REFERENCES

Baumgarten, P.K. (1971) Electrospinning of acrylic microfibers. Journal of Colloid and Interface Science, 36, 71-79.

Berry, JP. (1990) U.S. Patent No. 4965110.

- Boland, E.D., Wnek, G.E., Simpson, D.G., Palowski, K.J., and Bowlin, G.L. (2001)
 Tailoring tissue engineering scaffolds using electrostatic processing technique: a study of poly (glycolic acid) electrospinning. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 38(12), 1231-1243.
- Bongnitzki, M., Czado, W., Frese, T., Schaper, A., Hellwig, M., Streinhart, M., Griner, A., and Wendorff, J.H. (2001) Nanostructured fibers via electrospinning. <u>Advanded Material</u>, 13, 70-73.
- Bourbigot, S., Flambard, X., and Revel, B. (2002) Characterisation of poly(p-phenylenebenzobisoxazole) fibres by solid state NMR. <u>European Polymer</u> <u>Journal</u>, 38, 1645-1651.
- Buchko, C.J., Chen, L.C., Shen, Y., and Martin, D.C. (1999) Processing and microstructural characterization of porous biocompatible protein polymer thin films. <u>Polymer</u>, 40, 7397-7407.
- Deitzel, J.M., Kleinmeyer, J.D., Hirvonen, J.K., and Beck, T.N.C. (2001) Controlled deposition of electrospun poly(ethylene oxide) fibers. <u>Polymer</u>, 42, 8163-8170.
- Doshi, J., and Reneker, D.H. (1995) Electrospinning process and applications of electrospun fibers. Journal of Electrostatic, 35, 151-160.
- Entov, V.M., Shmaryan, L.E. (1997) Numerical modeling of the capillary break up of jets of polymer liquids. <u>Fluid Dynamics</u>, 32(5), 696-703.
- Fong, H., Chun, I., and Reneker, D.H. (1999) Beaded nanofibers formed during electrospinning. <u>Polymer</u>, 40, 4585-4592.
- Fong, H., Liu, W., Wang, C.S., and Vaia, R.A. (2002) Generation of electrospun fibers of nylon6 and nylon6-montmorillonite nanocomposite. <u>Polymer</u>, 43, 775-780.

Fong, H., and Reneker, D.H. (Eds.). (2001) <u>Structure formation in polymeric fibers</u>. Munich: Hanser.

Formhals, A. (1934) U.S. Patent No. 1975504.

- Gibson, P.W., Schreuder-Gibson, H.L., and Rivin, D. (1999) Electrospun fiber mats: Transport properties. <u>American Institute of chemical Engineers</u>, 45(1), 190-195.
- Grählert, W., Leupolt, B., and Hopfe, V. (1999) Optical modeling vs. FTIR reflectance microscopy: characterization of laser treated ceramic fibres. <u>Vibrational Spectroscopy</u>, 19, 353-359.
- Hongrojjanawiwat, W., Jarusuwannapoom, T., Supaphol, P., Rangkupan, R.,
 Koombhongse, P., and Pattamaprom, C. Electro-spinnability of polystyrene
 nanofibers: influenced of solvent functionality on productivity. <u>Journal of</u>
 Polymer Science B: Polymer Physics, submitted.
- Huang, Z.-M., Zhang, Y.-Z., Kotaki, M., Ramakrishna, S. (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. <u>Composite Science and Technology</u>, 63, 2223-2253.
- Jarusuwannapoom, T., Hongrojjanawiwat, W., Jitjaicham, S., Wannatong, L., Nithitanakul, M., Pattamaprom, C., Koombhongse, P., Rangkupan, R., and Supaphol, P. (2005) Effect of solvents on electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers. <u>European Polymer Journal</u>, 41, 409-421.
- Kenawy, E.-R., Layman, J.M., Watkins, J.R., Bowlin, G.L., Matthews, J.A., Simpson, D.G., and Wnek, G.E. (2003) Electrospinning of poly(ethyleneco-vinyl alcohol) fibers. <u>Biomaterials</u>, 24, 907-913.
- Larrondo, L., Manley, J. (1981) Electrostatic fiber spinning from polymer melts I. Experimental observations on fiber formation and properties. <u>Journal of</u> <u>polymer Science: Polymer Physics Edition</u>, 19, 909-920.
- Lee, K.H., Kim, H.Y., Bang, H.J., Jung, Y.H., and Lee, S.G. (2003) The change of bead morphology formed on electrospun polystyrene fibers. <u>Polymer</u>, 44, 4029-4034.

- Lee, K.H., Kim, H.Y., La, Y.M., and Lee, D.R. (2003) Characterization of nanostructured poly(ε-caprolactone) nonwoven mats via electrospinning. polymer, 44, 1287-1294.
- Lee, K.H., Kim, H.Y., La, Y.M., Lee, D.R., and Sung, N.H. (2002) Influence of a mixing solvent with tetrahydrofuran and N,N-Dimethylformamide on Electrospun poly(vinyl chloride) Nonwoven mats. <u>Journal of Polymer</u> <u>Science Part B: Polymer_Physics</u>, 40, 2259-2268.
- Li, W.J., Laurencin, C.T., Caterson, E.J., Tuan, R.S., and Ko, F.K. (2002) Electrospun nanofibrous structure: A novel scaffold for tissue engineering. Journal of Biomedical Materials Research, 60(4), 613-621.
- Demir, M.M., Yilgor, I., Yilgor, E., and Erman, B. (2002) Electrospinning of polyurethane fibers. <u>Polymer</u>, 43, 3303-3309.
- Norris, I.D., Shaker, M.M., Ko, F.K., and MacDiarmid, A.G. (2000) Eelctrostatic fabrication of ultrafine conducting fibers: polyaniline/polyethylene oxide blends. <u>Synthetic Metals</u>, 114, 109-114.
- Puygranier, B.A.F., Montgomery, S., Ashe, J., Turner, R.J., and Dawson, P. (2001) Imaging tip formation in single-mode optical fibres. <u>Ultramicroscopy</u>, 86, 233-239.
- Reneker, D.H., and Chun, I. (1996) Nanometer diameter fibers of polymer, produced by electrospinning. <u>Nanotechnology</u>, 7, 216-223.
- Taylor, G.I. (1964) Disintegration of water drops in an electric field. <u>Proceeding of</u> <u>the Royal Society of London</u>, 280, 383-397.
- Theron, A., Zussman, E., and Yarin, AL. (2001) Electrostatic field assisted alignment of electrospun nanofibers. <u>Nanotechnology</u>, 12, 384-390.
- Wannatong, L., Sirivat, A., and Supaphol, P. (2004) Effects of solvents on electrospun polymeric fibers: preliminary study on polystyrene. <u>Polymer</u> <u>International</u>, 53, 1851-1859.
- Zussman, E., Yarin, A.L., and Weihs, D. (2002) A micro-aerodynamic decelerator based on permeable surfaces of nanofiber mats. <u>Experiments in Fluids</u>, 33, 315-320.

APPENDICES

Appendix A Effect of applied electrical field strength (i.e. 1:1, 2:1, and 3:1) on the fiber diameter and electrospinnability. Under positive polarity emitting electrode

Solution con	ditions	Process	ing conditions	Results		
PS		applied	collection	Fiber	Electro-	
concentration	Solvent	voltage	distance	diameter	spinnability	
(%w/v)		(kV)	(cm)	(µm)	(%)	
10	DCE	7	7	0.82 ± 0.22	47.64	
10	DCE	14	7	0.90 ± 0.26	44.47	
10	DCE	21	7	1.07 ± 0.24	40.22	
10	DCE	25	25	1.15 ± 0.26	31.62	
10	DCE	25	12.5	1.24 ± 0.24	51.95	
10	DCE	25	8.3	1.42 ± 0.29	55.55	
20	DCE	7	7	-	-	
20	DCE	14	7	-	-	
20	DCE	21	7	5.16 ± 1.27	25.25	
20	DCE	25	25	4.80 ± 2.38	29.09	
20	DCE	25	12.5	5.08 ± 1.22	31.70	
20	DCE	25	8.3	6.87 ± 1.74	35.09	
30	DCE	7	7	2.50 ± 0.47	78.08	
30	DCE	14	7	5.27 ± 0.61	65.77	
30	DCE	21	7	6.70 ± 1.18	38.12	
30	DCE	25	25	4.40 ± 1.06	26.57	
30	DCE	25	12.5	5.08 ± 1.22	26.89	
30	DCE	25	8.3	5.53 ± 1.87	36.17	
10	DMF	7	7	1.25 ± 0.31	59.16	
10	DMF	14	7	1.62 ± 0.37	54.51	
10	DMF	21	7	2.02 ± 0.54	46.21	
10	DMF	25	25	2.19 ± 0.52	21.62	
10	DMF	25	12.5	2.35 ± 0.58	62.24	
10	DMF	25	8.3	2.47 ± 0.51	69.18	

Table A1 Fiber diameter and electrospinnability of as-spun PS fibers

Solution cor	Solution conditions		ing conditions	Results		
PS		applied	collection	Fiber	Electro-	
concentration	Solvent	voltage	distance	diameter	spinnability	
(%w/v)		(kV)	(cm)	(µm)	(%)	
20	DMF	7	7	2.50 ± 0.47	59.90	
20	DMF	14	7	3.22 ± 0.71	58.41	
20	DMF	21	7	4.29 ± 0.66	57.72	
20	DMF	25	25	3.01 ± 0.37	71.97	
20	DMF	25	12.5	3.28 ± 0.64	74.13	
20	DMF	25	8.3	4.78 ± 0.50	66.21	
30	DMF	7	7	5.74 ± 0.74	53.82	
30	·DMF	14	7	8.47 ± 0.60	60.62	
30	DMF	21	7	11.50 ± 1.77	44.70	
30	DMF	25	25	7.93 ± 0.63	62.84	
30	DMF	25	12.5	8.29 ± 1.32	62.23	
30	DMF	25	8.3	15.70 ± 1.69	67.12	
10	EA	7	7	-	-	
10	EA	14	7	0.64 ± 0.16	20.55	
10	EA	21	7	1.34 ± 0.33	23.02	
10	EA	25	25	0.77 ± 0.25	28.73	
10	EA	25	12.5	1.04 ± 0.26	30.61	
10	EA	25	8.3	1.13 ± 0.29	36.17	
20	EA	7	7	3.49 ± 0.15	38.54	
20	EA	14	7	6.92 ± 1.47	39.36	
20	EA	21	7	7.42 ± 1.08	34.87	
20	EA	25	25	8.90 ± 2.83	24.64	
20	EA	25	12.5	9.70 ± 1.65	27.03	
20	EA	25	8.3	21.60 ± 8.47	59.73	

Table A1 (cont.) Fiber diameter and electrospinnability of as-spun PS fibers

			-					
	Solution cor	nditions	Process	sing conditions	Res	Results		
	PS		applied	collection	Fiber	Electro-		
	concentration	Solvent	voltage	distance	diameter	spinnability		
	(%w/v)		(kV)	(cm)	(µm)	(%)		
	30	EA	7	7	3.53 ± 0.53	47.20		
	30	EA	14	7	8.21 ± 1.59	42.70		
	30	EA	21	7	15.21 ± 2.25	26.74		
	30	EA	25	25	13.20 ± 3.35	42.62		
	30	EA	25	12.5	21.00 ± 2.89	48.51		
	30	EA	25	8.3	23.90 ± 3.95	54.19		
	10	MEK	7	7	0.96 ± 0.24	41.20		
	10	MEK	14	7	1.26 ± 0.28	46.25		
	10	MEK	21	7	1.28 ± 0.27	52.28		
	10	MEK	25	25	1.25 ± 0.25	29.72		
	10	MEK	25	12.5	1.32 ± 0.26	27.22		
	10	MEK	25	8.3	1.44 ± 0.23	29.63		
	20	MEK	7	7	3.51 ± 0.52	45.73		
	20	MEK	14	7	7.20 ± 2.27	51.20		
	20	MEK	21	7	8.23 ± 1.88	34.31		
	20	MEK	25	25	4.78 ± 0.85	48.83		
	20	MEK	25	12.5	6.36 ± 1.10	50.83		
	20	MEK	25	8.3	7.30 ± 1.74	50.38		
-8-	30	MEK	7	7	9.78 ± 0.97	65.63		
	30	MEK	14	7	11.49 ± 1.06	59.98		
	30	MEK	21	7	13.59 ± 2.08	50.29		
	30	MEK	25	25	8.85 ± 1.47	55.12		
	30	MEK	25	12.5	9.23 ± 0.98	48.42		
	30	MEK	25	8.3	11.50 ± 3.49	54.88		

Table A1 (cont.) Fiber diameter and electrospinnability of as-spun PS fibers

.

Appendix B Effect of applied electrical field strength (i.e. 1:1, 2:1, and 3:1) on the fiber diameter and electrospinnability. Under negative polarity emitting electrode

Solution conditions		Process	ssing conditions Results		
		annlied	collection	Fiber	Flectro
concentration	Solvent	voltage	distance	diameter	spinnability
(% w/v)		(kV)	(cm)		
10	DCF	7	7	(µIII)	(70)
10	DCE	14	7	0.87 ± 0.17	32.84
10	DCE	21	7	0.87 ± 0.17	28.00
10	DCE	21	25	0.92 ± 0.22	15.70
10	DCE	25	12.5	0.08 ± 0.18	15.70
10	DCE	25	12.5	1.00 ± 0.26	46.06
10	DCE	25	8.3	1.15 ± 0.23	57.17
20	DCE	7	7	1.10 ± 0.22	12.78
20	DCE	14	7	2.87 ± 0.48	49.46
20	DCE	21	7	3.27 ± 0.44	66.44
20	DCE	25	25	3.09 ± 0.65	45.07
20	DCE	25	12.5	3.12 ± 1.02	60.65
20	DCE	25	8.3	4.18 ± 0.79	65.56
30	DCE	7	7	-	-
30	DCE	14	7	-	-
30	DCE	21	7	4.00 ± 0.44	45.17
30	DCE	25	25	5.92 ± 1.30	20.85
30	DCE	25	12.5 .	11.30 ± 1.83	52.62
30	DCE	25	8.3	12.10 ± 2.45	52.74
10	DMF	7	7	-	-
10	DMF	14	7	1.28 ± 0.24	32.70
10	DMF	21	7	1.31 ± 0.23	27.34
10	DMF	25	25	1.32 ± 0.37	42.21
10	DMF	25	12.5	1.93 ± 0.35	70.43
10	DMF	25	8.3	3.62 ± 0.67	64.51

 Table B1
 Fiber diameter and electrospinnability of as-spun PS fibers

-

Solution cor	ditions	Process	ing conditions	Re	Results	
PS		applied	collection	Fiber	Electro-	
concentration	Solvent	voltage	distance	diameter	spinnability	
(%w/v)		(kV)	(cm)	(μm)	(%)	
20	DMF	7	7	1.93 ± 0.58	29.75	
20	DMF	14	7	5.90 ± 2.20	23.35	
20	DMF	21	7	7.46 ± 1.19	34.55	
20	DMF	25	25	8.39 ± 1.60	62.90	
20	DMF	25	12.5	8.60 ± 1.66	65.25	
20	DMF	25	8.3	9.10 ± 1.96	74.64	
30	DMF	7	7	2.12 ± 0.30	66.05	
30	DMF	14	7	5.71 ± 0.74	57.04	
30	DMF	21	7	9.56 ± 1.93	50.78	
30	DMF	25	25	-	-	
30	DMF	25	12.5	7.29 ± 1.21	34.51	
30	DMF	25	8.3	8.55 ± 1.52	36.06	
10	EA	7	7	_	_	
10	EA	14	7	1.04 ± 0.27	29.02	
10	EA	21	7	1.16 ± 0.39	30.29	
10	EA	25	25	0.75 ± 0.18	42.82	
10	EA	25	12.5	1.24 ± 0.29	41.58	
10	EA	25	8.3	-	_	
20	EA	7	7	-	-	
20	EA	14	7	-	-	
20	EA	21	7	-	-	
20 •	EA	25	25	2.73 ± 0.81	6.10	
20	EA	25	12.5	7.52 ± 1.91	32.55	
20	EA	25	8.3	-	-	

Table B1 (cont.) Fiber diameter and electrospinnability of as-spun PS fibers

Solution con	ditions	Process	ing conditions	Res	ults
PS		applied	collection	Fiber	Electro-
concentration	Solvent	voltage	distance	diameter	spinnability
(%w/v)		(kV)	(cm)	(µm)	(%)
30	EA	7	7	1.14.1	
30	EA	14	7	-	-
30	EA	21	7	26.80 ± 3.54	55.90
30	EA	25	25	16.50 ± 6.65	62.29
30	EA	25	12.5	31.40 ± 3.06	82.60
30	EA	25	8.3	55.50 ± 9.60	35.25
10	MEK	7	7	-	-
10 -	MEK	14	7	-	-
10	MEK	21	7	1.50 ± 0.32	29.55
10	MEK	25	25	1.08 ± 0.26	17.43
10	MEK	25	12.5	1.66 ± 0.38	33.30
10	MEK	25	8.3	-	-
20	MEK	7	7	4.19 ± 1.03	34.71
20	MEK	14	7	5.76 ± 1.85	43.02
20	MEK	21	7	6.06 ± 0.90	71.14
20	MEK	25	25	5.52 ± 1.61	38.57
20	MEK	25	12.5	6.04 ± 1.29	10.38
20	MEK	25	8.3	6.19 ± 1.65	62.29
30	MEK	7	7	-	-
30	MEK	14	7	4.10 ± 3.31	55.31
30	MEK	21	7	15.10 ± 2.31	31.92
30	MEK	25	25	3.00 ± 0.53	19.29
30	MEK	25	12.5	3.10 ± 0.82	29.82
30	MEK	25	8.3	4.69 ± 0.88	52.66

 Table B1 (cont.)
 Fiber diameter and electrospinnability of as-spun PS fibers

Appendix C Effect of applied electrical field strength (i.e. 15 kV/10 cm, 20 kV/10 cm, and 25 kV/10 cm) on the fiber diameter and electrospinnability. Under positive polarity emitting electrode

 Table C1
 Fiber diameter and electrospinnability of as-spun PS fibers

· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·		
Solution cor	nditions	Process	ing conditions	Results		
PS		applied	collection	Fiber	Electro-	
concentration	Solvent	voltage	distance	diameter	spinnability	
(%w/v)		(kV)	(cm)	(μm)	(%)	
10	DCE	20	7		-	
10	DCE	20	10	_	-	
10	DCE	20	15	0.63 ± 0.18	49.11	
10	DCE	15	10	-	-	
10	DCE	20	10	-	-	
10	DCE	25	10	-	-	
20	DCE	20	7	5.82 ± 0.89	43.65	
20	DCE	20	10	10.45 ± 1.73	39.80	
20	DCE	20	15	15.7 ± 3.47	50.20	
20	DCE	15	10	8.3 ± 1.62	54.50	
20	DCE	20	10	10.45 ± 1.73	39.80	
20	DCE	25	10	20.9 ± 4.87	32.66	
30	DCE	20	7	25.5 ± 3.94	55.36	
30	DCE	20	10	25.1 ± 4.08	48.25	
30	DCE	20	15	13.7 ± 2.44	39.39	
30	DCE	15	10	21.0 ± 3.53	55.15	
30	DCE	20	10	25.1 ± 4.08	48.30	
30	DCE	25	10	35.4 ± 7.12	47.03	
10	DMF	20	7	2.44 ± 0.48	42.58	
10	DMF	20	10	2.39 ± 0.83	38.23	
10	DMF	20	15	2.15 ± 0.41	17.51	
10	DMF	15	10	2.09 ± 0.42	39.33	
10	DMF	20	10	2.39 ± 0.85	38.23	
10	DMF	25	10	2.77 ± 0.46	23.46	

Solution con	ditions	Process	ing conditions	Resu	lts
PS		applied	collection	Fiber	Electro-
concentration	Solvent	voltage	distance	diameter	spinnability
(%w/v)		(kV)	(cm)	(µm)	(%)
20	DMF	20	7	17.20 ± 4.69	41.4
20	DMF	20	10	17.00 ± 3.71	38.28
20	DMF	20	15	16.60 ± 3.06	42.73
20	DMF	15	10	9.17 ± 2.87	37.29
20	DMF	20	10	17.00 ± 3.71	38.28
20	DMF	25	10	18.70 ± 4.97	51.98
30	DMF	20	7	46.50 ± 11.97	56.75
30	DMF	20	10	28.90 ± 7.21	52.58
30	DMF	20	15	22.60 ± 4.14	50.80
30	DMF	15	10	24.20 ± 3.52	65.57
30	DMF	20	10	28.90 ± 7.21	52.58
30	DMF	25	10	30.20 ± 4.63	52.12
10	EA	20	7	1.96 ± 0.45	27.41
10	EA	20	10	1.19 ± 0.31	25.78
10	EA	20	15	1.09 ± 0.34	24.57
10	EA	15	10	0.85 ± 0.16	27.17
10	EA	20	10	1.19 ± 0.31	25.78
10	EA	25	10	1.39 ± 0.25	25.29
20	EA	20	7	6.40 ± 1.60	48.33
20	EA	20	10	5.31 ± 1.04	33.74
20	EA	20	15	5.00 ± 1.80	29.73
20	EA	15	10	4.99 ± 1.59	44.52
20	EA	20	10	5.31 ± 1.04	33.74
20	EA	25	10	8.23 ± 1.53	38.92

Table C1 (cont.) Fiber diameter and electrospinnability of as-spun PS fibers

Solution con	ditions	Process	ing conditions	Results		
PS		applied	collection	Fiber	Electro-	
concentration	Solvent	voltage	distance	diameter	spinnability	
(%w/v)		(kV)	(cm)	(µm)	(%)	
30	EA	20	7	9.90 ± 2.27	42.03	
30	EA	20	10	9.78 ± 1.79	37.83	
30	EA	20	15	8.52 ± 0.88	27.72	
30	EA	15	10	9.24 ± 2.44	60.45	
30	EA	20	10	9.78 ± 1.79	37.83	
30	EA	25	10	17.40 ± 3.00	29.68	
10	MEK	20	7	-	-	
10	MEK	20	10 -	-	-	
10	MEK	20	15	-	-	
10	MEK	15	10	-	-	
10	MEK	20	10	-	-	
10	MEK	25	10	4.40 ± 3.39	55.81	
20	MEK	20	7	11.20 ± 2.57	63.99	
20	MEK	20	10	8.00 ± 2.31	59.47	
20	MEK	20	15	6.98 ± 1.88	51.22	
20	MEK	15	10	7.61 ± 2.60	50.28	
20	MEK	20	10	8.00 ± 2.31	59.47	
20	MEK	25	10	10.72 ± 1.76	50.13	
30	MEK	20	7	25.10 ± 3.76	41.40	
30	MEK	20	10	18.90 ± 6.21	40.64	
30	MEK	20	15	5.68 ± 1.16	18.61	
<u> </u>	MEK	15	10	7.71 ± 0.55	48.69	
30	MEK	20	10	18.90 ± 6.21	40.64	
30	MEK	25	10	23.90 ± 4.56	36.26	

 Table C1 (cont.)
 Fiber diameter and electrospinnability of as-spun PS fibers

Appendix D Effect of applied electrical field strength (i.e. 15 kV/10 cm, 20 kV/10 cm, and 25 kV/10 cm) on the fiber diameter and electrospinnability in mixed solvent systems. Under positive polarity emitting electrode

Table D1	Fiber	diameter	and	electros	pinnability	y of	as-spur	ı PS	fibers	in	DMF/	DCE
----------	-------	----------	-----	----------	-------------	------	---------	------	--------	----	------	-----

Solution co	onditions	Processi	ng conditions	Results		
PS		applied	collection	Fiber	Electro-	
concentration	DMF/DCE	voltage	distance	diameter	spinnability	
(%w/v)	(%v/v)	(kV)	(cm)	(µm)	(%)	
10	75/25	20	7	2.21 ± 0.63	30.42	
10	75/25	20	10	1.12 ± 0.39	29.53	
10 .	75/25	20	15	0.85 ± 0.21	26.84	
10	75/25	15	10	0.79 ± 0.22	22.78	
10	75/25	20	10	1.12 ± 0.39	29.53	
10	75/25	25	10	1.90 ± 0.42	39.21	
20	75/25	20	7	8.10 ± 0.90	68.42	
20	75/25	20	10	7.64 ± 1.54	53.68	
20	75/25	20	15	7.19 ± 1.40	47.43	
20	75/25	15	10	5.68 ± 1.00	66.24	
20	75/25	20	10	7.64 ± 1.54	53.68	
20	75/25	25	10	9.32 ± 3.09	42.86	
30	75/25	20	7	19.37 ± 2.66	74.04	
30	75/25	20	10	14.82 ± 3.51	45.65	
30	75/25	20	15	13.17 ± 1.55	50.00	
30	75/25	15	10	13.88 ± 1.95	47.69	
30	75/25	20	10	14.82 ± 3.51	45.65	
30	75/25	25	10	17.65 ± 3.59	36.52	
10	50/50	20	7	1.59 ± 0.42	53.02	
10	50/50	20	10	1.48 ± 0.52	32.07	
10	50/50	20	15	1.26 ± 0.40	28.80	
10	50/50	15	10	1.06 ± 0.31	36.61	
10	50/50	20	10	1.48 ± 0.52	32.07	
10	50/50	25	10	1.51 ± 0.42	31.67	

Solution co	onditions	Process	ing conditions	Resu	ults
PS		applied	collection	Fiber	Electro-
concentration	DMF/DCE	voltage	distance	diameter	spinnability
(%w/v)	(%v/v)	(kV)	(cm)	(µm)	(%)
20	50/50	20	7	7.95 ± 1.57	57.68
20	50/50	20	10	2.81 ± 1.20	49.96
20	50/50	20	15	2.50 ± 1.06	46.66
20	50/50	15	10	2.62 ± 0.87	54.59
20	50/50	20	10	2.81 ± 1.20	49.96
20	50/50	25	10	3.45 ± 1.94	45.72
30	50/50	20	7	6.08 ± 1.65	40.65
30	50/50	20	10	3.98 ± 1.22	38.88
30	50/50	20	15	3.86 ± 1.07	38.93
30	50/50	15	10	3.92 ± 1.21	45.74
30	50/50	20	10	3.98 ± 1.22	38.88
30	50/50	25	10	6.20 ± 1.46	32.19
10	25/75	20	7	1.43 ± 0.36	43.43
10	25/75	20	10	1.19 ± 0.24	24.42
10	25/75	20	15	1.11 ± 0.29	23.99
10	25/75	15	10	1.18 ± 0.36	12.78
10	25/75	20	10	1.19 ± 0.24	24.42
10	25/75	25	10	1.68 ± 0.37	41.92
20	25/75	20	7	8.76 ± 2.66	46.05
20	25/75	20	10	5.26 ± 1.89	45.79
20	25/75	20	15	2.84 ± 1.01	' 48.45
20	25/75	15	10	4.06 ± 1.69	35.74
20	25/75	20	10	5.26 ± 1.89	45.79
20	25/75	25	10	8.65 ± 2.96	41.81
30	25/75	20	7	20.81 ± 4.32	52.16
30	25/75	20	10	6.27 ± 1.01	64.98
30	25/75	20	15	5.24 ± 1.06	49.40
30	25/75	15	10	5.06 ± 0.94	82.89
30	25/75	20	10	6.27 ± 1.01	64.98
30	25/75	25	10	7.61 ± 1.23	58.06

Table D1 (cont.)Fiber diameter and electrospinnability of as-spun PS fibers inDMF/DCE

	Solution conditions		Processi	ng conditions	Results	
	PS		applied	collection	fiber	Electro-
	concentration	DMF/EA	voltage	distance	diameter	spinnability
	(%w/v)	(%v/v)	(kV)	(cm)	(µm)	(%)
	10	75/25	20	7	1.72 ± 0.50	61.92
	10	75/25	20	10	1.55 ± 0.35	52.14
	10	75/25	20	15	1.40 ± 0.29	26.84
	10	75/25	15	10	1.45 ± 0.36	44.09
	10	75/25	20	10	1.55 ± 0.35	52.14
	10	75/25	25	10	1.85 ± 0.27	42.66
	20	75/25	20	7	10.80 ± 1.74	23.48
	20	75/25	20	10	8.03 ± 1.67	37.27
	20	75/25	20	15	5.03 ± 1.14	58.38
	20	75/25	15	10	6.32 ± 1.16	55.31
	20	75/25	20	10	8.03 ± 1.67	37.27
	20	75/25	25	10	8.27 ± 1.42	54.47
	30	75/25	20	7	14.20 ± 2.49	67.43
	30	75/25	20	10	10.10 ± 1.77	52.67
	30	75/25	20	15	4.61 ± 0.76	57.34
	30	75/25	15	10	4.82 ± 1.27	79.59
	30	75/25	20	10	10.10 ± 1.77	52.67
	30	75/25	25	10	12.13 ± 0.76	51.27
	10	50/50	20	7	2.00 ± 0.40	20.96
	10	50/50	20	10	1.65 ± 0.27	27.60
	10	50/50	20	15	1.42 ± 0.28	23.51
	10	50/50	15	. 10	1.37 ± 0.43	42.28
	10	50/50	20	10	1.65 ± 0.27	27.60
ſ	10	50/50	25	10	1.71 ± 0.37	35.95

Table D2 Fiber diameter and electrospinnability of as-spun PS fibers in DMF/EA

Solution conditions		Processing conditions		Results	
PS		applied	collection	fiber	Electro-
concentration	DMF/EA	voltage	distance	diameter	spinnability
(%w/v)	(%v/v)	(kV)	(cm)	(µm)	(%)
20	50/50	20	7	1.64 ± 0.42	38.34
20	50/50	20	10	1.51 ± 0.30	46.44
20	50/50	20	15	1.45 ± 0.31	31.60
20	50/50	15	10	1.47 ± 0.34	45.71
20	50/50	20	10	1.51 ± 0.30	46.44
20	50/50	25	10	1.62 ± 0.28	41.59
30	50/50	20	7	10.10 ± 4.70	57.68
30	50/50	20	10	8.50 ± 2.58	59.31
30	50/50	20	15	7.56 ± 2.07	52.05
30	50/50	15	10	6.41 ± 1.85	57.10
30	50/50	20	10	8.50 ± 2.58	59.31
30	50/50	25	10	17.4 ± 3.20	45.52
10	25/75	20	7	32.80 ± 5.22	50.95
10	25/75	20	10	24.50 ± 5.28	50.00
10	25/75	20	15	3.67 ± 1.41	42.61
10	25/75	15	10	16.30 ± 7.16	58.31
10	25/75	20	10	24.50 ± 5.28	50.00
10	25/75	25	10	28.90 ± 2.91	61.73
20	25/75	20	7	8.76 ± 2.66	46.05
20	25/75	20	10	5.26 ± 1.89	45.79
· 20	25/75	20	15	2.84 ± 1.01	48.45
20	25/75	15	10	4.06 ± 1.69	35.74
20	25/75	20	10	5.26 ± 1.89	45.79
20	25/75	25	10	8.65 ± 2.96	41.81
30	25/75	20	7	20.81 ± 4.32	52.16
30	25/75	20	10	6.27 ± 1.01	64.98
30	25/75	20	15	5.24 ± 1.06	49.40
30	25/75	15	10	5.06 ± 0.94	82.89
30	25/75	20	10	6.27 ± 1.01	64.98
30	25/75	25	10	7.61 ± 1.23	58.06

Table D2 (cont.)Fiber diameter and electrospinnability of as-spun PS fibers inDMF/EA

Solution conditions		Processing conditions		Results	
PS		applied	collection	Fiber	Electro-
concentration	DMF/MEK	voltage	distance	diameter	spinnability
(%w/v)	(%v/v)	(kV)	(cm)	(µm)	(%)
10	75/25	20	7	8.69 ± 2.13	30.70
10	75/25	20	10	6.36 ± 2.62	52.22
10	75/25	20	15	6.00 ± 1.75	24.00
10	75/25	15	10	4.11 ± 0.99	64.33
10	75/25	20	10	6.36 ± 2.62	52.22
10	75/25	25	10	7.54 ± 1.24	67.59
20	75/25	20	7	4.73 ± 0.91	43.96
20	75/25	20	10	4.71 ± 0.94	54.39
20	75/25	20	15	4.47 ± 0.81	56.14
20	75/25	15	10	4.03 ± 0.72	64.66
20	75/25	20	10	4.71 ± 0.94	54.39
20	75/25	25	10	4.95 ± 1.16	52.52
30	75/25	20	7	10.04 ± 3.84	73.76
30	75/25	20	10	5.62 ± 0.64	56.77
30	75/25	20	15	4.99 ± 1.07	50.00
30	75/25	15	10	5.33 ± 0.84	47.95
30	75/25	20	10	5.62 ± 0.64	56.77
30	75/25	25	10	10.23 ± 2.15	58.66
10	50/50	20	7	7.07 ± 1.46	72.44
10	50/50	20	10	4.90 ± 1.41	40.32
10	50/50	20	15	3.50 ± 0.74	43.01
10	50/50	15	10	4.44 ± 1.32	41.52
10	50/50	20	10	4.90 ± 1.41	40.32
10	50/50	25	10	7.60 ± 1.97	38.93

 Table D3
 Fiber diameter and electrospinnability of as-spun PS fibers in DMF/MEK

Solution conditions		Processing conditions		Results	
PS		applied	collection	Fiber	Electro-
concentration	DMF/MEK	voltage	distance	diameter	spinnability
(%w/v)	(%v/v)	(kV)	(cm)	(µm)	(%)
20	50/50	20	7	3.09 ± 0.91	80.63
20	50/50	20	10	2.80 ± 0.52	58.92
20	50/50	20	15	2.49 ± 0.51	61.76
20	50/50	15	10	3.05 ± 0.92	13.37
20	50/50	20	10	2.80 ± 0.52	58.92
20	50/50	25	10	4.46 ± 0.81	56.11
30	50/50	20	7	34.77 ± 7.09	60.52
30	50/50	20	10	18.09 ± 3.27	50.38
30	50/50	20	15	13.81 ± 4.12	43.85
30	50/50	15	10	17.10 ± 3.86	51.23
30	50/50	20	10	18.09 ± 3.27	50.38
30	50/50	25	10	21.19 ± 4.97	49.88
10	25/75	20	7	5.12 ± 1.29	56.82
10	25/75	20	10	3.99 ± 1.04	54.71
10	25/75	20	15	3.19 ± 0.67	33.40
10	25/75	15	10	4.14 ± 0.79	48.64
10	25/75	20	10	4.27 ± 2.91	54.71
10	25/75	25	10	5.30 ± 1.58	63.17
20	25/75	20	7	2.70 ± 0.69	49.46
20	25/75	20	10	2.63 ± 0.61	66.15
20	25/75	20 .	15	2.30 ± 0.47	50.81
20	25/75	15	10	2.46 ± 0.59	60.19
20	25/75	20	10	2.63 ± 0.61	66.15
20	25/75	25	10	2.86 ± 0.51	47.24
30	25/75	20	7	20.50 ± 5.01	44.68
30	25/75	20	10	16.10 ± 1.99	32.92
30	25/75	20	15	12.55 ± 1.63	25.06
30	25/75	15	10	15.72 ± 5.02	31.69
30	25/75	20	10	16.10 ± 1.99	32.92
30	25/75	25	10	18.68 ± 3.20	27.37

Table D3 (cont.)Fiber diameter and electrospinnability of as-spun PS fibers inDMF/MEK

PS	5	Types	fiber
concentration	solvent	of salt	diameter
(%w/v)	(%v/v)		(µm)
30	DMF	LiCl	35.87 ± 14.11
	100/0	KCl	36.16 ± 3.15
30	DMF/DCE	LiCl	30.07 ± 11.96
	75/25	KCl	31.11 ± 3.16
30	DMF/EA	LiCl	34.49 ± 11.31
	75/25	KCl	35.02 ± 3.16
30	DMF/MEK	LiCl	30.09 ± 10.61
	75/25	KCl	34.48 ± 4.29

.....

.

Appendix E Effect of 1% (w/v) salt addition on the fiber diameter. The applied electrical field strength was 20 kV/15 cm

Appendix F SEM images

.

Figure F1 SEM images: Effect of applied electrical field strength (i.e. 1:1, 2:1, and 3:1) either by fixing the collection distance (i.e. 7 kV/7 cm, 14 kV/7 cm, and 21 kV/7 cm) or by fixing the applied voltage (i.e. 25 kV/25 cm, 25 kV/12.5 cm, and 25 kV/8.3 cm) on the fiber diameter. Under positive polarity of the emitting electrode.

.

<u>Remark</u> – means jet has not been found under this condition

Figure F1.3 SEM images (at a magnification of 500 and the scale bar shown is for 50 μ m) of as-spun PS fibers in EA.

<u>Remark</u> – means jet has not been found under this condition

Figure F2 SEM images: Effect of applied electrical field strength (i.e. 1:1, 2:1, and 3:1) either by fixing the collection distance (i.e. 7 kV/7 cm, 14 kV/7 cm, and 21 kV/7 cm) or by fixing the applied voltage (i.e. 25 kV/25 cm, 25 kV/12.5 cm, and 25 kV/8.3 cm) on the fiber diameter. Under negative polarity of the emitting electrode.

1.4

.

<u>Remark</u> - means jet has not been found under this condition

Figure F2.2 SEM images (at a magnification of 500 and the scale bar shown is for 50 μ m) of as-spun PS fibers in DMF.

<u>Remark</u> – means jet has not been found under this condition

Figure F2.3 SEM images (at a magnification of 500 and the scale bar shown is for 50 μ m) of as-spun PS fibers in EA.

<u>Remark</u> – means jet has not been found under this condition

<u>Remark</u> - means jet has not been found under this condition

Figure F3 SEM images: Effect of applied voltage by fixing the collection distance (i.e. 15 kV/10 cm, 20 kV/10 cm, and 25 kV/10 cm) and effect of collection distance by fixing the applied voltage (i.e. 20 kV/7 cm, 20 kV/10 cm, and 20 kV/15 cm) on the fiber diameter. Under positive polarity of the emitting electrode.

•

.

Figure F3.1a SEM images (at a magnification of 500 and the scale bar shown is for 50 µm) of as-spun PS fibers in DCE.

<u>Remark</u> – means jet has not been found under this condition

<u>Remark</u> – means jet has not been found under this condition

Figure F3.2a SEM images (at a magnification of 500 and the scale bar shown is for 50 µm) of as-spun PS fibers in DMF.

30%(w/v) 15 kV/10 cm

30%(w/v) 25 kV/10 cm

Figure F3.2b SEM images (at a magnification of 2,000 and the scale bar shown is for 10 $\mu m)$ of as-spun PS fibers in DMF.

30%(w/v) 15 kV/10 cm

30%(w/v) 20 kV/10 cm

10%(w/v) 20 kV/15 cm

10%(w/v) 25 kV/10 cm

20%(w/v) 20 kV/15 cm

20%(w/v) 25 kV/10 cm

30%(w/v) 20 kV/15 cm

30%(w/v) 25 kV/10 cm

Figure F3.3a SEM images (at a magnification of 500 and the scale bar shown is for 50 μ m) of as-spun PS fibers in EA.

Figure F3.3b SEM images (at a magnification of 2,000 and the scale bar shown is for 10 μ m) of as-spun PS fibers in EA.

Figure F3.4a SEM images (at a magnification of 500 and the scale bar shown is for 50 μ m) of as-spun PS fibers in MEK.

<u>Remark</u> - means jet has not been found under this condition

30%(w/v) 15 kV/10 cm

10%(w/v) 20 kV/10 cm 10%(w/v) 20 kV/15 cm

10%(w/v) 20 kV/10 cm

20%(w/v) 20 kV/10 cm

20%(w/v) 20 kV/10 cm

30%(w/v) 20 kV/10 cm

10%(w/v) 25 kV/10 cm

20%(w/v) 20 kV/15 cm

20%(w/v) 25 kV/10 cm

30%(w/v) 25 kV/10 cm

Figure F3.4b SEM images (at a magnification of 2,000 and the scale bar shown is for 10 µm) of as-spun PS fibers in MEK.

<u>Remark</u> – means jet has not been found under this condition

Figure F4 SEM images: SEM images; Effect of applied voltage by fixing the collection distance (i.e. 15 kV/10 cm, 20 kV/10 cm, and 25 kV/10 cm) and effect of collection distance by fixing the applied voltage (i.e. 20 kV/7 cm, 20 kV/10 cm, and 20 kV/15 cm) on the fiber diameter in mixed solvent systems. Under positive polarity of the emitting electrode.

.

20%(w/v) 20 kV/15 cm

20%(w/v) 25 kV/10 cm

30%(w/v) 20 kV/15 cm

30%(w/v) 25 kV/10 cm

Figure F4.1a SEM images (at a magnification of 500 and the scale bar shown is for 50 μ m) of as-spun PS fibers in DMF/DCE as 75/25 ratio.

10%(w/v) 20 kV/7 cm

10%(w/v) 15 kV/10 cm

20%(w/v) 20 kV/7 cm

20%(w/v) 15 kV/10 cm

30%(w/v) 20 kV/7 cm

30%(w/v) 15 kV/10 cm

20%(w/v) 20 kV/10 cm

20%(w/v) 20 kV/10 cm

30%(w/v) 20 kV/10 cm

30%(w/v) 20 kV/10 cm

10%(w/v) 20 kV/15 cm

10%(w/v) 25 kV/10 cm

20%(w/v) 20 kV/15 cm

20%(w/v) 25 kV/10 cm

30%(w/v) 20 kV/15 cm

30%(w/v) 25 kV/10 cm

Figure F4.1b SEM images (at a magnification of 2,000 and the scale bar shown is for 10 μ m) of as-spun PS fibers in DMF/DCE as 75/25 ratio.

10%(w/v) 20 kV/10 cm

20%(w/v) 20 kV/10 cm

30%(w/v) 20 kV/10 cm

10%(w/v) 20 kV/15 cm

10%(w/v) 25 kV/10 cm

20%(w/v) 20 kV/15 cm

20%(w/v) 25 kV/10 cm

30%(w/v) 25 kV/10 cm

Figure F4.2a SEM images (at a magnification of 500 and the scale bar shown is for 50 μ m) of as-spun PS fibers in DMF/DCE as 50/50 ratio.

30%(w/v) 15 kV/10 cm

10%(w/v) 20 kV/10 cm 10%(w/v) 20 kV/15 cm

10%(w/v) 20 kV/10 cm

20%(w/v) 20 kV/10 cm

20%(w/v) 20 kV/10 cm

30%(w/v) 20 kV/10 cm

30%(w/v) 20 kV/10 cm

10%(w/v) 25 kV/10 cm

20%(w/v) 20 kV/15 cm

20%(w/v) 25 kV/10 cm

30%(w/v) 20 kV/15 cm

30%(w/v) 25 kV/10 cm

Figure F4.2b SEM images (at a magnification of 2,000 and the scale bar shown is for 10 µm) of as-spun PS fibers in DMF/DCE as 50/50 ratio.

30%(w/v) 15 kV/10 cm

10%(w/v) 20 kV/10 cm

10%(w/v) 20 kV/10 cm

20%(w/v) 20 kV/10 cm

30%(w/v) 20 kV/10 cm

10%(w/v) 20 kV/15 cm

10%(w/v) 25 kV/10 cm

20%(w/v) 20 kV/15 cm

20%(w/v) 25 kV/10 cm

30%(w/v) 20 kV/15 cm

30%(w/v) 25 kV/10 cm

Figure F4.3a SEM images (at a magnification of 500 and the scale bar shown is for 50 μ m) of as-spun PS fibers in DMF/DCE as 25/75 ratio.

30%(w/v) 15 kV/10 cm

10%(w/v) 20 kV/10 cm

10%(w/v) 20 kV/10 cm

20%(w/v) 20 kV/10 cm

30%(w/v) 20 kV/10 cm

30%(w/v) 20 kV/10 cm

10%(w/v) 20 kV/15 cm

10%(w/v) 25 kV/10 cm

20%(w/v) 20 kV/15 cm

0%(w/v) 25 kV/10 cm

30%(w/v) 20 kV/15 cm

30%(w/v) 25 kV/10 cm

Figure F4.3b SEM images (at a magnification of 2,000 and the scale bar shown is for 10 μ m) of as-spun PS fibers in DMF/DCE as 25/75 ratio.

Figure F4.4a SEM images (at a magnification of 500 and the scale bar shown is for 50 μ m) of as-spun PS fibers in DMF/EA as 75/25 ratio.

٠

30%(w/v) 15 kV/10 cm

10%(w/v) 20 kV/10 cm

10%(w/v) 20 kV/10 cm

20%(w/v) 20 kV/10 cm

20%(w/v) 20 kV/10 cm

30%(w/v) 20 kV/10 cm

30%(w/v) 20 kV/10 cm

10%(w/v) 20 kV/15 cm

10%(w/v) 25 kV/10 cm

20%(w/v) 20 kV/15 cm

20%(w/v) 25 kV/10 cm

30%(w/v) 20 kV/15 cm

30%(w/v) 25 kV/10 cm

Figure F4.4b SEM images (at a magnification of 2,000 and the scale bar shown is for 10 μ m) of as-spun PS fibers in DMF/EA as 75/25 ratio.

30%(w/v) 15 kV/10 cm

10%(w/v) 20 kV/10 cm

20%(w/v) 20 kV/10 cm

30%(w/v) 20 kV/10 cm

10%(w/v) 20 kV/15 cm

10%(w/v) 25 kV/10 cm

20%(w/v) 20 kV/15 cm

20%(w/v) 25 kV/10 cm

30%(w/v) 20 kV/15 cm

30%(w/v) 25 kV/10 cm

Figure F4.5a SEM images (at a magnification of 500 and the scale bar shown is for 50 μ m) of as-spun PS fibers in DMF/EA as 50/50 ratio.

10%(w/v) 15 kV/10 cm

20%(w/v) 20 kV/7 cm

20%(w/v) 15 kV/10 cm

30%(w/v) 20 kV/7 cm

30%(w/v) 15 kV/10 cm

10%(w/v) 20 kV/10 cm

20%(w/v) 20 kV/10 cm

20%(w/v) 20 kV/10 cm

30%(w/v) 20 kV/10 cm

30%(w/v) 20 kV/10 cm

10%(w/v) 20 kV/15 cm

10%(w/v) 25 kV/10 cm

20%(w/v) 20 kV/15 cm

20%(w/v) 25 kV/10 cm

30%(w/v) 20 kV/15 cm

30%(w/v) 25 kV/10 cm

Figure F4.5b SEM images (at a magnification of 2,000 and the scale bar shown is for 10 μ m) of as-spun PS fibers in DMF/EA as 50/50 ratio.

30%(w/v) 25 kV/10 cm

Figure F4.6a SEM images (at a magnification of 500 and the scale bar shown is for 50 μ m) of as-spun PS fibers in DMF/EA as 25/75 ratio.

10%(w/v) 15 kV/10 cm

20%(w/v) 20 kV/7 cm

20%(w/v) 15 kV/10 cm

30%(w/v) 15 kV/10 cm

10%(w/v) 20 kV/10 cm

20%(w/v) 20 kV/10 cm

20%(w/v) 20 kV/10 cm

30%(w/v) 20 kV/10 cm

30%(w/v) 20 kV/10 cm

10%(w/v) 20 kV/15 cm

10%(w/v) 25 kV/10 cm

20%(w/v) 20 kV/15 cm

20%(w/v) 25 kV/10 cm

30%(w/v) 20 kV/15 cm

30%(w/v) 25 kV/10 cm

Figure F4.6b SEM images (at a magnification of 2,000 and the scale bar shown is for 10 μ m) of as-spun PS fibers in DMF/EA as 25/75 ratio.

10%(w/v) 15 kV/10 cm

20%(w/v) 20 kV/7 cm

20%(w/v) 15 kV/10 cm

30%(w/v) 20 kV/7 cm

30%(w/v) 15 kV/10 cm

10%(w/v) 20 kV/10 cm

10%(w/v) 20 kV/10 cm

20%(w/v) 20 kV/10 cm

20%(w/v) 20 kV/10 cm

30%(w/v) 20 kV/10 cm

30%(w/v) 20 kV/10 cm

10%(w/v) 20 kV/15 cm

10%(w/v) 25 kV/10 cm

20%(w/v) 20 kV/15 cm

20%(w/v) 25 kV/10 cm

30%(w/v) 20 kV/15 cm

30%(w/v) 25 kV/10 cm

Figure F4.7a SEM images (at a magnification of 500 and the scale bar shown is for 50 μ m) of as-spun PS fibers in DMF/MEK as 75/25 ratio.

30%(w/v) 20 kV/10 cm

10%(w/v) 20 kV/15 cm

10%(w/v) 25 kV/10 cm

20%(w/v) 25 kV/10 cm

30%(w/v) 20 kV/15 cm

30%(w/v) 25 kV/10 cm

Figure F4.7b SEM images (at a magnification of 2,000 and the scale bar shown is for 10 μ m) of as-spun PS fibers in DMF/MEK as 75/25 ratio.

30%(w/v) 15 kV/10 cm

20%(w/v) 20 kV/10 cm

30%(w/v) 20 kV/10 cm

30%(w/v) 20 kV/10 cm

10%(w/v) 20 kV/15 cm

10%(w/v) 25 kV/10 cm

20%(w/v) 20 kV/15 cm

20%(w/v) 25 kV/10 cm

30%(w/v) 20 kV/15 cm

30%(w/v) 25 kV/10 cm

Figure F4.8a SEM images (at a magnification of 500 and the scale bar shown is for 50 µm) of as-spun PS fibers in DMF/MEK as 50/50 ratio.

10%(w/v) 20 kV/7 cm

10%(w/v) 15 kV/10 cm

20%(w/v) 20 kV/7 cm

20%(w/v) 15 kV/10 cm

30%(w/v) 15 kV/10 cm

10%(w/v) 20 kV/10 cm

10%(w/v) 20 kV/10 cm

20%(w/v) 20 kV/10 cm

20%(w/v) 20 kV/10 cm

30%(w/v) 20 kV/10 cm

10%(w/v) 20 kV/15 cm

10%(w/v) 25 kV/10 cm

20%(w/v) 20 kV/15 cm

20%(w/v) 25 kV/10 cm

30%(w/v) 20 kV/15 cm

30%(w/v) 25 kV/10 cm

Figure F4.8b SEM images (at a magnification of 2,000 and the scale bar shown is for 10 μ m) of as-spun PS fibers in DMF/MEK as 50/50 ratio.

30%(w/v) 15 kV/10 cm

10%(w/v) 20 kV/10 cm

20%(w/v) 20 kV/10 cm

20%(w/v) 20 kV/10 cm

30%(w/v) 20 kV/10 cm

10%(w/v) 25 kV/10 cm

20%(w/v) 20 kV/15 cm

20%(w/v) 25 kV/10 cm

30%(w/v) 20 kV/15 cm

30%(w/v) 25 kV/10 cm

Figure F4.9a SEM images (at a magnification of 500 and the scale bar shown is for 50 μ m) of as-spun PS fibers in DMF/MEK as 25/75 ratio.

20%(w/v) 15 kV/10 cm

30%(w/v) 20 kV/7 cm

30%(w/v) 15 kV/10 cm

10%(w/v) 20 kV/10 cm

20%(w/v) 20 kV/10 cm

20%(w/v) 20 kV/10 cm

30%(w/v) 20 kV/10 cm

10%(w/v) 20 kV/15 cm

10%(w/v) 25 kV/10 cm

20%(w/v) 20 kV/15 cm

20%(w/v) 25 kV/10 cm

30%(w/v) 20 kV/15 cm

Figure F4.9b SEM images (at a magnification of 2,000 and the scale bar shown is for 10 µm) of as-spun PS fibers in DMF/MEK as 25/75 ratio.

(a) 30% PS/DMF

(d) 30% PS/DMF:DCE (75/25)

(e) 1% LiCl +

30%PS/DMF:DCE (75/25)

(f) 1% KCl +

(g) 30% PS/DMF:EA (75/25)

(j) 30% PS/DMF:MEK (75/25)

(h) 1% LiCl + 30% PS/DMF:EA (75/25)

(k) 1% LiCl +

(l) 1% KCl+

30% PS/DMF:MEK (75/25) 30%PS/DMF:MEK (75/25)

Figure F5.1 SEM images (at a magnification of 500 and the scale bar shown is for 50 μ m) of as-spun PS fibers from PS solution in various solvent systems with 1% (w/v) LiCl or 1% (w/v) KCl.

CURRICULUM VITAE

Name:	Ms. Jiranun Maneein		
Date of Birth:	November 30 th , 1982		
Nationality:	Thai		

University Education:

1999-2002 Bachelor Degree of Science in Industrial Chemistry, Faculty of Applied Science, King Mongkut's Institute of Technology North Bangkok, Bangkok, Thailand.

Working Experience:

2001 Position: Quality Control

Company name: Metropolitan Waterworks Authority

Presentations:

.

 J., Maneein, M., Nithitanakul, and P. Supaphol. (2004, December 1-3) Effects of mixed solvents and their properties on morphological appearance of electrospun polystyrene fibers. Poster presented at <u>International Conference on Smart</u> <u>Materials (SmartMat-'04)</u>, Chiang Mai, Thailand.