REFERENCES

- Amiri, M.C. and Valsaraj, K.T. (2004) Effect of gas transfer on separation of whey protein with aphron flotation. <u>Separation Purification Technology</u>, 35, 161-167.
- Bakarat, Y., Fortney, L.N., Lalanne, C.C., Schechter, R.S., Wade, W.H., Weerasooriya, U. and Yiv, S. (1983) The Phase Behavior of Sample Salt-Tolerant Sulfonates, <u>Social Petroleum Engineering Journal</u>, 23(1), 913-918.
- Binks, B.P., Cho, W-G., Fletcher and Petsev, D.N. (2000) Stability of Oil-in-Water Emulsions in a Low Interfacial Tension System, <u>Langmiur</u>, 16(3), 1025-1034
- Bourrel, M. and Schechter, R.S. (1988) <u>Microemulsions and Related Systems.</u> New York: Marcel Dekker.
- Carleson, T.E. (1989) Adsorptive Bubble Separation Processes. In Scamehorn, J.F.,and Harwell, J.H. (Eds.), <u>Surfactant Based Separation Process</u>. New York: Marcel Dekker.
- Chaphalkar, P. G., Valsaraj, K. T. and Roy, D. (1993) A study of the size distribution and stability of Colloidal Gas Aphrons using a praticle size analyser. <u>Separation Science and Technology</u>, 28, 1287-1302.
- Cilliers, J.J. and Bradshaw, D.J.(1996) The flotation of fine pyrite using colloidal gas aphrons. <u>Minerals Engineering</u>, 9(2), 235-241
- Clarence, A.M. and Neogi, P. (1985) Interfacial Phenomena: <u>Equilibrium and</u> <u>Dynamic Effects</u>. New York: Marcel Dekker.
- Feng, D. and Aldrich, C. (2000) Removal of diesel from aqueous emulsions by flotation. <u>Separation Science and Technology</u>, 35, 2159-2172.
- Gu, X.and Chiang, S.(1999) A novel flotation column for oily wastewater clean up. Separation Purification Technology, 16,193-203.
- Hashim, M.A., Day, A., Hasan, S. and Sen Gupta, B. (1999) Mass transfer correlation in flotation of plam oil by colloidal gas aphons. <u>Bioprocess</u> <u>Engineering</u>, 21, 401-404.

- Hashim, M.A.and Sen Gupta, B. (1998) The application of colloidal gas aphrons in the recovery of fine cellulose fibers from paper mill wastewater. <u>Bioresource Technology</u>, 64, 199-204.
- Jarudilokkul, S., Rungphetcharat, K.and Boonamnuayvitaya, V. (2004) Protein separation by colloidal gas aphrons using nonionic surfactant. <u>Separation</u> <u>and Purification Technology</u>, 35, 23–29.
- Jauregi, P., Gilmour, S.and Varley, J. (1997) Characterisation of colloidal gas aphrons for subsequent use for protein recovery. <u>Chemical Engineering</u> <u>Journal</u>, 65, 1-11.
- Moosai, R.and Dawe, R.A. (1989) Oily wastewater cleanup by gas flotation. <u>West</u> <u>Indian Journal Engineering</u>, 25(1), 25-41.
- Pal, R.and Maliyah, J. (1990) Oil Recovery from Oil in Water Emulsions Using a flotation column, <u>Canadian Journal Chemical Engineering</u>, 68, 959-967.
- Patterson, J.W. (1975) <u>Wastewater Treatment Technology</u>. Michican: Ann Arbor.
- Phoochinda, W. (1997) Removal of emulsified oil from wastewater using froth flotation. M S Thesis, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand.
- Pongstabodee, S., Scamehorn, J.F., Chavadej, S., Saiwan, C. and Harwell, J.H.(1998). Removal ortho-dichlorobenzene by froth flotation under Winsor's type III onditions. <u>Separation Science and Technology</u>, 23(4), 591-609.
- Puerto, M.C. and Reed, R.L. (1983) A Three-Parameter Representation of Surfactant/Oil/Brine Interaction, <u>Social Petroleum Engineering Journal</u>, 23(1), 669-682.

÷

- Ramirez, J.A.and Davis, R.H.(2001) Microflotation of fine oil droplets by small air bubbles: experiment and theory. <u>Separation Purification Technology</u>, 36(1), 1-15.
- Ratanarojanatam, P. (1995) Clean-up of oily wastewater by froth flotation:effect of microemulsion formation by surfactant mixture. M.S. Thesis, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand.

Rosen, M.J., (1989) Surfactant and Interfacial Phenomena New York: John Wiley.

- Roy, D., Valsaraj, K.T.and Kottai, S.A. (1992) Separation of organic dyes from wastewater by using colloidal gas aphrons. <u>Separation Science and</u> <u>Technology</u>, 25(5), 573-588.
- Rubio, J., Souza, M.L., Smith, R.W. (2002) Overview of flotation as a wastewater treatment technique. <u>Minerals Engineering</u>, 15, 139-155.
- Save, S.V., Pangarkar ,V.G.and Kumar, S.V. (1993) Intensification of mass transfer in aqueous two-phase systems. <u>Biotechnology and Bioengineering</u>. , 41, 72-78.
- Save, S.V.and Pangarkar, V.G. (1994) Characterization of CGAs. <u>Chemical</u> <u>Engineering Communication</u>, 127, 35-54.
- Scamehorn, J.F. and Harwell, J.H. (2000) <u>Surfactant Based Separation Process</u>. New York: Marcel Dekker.
- Sebba, F. (1987) Colloidal gas aphrons, <u>Foam and biliquid foam-aphrons</u>. Chichester: Wiley.
- Sebba, F. (1989) Novel Separations Using Aphrons. In Scamehorn, J.F., and Harwell, J.H. (Eds.), <u>Surfactant Based Separation Process</u>. New York: Marcel Dekker.
- Sharma, M.K. (1991) <u>Particle Technology and Surface Phenomena</u>, 2nd Ed. New York: Wiley.
- Sylvester, N.D. and Byeseda, J.J. (1980) Oil /Water Separation by Induced Air Flotation. <u>Social Petroleum Engineering Journal</u>, 20(6), 579
- Phoochinda, W. (1997) Removal of emulsified oil from wastewater using froth flotation. M.S Thesis, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand.

٠

 Watcharasing, S. (2004) Diesel Removal by Continuous Froth Flotation : Effects of Ultralow Interfacial Tension and Foam Characteristics. M.S Thesis, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand.

- Withayapanyanon, A. (2003) Microemulsion Formation of Surfactant/Oily
 Wastewater System Related to Clean-Up by Froth Flotation. M.S. Thesis,
 The Petroleum and Petrochemical College, Chulalongkorn University,
 Bangkok, Thailand.
- Wu, B., Harwell, J.H., Sabatini, D.A. and Bailey, J.D. (2000) Alocohol-Free DIPHENYL Oxide Disulfonate Middle-Phase Microemulsion Systems, Journal of Surfactants and Detergents, 3(4), 465-474.
- Wungrattanasopon, S., Scamehorn, J.F., Chavadej. S., Saiwan, C. and Harwell, J.H. (1996) Use of foam flotation to remove *tert*-butylphenol from water. <u>Separation Science and Technology</u>, 31(11), 1523-1540.

APPENDICES

Appendix A Experimental Data of Microemulsion Formation.

1. Interfacial Tension (IFT)

The interfacial tension of each phase of microemulsion is interpreted by the following formulation:

$$IFT = e(Vd)^3 n^2 \Delta \rho \tag{A1}$$

٠

where

$$\sigma = \text{interfacial tension or IFT (mN/m, dyne/cm)}$$

$$e = \text{unity factor (3.427*10-7 mN cm3 min2 /m g mm3)}$$

$$V = \text{enlargement factor (0.31 mm/sdv)}$$

$$d = \text{measured drop diameter (sdv)}$$

$$n = \text{number of revolution (1/min)}$$

$$\Delta \rho = \text{density difference of two liquids (g/cm3)}$$

2. Experimental Data of Interfacial Tension (IFT)

•

Table A1 Interfacial tension of each phase in microemulsion formation with 0.05 wt% of Alfoterra at different NaCl concentrations and an initial oil to water ratio = 1:1

	·							· · · · · · · · · · · · · · · · · · ·
Alfoterra	NaCl	No.	Upper	Lower	Upper	Lower	Speed	IFT
conc.	conc.		density	density	level	level	(rpm)	(mN/m)
(wt%)	(wt%)		(g/mL)	(g/mL)				
0.05	2	1	0.8160	0.9880	4.5900	2.6700	3834	3.87970
		2	0.8130	0.9870	4.6400	2.5500	3744	4.77201
		3			4.6900	2.5700	3665	4.77250
		ave	0.8145	0.9875	4.6400	2.5967		4.47474
	3	1	0.8/13	0.9990	4.5200	2.5700	3910	4.07400
		2	0.8090	0.9940	4.4700	2.6000	3878	3.53430
		3			4.5600	2.5800	3500	3.41739
		ave	0.8090	0.9965	4.5167	2.5833		3.80415
	4	1	0.8080	1.0060	4.5400	2.9900	3708	1.85098
		2	0.8040	1.0020	4.5500	2.8000	3566	2.46379
		3			4.4300	2.8500	3939	2.21243
		ave	0.8060	1.0040	4.5450	2.8800		2.17573
	5	1	0.8090	1.0020	4.7100	2.6100	2855	2.87050
			0.8140		4.7500	2.6300	2923	3.09566
					4.7200	2.7100	2906	2.60776
		ave	0.8115	1.0020	4.7267	2.6500		2.85797
	6	1	0.8180	1.0170	4.5300	2.9100	4116	2.56307
		2	0.8140	1.0120	4.4700	2.8900	4282	2.57353
		3			4.4000	2.9900	5100	2.59456
		ave	0.8160	1.0145	4.5000	2.9300		2.57705

		-		· ··	T		· · · · · · · · · · · · · · · · · · ·	· ··
Alfoterra	NaCl	No.	Upper	Lower	Upper	Lower	Speed	IFT
conc.	conc.		density	density	level	level	(rpm)	(mN/m)
(wt%)	(wt%)		(g/mL)	(g/mL)				
0.1	2	1	0.8000	0.9900	5.0400	2.2000	2223	0.2126
		2	0.8040	0.9820	4.9300	2.3200	2398	0.1921
		3			4.8700	2.4300	2724	0.2025
		ave	0.8020	0.9860	4.9467	2.3167		0.2024
	3	1	0.8320	1.0130	4.9000	2.2400	2085	0.1495
		2	0.8200	0.9970	4.8900	2.2600	2351	0.1837
		3			4.8300	2.2300	2367	0.1800
		ave	0.8260	1.0050	4.8733	2.2433		0.1666
	4	1	0.8110	1.0160	4.7000	2.5100	1784	0.0684
		2	0.8140	1.0100	4.6300	2.4800	2173	0.0961
		3			4.6100	2.5100	1988	0.0749
		ave	0.8125	1.0130	4.6650	2.5000		0.0798
	5	1	0.8030	1.0170	4.4600	2.6800	1710	0.0358
		2	0.8010	1.0120	4.3200	2.7800	1852	0.0272
		3			4.3100	2.7000	1752	0.0278
		ave	0.8020	1.0145	4.3633	2.7200		0.0302
	6	1	0.8000	1.0080	4.6800	2.9800	3742	0.1440
		2	0.8080	1.0100	4.6200	2.8100	3406	0.1440
		3			4.5000	2.9400	3841	0.1172
		ave	0.8040	1.0090	4.6500	2.9100		0.1351

Table A2 Interfacial tension of each phase in microemulsion formation with 0.1 wt%of Alfoterra at different NaCl concentrations and an initial oil to water ratio= 1:1

. .

Alfoterra	NaCl	No.	Upper	Lower	Upper	Lower	Speed	IFT
conc.	conc.		density	densi ty	level	level	(rpm)	(mN/m)
(wt%)	(wt%)		(g/mL)	(g/mL)				
0.15	2	1	0.8020	0.9840	4.8300	2.5900	3643	0.2711
		2	0.8100	0.9840	4.6900	2.6800	4208	0.2613
		3			4.7900	2.6500	3454	0.2125
		ave	0.8060	0.9840	4.7700	2.6400		0.2483
	3	1	0.8110	0.9930	5.0600	2.3500	2181	0.1803
		2	0.8080	0.9990	5.0600	2.3500	2181	0.1803
		3			4.9000	2.5200	3371	0.2917
		ave	0.8095	0.9960	5.0067	2.4067		0.2174
	4	1	0.8010	0.9970	4.6600	2.8100	3650	0.1688
		2	0.8020	0.9980	4.6900	2.7900	4093	0.2299
		3			4.6000	2.8200	3641	0.1496
		ave	0.8015	0.9975	4.6500	2.8067		0.1828
	5	1	0.8070	1.0040	4.5700	2.8800	2024	0.0400
		2	0.7990	0.9980	4.6100	2.8200	2609	0.0789
		3			4.5900	2.8700	2134	0.0468
		ave	0.8030	1.0010	4.5900	2.8567		0.0594
	6	1	0.7870	1.0020	4.5800	2.7800	2580	0.0836
		2	0.7970	1.0040	4.3900	2.9100	2819	0.0555
		3			4.3600	2.8900	2856	0.0558
		ave	0.7920	1.0030	4.4433	2.8600		0.0696

Table A3 Interfacial tension of each phase in microemulsion formation with 0.1wt% at different NaCl concentrations and an initial oil to water ratio = 1:1

Alfoterra	NaCl	No.	Upper	Lower	Upper	Lower	Speed	IFT
conc.	conc.		density	densi ty	level	level	(rpm)	(mN/m)
(wt%)	(wt%)		(g/mL)	(g/mL)				
0.5	2	1	0.8160	0.9940	4.9100	2.3200	1787	0.0994
		2	0.8150	0.9880	4.9300	2.3100	1831	0.1080
		3			4.8000	2.4200	2182	0.1150
		ave	0.8155	0.9910	4.8800	2.3500		0.1075
	3	1	0.8060	0.9890	4.7100	2.6400	1704	0.0490
		2	0.8080	0.9980	4.6700	2.6900	1770	0.0463
		3			4.7000	2.6300	1703	
		ave	0.8070	0.9935	4.6933	2.6533		0.0477
	4	1	0.8240	1.0030	4.3400	3.0000	2811	0.0348
		2	0.8220	1.0020	4.3100	3.1000	3078	0.0308
		3		·	4.3200	3.0000	2944	0.0365
		ave	0.8230	1.0025	4.3233	3.0333		0.0340
	5	1	0.8230	1.0160	4.7500	2.6800	1911	0.0643
		2	0.8240	1.0200	4.6600	2.7200	2502	0.0908
		3			4.6500	2.8200	2478	0.0747
		ave	0.8235	1.0180	4.6867	2.7400		0.0775
	6	1	0.8260	1.0170				0.0000
		2	0.8110	1.0220	4.8100	2.5600	1857	0.0806
		3			4.8000	2.5900	1906	0.0805
		ave	0.8185	1.0195	4.8100	2.5750		0.0805

Table A4 Interfacial tension of each phase in microemulsion formation with 0.5wt% at different NaCl concentrations and initial oil to water ratio = 1:1

Appendix B Experimental Data of Colloidal Gas Aphron Studies.

*

1. CGA stability

The CGA stability was defined as the time that was required for the half volume of the initial liquid to drain

2. Gas hold up

The gas hold up was defined as the ratio of gas volume to the dispersion volume which was calculated by the following equations:

Gas hold up =
$$\frac{V_g}{V_i} = \frac{V_i - V_l}{V_i}$$
 (B1)

where

 V_g = Gas volume V_1 = Initial liquid volume V_i = Dispersion volume

3. Separation ratio

The separation ratio was defined as the ratio of oil concentration in aphron phase to the liquid phase which was calculated by the following equations:

Separation ratio =
$$\frac{C_a}{C_l}$$
 (B2)

where $C_a = \text{concentration of oil in the aphron phase}$ $C_l = \text{concentration of oil in the liquid phase}$

4. Enrichment Ratio

The enrichment was defined as the ratio of oil concentration in aphron phase to the initial solution which was calculated by the following equations:

Enrichment ratio =
$$C_a$$
 (B3)
 C_i

where $C_a = \text{concentration of oil in the aphron phase}$ $C_i = \text{concentration of oil in the initial solution}$

5. Oil removal

The oil removal was calculated by the following equations:

Oil removal (%) =
$$\frac{C_i - C_l}{C_i}$$
 (B4)

where C_1 = concentration of oil in the liquid phase C_i = concentration of oil in the initial solution

e

6. Effective parameter in colloidal gas aphron studies

-

6.1 Effect of stirring speed

Table B-1 Summary results for the effect of stirring speed in colloidal gas aphron studies at the system containing Alfoterraconcentration = 0.1 wt%, NaCl concentration = 3 wt%, oil to water ratio = 1:19 at stirring time = 5 minute

System	Stirring speed	CGA stability	Gas hold up	Separation	Enrichment	Oil removal
	(rpm)	(sec)		ratio	ratio	(%)
1:19 Alf 0.1 N 3	4000	4.00	0.576	7.39	7.38	88.59
	5000	6.00	0.648	11.14	8.16	92.14
	6000	8.12	0.657	10.82	7.64	91.91
	7000	9.00	0.663	9.48	6.40	90.93
	8000	9.47	0.663	7.32	7.40	88.57

6.2 Effect of stirring time

Table B-2 Summary results for the effect of stirring time in colloidal gas aphron studies at the system containing Alfoterraconcentration = 0.1 wt%, NaCl concentration = 3 wt%, oil to water ratio = 1:19 at stirring speed = 5000 rpm

System	Stirring time (min)	CGA stability (sec)	Gas hold up	Separation ratio	Enrichment ratio	Oil removal (%)
1:19 Alf 0.1 N 3	2	5.21	0.642	4.77	11.17	83.54
	5	6.00	0.648	11.14	8.16	92.14
	10	10.30	0.689	7.52	6.77	88.91
	15	17.04	0.694	5.38	6.69	84.98

6.3 Effect of surfactant concentration

Table B-3Summary results for the effect of surfactant concentration in colloidal gas aphron studies at the system containing NaClconcentration = 3 wt%, oil to water ratio = 1:19 at stirring speed = 5000 rpm, stirring time = 5 minute

System	Surfactant conc.	CGA stability	Gas hold up	Separation	Enrichment	Oil removal
	(wt%)	(sec)		ratio	ratio	(%)
1:19 Alf 0.1 N 3	0.05	6.00	0.635	8.40	10.16	89.62
	0.1	6.00	0.648	11.14	8.16	92.14
	0.15	8.15	0.670	5.47	7.41	85.06
	0.5	16.27	0.703	4.83	9.43	83.25

6.4 Effect of NaCl concentration

Table B-4 Summary results for the effect of NaCl concentration in colloidal gas aphron studies at the system containing Alfoterraconcentration = 0.1 wt%, oil to water ratio = 1:19 at stirring speed = 5000 rpm, stirring time = 5 minute

System	NaCl conc. (wt%)	CGA stability (sec)	Gas hold up	Separation ratio	Enrichment ratio	Oil removal (%)
1:19 Alf 0.1 N 3	2	10.25	0.689	11.27	5.57	91.57
	3	6.00	0.648	11.35	8.16	92.15
	4	4.46	0.635	6.99	10.3	87.51
	5	3.15	0.630	6.15	11.57	85.86
	6	2.48	0.612	4.88	12.85	82.67

Appendix C Experimental Data of Froth Flotation Experiment.

1. Dynamic oil removal

The oil removal was calculated by the following formulation:

Oil removal (%) =
$$(\underline{C_i - C_t}) * 100$$
 (C1)
 $\underline{C_i}$

where C_t = concentration of oil in a solution at time t C_i = concentration of oil in a solution at time zero

2. Surfactant removal

The surfactant removal was calculated by the following formulation:

Surfactant removal (%) =
$$(C_{s,i} - C_{s,t}) * 100$$
 (C2)
where $C_{s,t}$ = concentration of surfactant in a solution at time t
 $C_{s,i}$ = concentration of surfactant in a solution at time zero

3. Enrichment Ratio

The enrichment ratio was calculated by the following formulation:

Enrichment ratio =
$$\frac{C_f}{C_i}$$
 (C3)

where
$$C_f = \text{concentration of oil in the collapsed foam solution}$$

 $C_i = \text{concentration of oil in the feed solution}$

4. Effective Parameter on froth flotation performance

4.1 Effect of air flow rate

Table C-1 Summary results for the effect of air flow rate on froth flotation performance at the system containing Alfoterra concentration = 0.1 wt%, NaCl concentration = 3 wt% at oil to water ratio = 1:19

System	Air flow rate	Oil removal	Surfactant	Enrichment	Foam flow rate	Foam wetness
	(l/min)	(%)	Removal (%)	ratio	(ml/min)	(g/ml)
1:19 Alf 0.1 N3	0.20	92.80	74.26	7.84	0.5	1.01
	0.25	91.52	70.54	7.11	0.52	1.02
	0.30	95.14	79.64	5.59	0.56	1.05
	0.35	91.50	79.41	4.92	0.55	1.00

4.2 Effect of colloidal gas aphron

.

Table C-2 Summary results for the effect of colloidal gas aphron on froth flotation performance at the system containing Alfoterraconcentration = 0.1 wt%, NaCl concentration = 3 wt%, stirring speed = 5000 rpm, stirring time = 5 minute at oil to water ratio = 1:19

System	Air flow rate	Oil removal	Surfactant	Enrichment	Foam flow rate	Foam wetness
	(l/min)	(%)	Removal (%)	ratio	(ml/min)	(g/ml)
1:19 Alf 0.1 N3	0.20	96.29	86.69	7.36	0.6	1.01
Speed 5000	0.25	96.11	86.91	6.46	0.75	1.06
Time 5	0.30	97.07	86.37	5.53	0.84	1.10
	0.35	95.51	83.41	4.58	0.76	1.06

4.3 Effect of equilibration time

-

٠

Table C-3 Summary results for the effect of equilibration time on froth flotation performance at the system containing Alfoterraconcentration = 0.1 wt%, NaCl concentration = 3 wt%, oil to water ratio = 1:19 at equilibration time of 1 month

System	Air flow rate	Oil removal	Surfactant	Enrichment	Foam flow rate	Foam wetness
	(l/min)	(%)	Removal (%)	ratio	(ml/min)	(g/ml)
1:19 Alf 0.1 N3	0.20	83.06	49.08	7.59	0.35	0.95
Equilibrated	0.25	83.08	52.59	5.26	0.35	0.98
	0.30	85.77	53.31	5.12	0.48	0.99
	0.35	83.63	57.07	4.61	0.41	0.96

Appendix D Experimental Data of Foam Ability and Foam Stability Experiment.

1. Foam ability

The foam ability was defined as the ratio of maximum foam height to initial solution height

	Foam ab	$\frac{\text{Dility}}{H_i} = \frac{H_{\text{max}}}{H_i}$	(D1)
where	H _{max.} ==	Maximum foam height	
	H _i =	Initial solution height	

2. Foam Stability $(t_{1/2})$

The foam stability was defined as the time that was required for the foam volume to collapse by half.

.

3. Effective parameter on foam ability and foam stability

3.1 Effect of air flow rate

Table D-1 Summary results for the effect of air flow rate on foam ability and foamstability at the system containing Alfoterra concentration = 0.1 wt%,

NaCl

System	Air flow rate	Foam ability	Foam stability
	(l/min)		(min)
1:19 Alf 0.1 N3	0.20	9.09	2.17
	0.25	13.91	2.31
	0.30	20.27	3.25
	0.35	12.73	2.00

concentration = 3 wt% at oil to water ratio = 1:19

3.2 Effect of colloidal gas aphron

 Table D-2
 Summary results for the effect of colloidal gas aphron on foam ability

 and

foam stability at the system containing Alfoterra concentration = 0.1 wt%, NaCl concentration = 3 wt% stirring speed = 5000 rpm, stirring time = 5minute at oil to water ratio = 1:19

System	Air flow rate (l/min)	Foam ability	Foam stability (min)
1:19 Alf 0.1 N3	0.20	12.27	4.57
Speed 5000	0.25	17.45	4.20
Time 5	0.30	20.27	5.58
	0.35	20.27	5.04

3.3 Effect of equilibration time

4

Table D-3Summary results for the effect of equilibration time on foam ability and
foam stability at the system containing Alfoterra concentration = 0.1 wt%,
NaCl = 3 wt%, oil to water ratio = 1:19 at equilibration time of 1 month

System	Air flow rate	Foam ability	Foam stability
1.10.4150.1.112	() 1111)	1 10	0.51
1:19 Alf 0.1 N3	0.20	1.18	0.51
Equilibrated	0.25	1.64	0.57
	0.30	2.45	1.05
	0.35	2.27	0.35

CURRICULUM VITAE

Name: Ms. Panita Angkathunyakul

Date of Birth: March 17, 1981

Nationality: Thai

University Education:

1999-2003 Bachelor Degree of Science in Chemical Engineering, Faculty of Science, Chulalongkorn University, Bangkok, Thailand

.