EFFECT OF METAL LOADINGS ON NaAIH₄ FOR HYDROGEN STORAGE APPLICATION

Ms. Mutsee Termtanun

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with Case Western Reserve University. The University of Michigan, The University of Oklahoma and Institut Français du Pétrole 2004

ISBN 974-9651-29-4

T.21616267

Thesis Title:	Effect of Metal Loadings on NaAlH4 for Hydrogen Storage
	Application
By:	Ms. Mutsee Termtanun
Program:	Petrochemical Technology
Thesis Advisors:	Asst. Prof. Pramoch Rangsunvigit
	Asst. Prof. Boonyarach Kitiyanan
	Dr. Santi Kulprathipanja

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

(Assoc. Prof. Kunchana Bunyakiat)

Thesis Committee:

Prawood a.

(Asst. Prof. Pramoch Rangsunvigit)

(Dr. Santi Kulprathipanja)

B. Kitiyanan

(Asst. Prof. Boonyarach Kitiyanan)

(Prof. Somchai Osuwan)

(Assoc. Prof. Thirasak Rirksomboon)

ABSTRACT

4571008063: PETROCHEMICAL TECHNOLOGY PROGRAM Mutsee Termtanun: Effect of Metal Loadings on NaAlH₄ for Hydrogen Storage Application. Thesis Advisors: Asst. Prof. Pramoch Rangsunvigit, Asst. Prof. Boonyarach Kitiyanan and Dr. Santi Kulprathipanja, 52 pp. ISBN 974-9651-29-4

Keywords: Hydrogen storage/ Kinetics/ NaAlH₄/ TiCl₃/ ZrCl₄/ HfCl₄

NaAlH₄ has been considered as a viable candidate for practical onboard hydrogen storage material because of its high hydrogen content (5.6 wt%). However, the rather slow absorption/desorption (A/D) kinetics is still a significant drawback for the hydrogen storage application. Effects of precious metals, TiCl₃, ZrCl₄, and HfCl₄, were studied in this work as a means to alleviate such the difficulty. By using 0.2-0.5 g of them per 1 g NaAlH₄, hydrogen desorption was carried out through the TPD-like operation (25-250°C) in a constant volumetric apparatus while the hydrogen absorption was accomplished at 125°C. Like other catalyzed materials, the ZrCl₄-added NaAlH₄ shows the increase in the desorption rate and the decrease in the hydrogen desorption temperature. Despite the fact that the kinetics enhancement directly involves with the ZrCl₄ amount, there is a limit to which the amount of ZrCl₄ affects. A trade-off between the kinetic improvement and reversible capacity of the ZrCl₄-added NaAlH₄ as the hydrogen storage material has been confirmed in the range of 6-9 mol% ZrCl₄. TiCl₃, facilitating on the first decomposition step, is the most active species due to its superior capability to render hydrogen absorption. In addition, HfCl₄ seems to have the least effect on the hydrogen A/D kinetic improvement.

บทคัดย่อ

มัทรี เติมตะนันทน์: การศึกษาผลกระทบของโลหะต่อคุณสมบัติของโซเดียมอลูมินัมไฮ ใครด์ เพื่อใช้เก็บก๊าซโฮโครเจน (Effect of Metal Loadings on NaAlH₄ for Hydrogen Storage Application) อ. ที่ปรึกษา ผศ. คร. ปราโมช รังสรรค์วิจิตร ผศ. คร. บุนยรัชต์ กิติ ยานันท์ และ คร. สันติ กุลประทีปัญญา 52 หน้า ISBN 974-9651-29-4

โซเดียมอลูมินัมไฮไครค์ สามารถปลคปล่อยก๊าซไฮโครเจนได้ในปริมาณที่สูงต่อหน่วย ทำให้โลหะไฮไครค์ชนิคนี้ได้รับความสนใจ และได้รับการพัฒนาประสิทธิภาพอย่าง น้ำหนัก โดยเฉพาะอย่างยิ่งในด้านการเป็นแหล่งเก็บก๊าซไฮโดรเจน สำหรับแซลล์เซื้อเพลิงใน ต่อเบื่อง รถยนต์ในอนาคต แต่เนื่องจากโลหะไฮไดรค์ชนิดนี้ด้องใช้เวลานานในการดูดซับ และปลดปล่อย ก๊าซไฮโครเจน แต่ละครั้ง เพื่อขจัดปัญหาดังกล่าว ในงานวิจัยนี้ได้นำสารประกอบแฮไลท์ของ ้โลหะหลายชนิด เช่น ไทเทเนียม เซอร์โคเนียม และฮอร์ฟเนียม มาผสมเข้ากับโซเดียมอลูมินัมไฮ ใครค์ในสภาวะที่เป็นของแข็ง ปริมาณ 0.2 ถึง 0.5 กรัม ต่อ โซเคียมอลูมินัมไฮไครค์ ปริมาณ 1 กรัม มาบรรจุลงในภาชนะที่มีปริมาตรคงที่ ทำการสังเกตการปลคปล่อยก๊าซไฮโครเจน ในขณะที่ อุณหภูมิเพิ่มขึ้นอย่างช้าๆ ตั้งแต่ 25 ถึง 250 องศาเซลเซียส หลังจากนั้น ลดอุณหภูมิลงมาที่ 125 ้องศาเซลเซียส เพื่อเก็บข้อมูลการดูดซับก๊าซไฮโครเจน จากการศึกษา พบว่าการเติมเซอร์โคเนียม ทำให้โซเดียมอลมินัมไฮไครค์สามารถปลคปล่อยก๊าซไฮโครเจนได้เร็วขึ้นที่ คลอไรด์ลงไป ้อุณหภูมิต่ำลง อย่างไรก็ตาม เมื่อเติมโลหะเข้าไปในปริมาณที่สูงขึ้น ความสามารถในการเร่ง ้ปฏิกิริยาจะเพิ่มขึ้น แต่ความสามารถในการเก็บไฮโครเจนของโซเคียมอลูมินัมไฮไครค์ลคลง เมื่อ เติมเซอร์ โคเนียมลงไปเกิน 6 โมลเปอร์เซนต์ ไทเทเนียมคลอไรค์มีส่วนร่วมในการเร่งปฏิกิริยา การแตกตัวของโซเดียมอลูมินัมไฮไครค์ในขั้นแรก และมีประสิทธิภาพสูงสุดในบรรคาโลหะทั้ง 3 นอกจากนี้ยังพบว่าฮอร์ฟเนียมคลอไรค์ช่วยเร่งการ ชนิคในการช่วยการดูคซับก๊าซไฮโครเจน ้ปลดปล่อย และดุดซับก๊าซไฮโครเจนของโซเดียมอลูมินัมไฮไครด์ เช่นเดียวกับสารประกอบโลหะ อื่นๆ ซึ่งอยู่ในหมู่ธาตุเคียวกัน ถึงแม้ว่าจะมีประสิทธิภาพด้อยกว่าก็ตาม

ACKNOWLEDGEMENTS

Firstly, I would like to express my deepest gratitude to Dr. Santi Kulprathipanja, my US advisor, for his helpful suggestions, creative discussions, patience and encouragement throughout my graduate work. I would also like to thank his wife, Ms. Apinya Kulprathipanja for her kindness.

Profound appreciations are granted to Thai advisors, Asst. Prof. Pramoch Rangsunvigit and Asst. Prof. Boonyarach Kitiyanan for their encouragements, intensive suggestions, useful comments, and patience in proof reading my thesis.

I would like to thank Prof. Somchai Osuwan and Assoc. Prof. Thirasak Rirksomboon for being my thesis committee.

A special thank is forwarded to the UOP LLC for the financial support while I worked there. Additionally, I would like to take this chance to thank David Mackowiak, Francisco Zamora, Christine Rayner, and Laszlo Nemeth for their great help and friendliness. I am equally grateful to PPC faculty and staff who contributed on making this thesis succeed.

This thesis work is partially funded by Postgraduate Education and Research Programs in Petroleum and Petrochemical Technology (PPT Consortium).

Finally, I would like to extend my whole-hearted gratitude to my family and my PPC friends for their love, cheerfulness, and understanding.

TABLE OF CONTENTS

		PAGE
	Title Page	i
	Abstract (in English)	iii
	Abstract (in Thai)	iv
	Acknowledgements	v
	Table of Contents	vi
	List of Tables	ix
	List of Figures	х
CHAPTI	ER	
I	INTRODUCTION	1
II	BACKGROUND AND LITERATURE SURV	VEY 3
	2.1 Hydrogen Storage	3
	2.1.1 Physical Storage System	3
	2.1.1.1 Compressed Hydrogen Gas	3
	2.1.1.2 Cryogenic Liquid	3
	2.1.2 Solid-state Storage System	4
	2.1.2.1 Gas- on- solid Technology	4
	2.1.2.2 Metal Hydrides Technology	y 4
	2.2 Metal Hydrides	4
	2.2.1 Intermetallic Compounds	10
	2.2.2 Solid Solution Alloys	12
	2.2.3 Complex Hydrides	12
	2.3 Metal Hydride Developments	13
	2.4 NaAlH ₄	13
III	EXPERIMENTAL	18
	3.1 Sample Preparation	18

	3.2	Exper	imental Set-up	18
	3.3	Exper	rimental Set-up Calibration	22
		3.3.1	Blank Test	22
		3.3.2	Calibration of Volume Space	23
			3.3.2.1 Volume of Manifold (V ₁)	23
			3.3.2.2 Volume of Sample Holder (V_2)	23
	3.4	Hydro	ogen Sorption Data Collection	24
		3.4.1	Desorption	24
		3.4.2	Absorption	26
IV	RE	SULTS	S AND DISCUSSION	27
	4.1	Prelin	ninary Result	27
		4.1.1	Blank Test	27
		4.1.2	Volume Calibration of the Manifold and	
			Sample Holder	28
	4.2	Hydro	ogen Desorption	30
		4.2.1	Pressure Correction	30
		4.2.2	Effect of Purification	30
		4.2.3	Effect of Metal Loading Types	33
		4.2.4	Effect of Metal Loading Amount	33
	4.3	Hydro	ogen Absorption	35
		4.3.1	Effect of Metal Loading Amount	35
		4.3.2	Effect of Metal Loading Types	38
V	CO	NCLU	SIONS AND RECOMMENDATIONS	40
	5.1	Conclusions		40
	5.2	Recor	mmendations	40

REFERENCES	42
	12

viii

APPENDICES		45
Appendix A	Estimating volume of sample holder	45
Appendix B	Desorbed and absorbed hydrogen	
	calculation	47
Appendix C	Amount of doped metal (perl g of	
	NaAlH ₄)	51
CURRICULUM VITAE		52

LIST OF TABLES

TABL	PAGE	
2.1	Assorted conformations of intermetallic compounds	11
2.2	Hydrogen storage capacities of complex hydrides	12
3.1	Compressibility factor at different temperature ranges	26
4.1	Manifold volume estimated by water displacement	28
4.2	Dead volume of the sample holder	29
4.3	Total hydrogen capacity measured by absorption and	
	desorption procedure, including the estimated degree of	
	rehydrogenation at different types of doped metals	39

LIST OF FIGURES

FIGURE

PAGE

Schematic of hydrogen chemisorption on metal	5
Hydrogen absorption and desorption	6
Theoretical PCT diagram of a metal hydride	6
Relationship between PCT diagram and Van't Hoff plot	8
Schematic drawing of real PCT diagram	9
Van't Hoff plots for some natural elements	10
Schematic diagram of the experimental set-up	20
Experimental set-up	21
Data acquisition program	21
Display of hydrogen absorption program (Labview 7)	22
Comparison of the pressure drop during 12 hours between	
helium and hydrogen at 2000 psig initial pressure	27
Continuous pressurization used for the estimation of the	29
dead volume of the sample holder	
Comparison of hydrogen desorption by the purified	
NaAlH ₄ before correction and after correction	30
Characteristics of as-received NaAlH ₄ and purified NaAlH ₄	31
Hydrogen desorption temperature of purified and	
as-received NaAlH ₄	32
Hydrogen capacity of the purified NaAlH ₄ as a function of	
temperature from this research compared with that from	
Jensen <i>et al.</i> (1999)	32
Hydrogen desorption at different temperatures of NaAlH ₄	
doped with TiCl ₃ , ZrCl ₄ , and HfCl ₄	33
Hydrogen desorption as a function of temperature with	
purified and ZrCl ₄ -doped NaAlH ₄	34
Hydrogen desorption rate as a function of doped $ZrCl_4$	35
	Schematic of hydrogen chemisorption on metal Hydrogen absorption and desorption Theoretical PCT diagram of a metal hydride Relationship between PCT diagram and Van't Hoff plot Schematic drawing of real PCT diagram Van't Hoff plots for some natural elements Schematic diagram of the experimental set-up Experimental set-up Data acquisition program Display of hydrogen absorption program (Labview 7) Comparison of the pressure drop during 12 hours between helium and hydrogen at 2000 psig initial pressure Continuous pressurization used for the estimation of the dead volume of the sample holder Comparison of hydrogen desorption by the purified NaAlH ₄ before correction and after correction Characteristics of as-received NaAlH ₄ and purified NaAlH ₄ Hydrogen desorption temperature of purified and as-received NaAlH ₄ Hydrogen capacity of the purified NaAlH ₄ as a function of temperature from this research compared with that from Jensen <i>et al.</i> (1999) Hydrogen desorption at different temperatures of NaAlH ₄ Hydrogen desorption as a function of temperature with purified and ZrCl ₄ -doped NaAlH ₄ Hydrogen desorption rate as a function of doped ZrCl ₄

FIGURE

PAGE

4.10	Progression of hydrogen absorptions for 6 mol% and 9	
	mol% ZrCl ₄	36
4.11	Hydrogen absorption kinetics as function of time of	
	NaAlH ₄ doped with 2, 4, 6, and 9 mol% ZrCl ₄	37
4.12	Absorption kinetics of hydrogen on NaAlH ₄ doped with 6	
	mol% and 9 mol% of ZrCl ₄	37
4.13	Absorption kinetics of hydrogen on NaAlH ₄ doped with 6	
	mol% and 9 mol% of $ZrCl_4$	38