPy and all of the nanocomposites	49
13b	Resistance to CO_2 :CH ₄ at the ratio of 1:1, 1:2 and 1:3 at response	
	time (room temperature) for PPy and all of the nanocomposites	49
14a	Response time to $CO_2:C_2H_4$ at the ratio of 1:1, 1:2 and 1:3 at room	
	temperature for PPy and all of the nanocomposites	50

14b	Resistance to $CO_2:C_2H_4$ at the ratio of 1:1, 1:2 and 1:3 at response	
	time (room temperature) for PPy and all of the nanocomposites	50

ABBREVIATIONS

DBSA	=	Dodecylbenzenesulfonic acid
DPPyC3	=	Dodecylbenzenesulfonic acid-doped polypyrrole with 3
		wt% of octadecylamine modified montmorillonite
		$({\rm H}^{+}/{\rm PhN}=0.5)$
Eq	-	Equivalent
Meq	—	Milliequivalent
MMT	=	Montmorillonite
Na-MMT	=	Sodium montmorillonite
nDPPyC3	=	Dodecylbenzenesulfonic acid-doped polypyrrole with 3
		weight% of octadecylamine modified montmorillonite
		$(H^{+}/PhN = 1)$
OC	=	Octadecylamine
OC-MMT	=	Octadecylamine modified montmorillonite
PPy	=	Polypyrrole
PPyC1	=	Polypyrrole with 1 wt% of octadecylamine modified
		montmorillonite
PPyC3	=	Polypyrrole with 3 wt% of octadecylamine modified
		montmorillonite
PPyC6	=	Polypyrrole with 6 wt% of octadecylamine modified
		Montmorillonite
РРуС9	=	Polypyrrole with 9 wt% of octadecylamine modified
		montmorillonite