ELECTROCHEMICAL CHARACTERIZATION OF OXIDE FILM ON FEEDER PIPE STEELS IN HIGH TEMPERATURE WATER

Tecrapong Taenumtrakul

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University and Institut Français du Pétrole 2005 ISBN 974-9937-32-5

I22242697

Thesis Title:	Electrochemical Characterization of Oxide Film on Feeder	
	Pipe Steels in High Temperature Water	
By:	Teerapong Taenumtrakul	
Program:	Petrochemical Technology	
Thesis Advisors:	Assoc. Prof. Thirasak Rirksomboon	
	Prof. Frank R. Steward	

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in Partial fulfilment of the requirements for the Degree of Master of Science.

Nantayo Jamunet. College Director

(Assoc. Prof. Nantaya Yanumet)

Thesis Committee

Kaull-

(Assoc. Prof. Thirasak Rirksomboon)

. an

(Prof. Frank R. Steward)

Anuatlorival

(Assoc. Prof. Anuvat Sirivat)

B. Kitiyanan

(Asst. Prof. Boonyarach Kitityanan)

ABSTRACT

4671020063: Petrochemical Technology Program
Teerapong Taenumtrakul: Electrochemical Characterization of
Oxide Film on Feeder Pipe Steels in High Temperature Water.
Thesis Advisors: Assoc. Prof. Thirasak Rirksomboon and Prof.
Frank R. Steward, 118 pp. ISBN 974-9937-32-5
Keywords: CANDU/Corrosion/Chromium/ EIS/ Outlet Feeder Pipes/ Oxide

Film

Surface characterization including Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) and Electrochemical characterization including Electrochemical Impedance Spectroscopy (EIS) and Polarization Curve Analysis were performed on four steels with different chromium (Cr) contents, i.e., A106B Carbon Steel (0.03%Cr), Qinshan Steel (0.33%Cr), 2.5%Cr / 1.0%Mo Steel and 304SS (19.1%Cr). All oxide films were developed under the simulated outlet feeder pipes condition of the primary heat transfer system of a CANDU reactor. Based on the distribution of the oxidized alloying constituents and the electron diffraction pattern with respect to depth, it was found that the oxide film consists of two spinel oxide layers, i.e., an iron rich outer layer covering a chromium rich inner layer. Steel with a higher Cr content has a smaller particle size and a higher packing density. Polarization curves and EIS were obtained at room temperature. The anodic current density from the polarization curve decreases with increasing Cr content. The impedance spectra of oxide film coated steel exhibit two capacitance loops. The film resistance (R_f) and charge transfer resistance (R_{ct}) increase with increasing Cr content in the steel.

บทคัดย่อ

ธรพงษ์ แต้นำตระกูล : การศึกษาลักษณะทางเคมีไฟฟ้าของฟิล์มออกไซด์บนผิวท่อใน น้ำที่มีอุณหภูมิสูง (Electrochemical Characterization of Oxide Film on Feeder Pipe Steels in High Temperature Water) อ. ที่ปรึกษา : รศ. คร. ธีรศักดิ์ ฤกษ์สมบูรณ์ และ ศ. คร.แฟรงค์ อาร์ สจ๊วต (Prof. Frank R. Steward) 118 หน้า ISBN 974-9937-32-5

การศึกษาลักษณะของฟิล์มออกไซค์ในงานนี้ประกอบด้วย 2 วิธี 1) การศึกษาพื้นผิวของ ฟิล์มออกไซค์โคยใช้กล้องจุลทรรศน์อิเลคครอนแบบส่องกราค (SEM) และ กล้องจุลทรรศน์ อิเลกครอนแบบส่องผ่าน (TEM) 2) การศึกษาคุณลักษณะทางเกมีไฟฟ้าโคยใช้ เทกนิกอิเลกโตรเก มิคอลอิมพีแคนซ์สเปคโตรสโคปีและการวิเคราะห์เส้นโค้งโพลาไรเซชัน โดยทำการศึกษาบน ้ฟิล์มออกไซด์ซึ่งก่อตัวภายใต้สภาวะจำลองในท่อทางออกของเตาปฏิกรณ์CANDU เหล็กกล้าที่ ใช้เป็นวัสดุของท่อในการศึกษามีปริมาณของธาตุโครเมียมต่างๆกัน 4 ชนิคประกอบด้วย เหล็กกล้า ชนิค A106B (โครเมียม 0.03%), เหล็กกล้าควินแชน (โครเมียม 0.33%), เหล็กกล้าที่มีองค์ประกอบ ของโครเมียม 2.5% กับ โมลิบคูนัม 1.0% และ เหล็กกล้าไร้สนิม ชนิค 304 (โครเมียม 19.1%) โคย จากผลการศึกษาการกระจายตัวของธาตองค์ประกอบและ แผนภาพการแทรกสอดของอิเลกตรอน ที่ระดับความลึกต่างๆกัน พบว่าฟิล์มออกไซค์มีลักษณะการเรียงตัวแบบสองชั้นประกอบค้วย ฟิล์ม ออกไซด์ชั้นนอกที่มีธาตุเหล็กเป็นองค์ประกอบหลักปกคลุมอยู่บนฟิล์มออกไซด์ชั้นในซึ่งสามารถ ตรวจพบธาตุโครเมียมได้ในชั้นนี้โดยฟิล์มออกไซค์ทั้งสองชั้นมีโครงสร้างแบบ spinel นอกจากนี้ ้ยังพบว่า เหล็กกล้าที่มีปริมาณ โครเมียมมากจะมีขนาคอนุภาคของฟิล์มออกไซค์เล็กและความหนา แน่นในการจัดเรียงตัวสูง ส่วนการศึกษาคุณลักษณะทางเคมีไฟฟ้าที่อุณหภูมิห้อง พบว่าเหล็กกล้าที่ ้มีธาตุโครเมียมเป็นองค์ประกอบมากจะให้ค่าความหนาแน่นของกระแสแอโนคิคในเส้นโค้งโพลา ไรเซชันต่ำ สำหรับผลการห่กษาโดยเทคนิคอิเลคโตรเคมิคอลอิมพีแคนซ์ พบว่าค่าอิมพีแคนซ์ที่ได้ ้มีลักษณะเช่นเคียวกันกับวงจรไฟฟ้าที่ประกอบด้วยตัวเก็บประจุสองตัว โคยเหล็กกล้าที่มีโครเมียม เป็นองค์ประกอบมากจะมีค่าความต้านทานของฟิล์มออกไซค์ (R_t) และความต้านทานในการ ถ่ายเทประจุ (R_{cl}) สูงกว่าเหล็กกล้าที่มีโครเมียมน้อย

ACKNOWLEDGEMENTS

I would like to express my deep gratitude to Dr. Frank R. Steward and Dr. Thirasak Rirksomboon, my supervisors. Without them, I would not have an opportunity to carry out research at University of New Brunswick, Canada. I would like to thank them for their valuable advice, knowledge and support.

I would like to express sincere gratitude to Dr. Y.F. Cheng for his truthfully help and every suggestions.

I would like to thank staff of the Centre for Nuclear Energy Research (CNER).

I am grateful for the partial scholarship and partial funding of the thesis work provided by Postgraduate Education and Research Programs in Petroleum and Petrochemical Technology (PPT Consortium).

I would to thank Ms. Sudprathana Tetanun, my best and very important friend for her encouragement, understanding and comfort when the times got rough.

Many thanks are due to my friends in Fredericton, Canada and in Thailand for the valuable encouragement.

Last but not least, I would like to deeply thank my parents for the important support, love and everything throughout this work.

TABLE OF CONTENTS

	PAGE
Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgement	v
Table of Contents	vi
List of Tables	viii
List of Figures	ix
Abbreviations	xiii
List of Symbols	xv

CHAPTER

I INTRODUCTION

II	LITERATURE REVIEW	3
	2.1 CANDU Primary Coolant Loop	3
	2.2 Corrosion Mechanism	5
	2.3 Mechanism of Film Growth	7
	2.4 Oxide Film Characterization	9
	2.4.1 pH Effect	11
	2.4.2 Dissolved Oxygen Effect	12
	2.4.3 Hydrogen Effect	13
	2.4.4 Temperature Effect	15
	2.4.5 Alloying Effect	16
	2.5 Flow-Assisted Corrosion (FAC)	18
	2.6 Electrochemistry	20
	2.6.1 Mixed Potential Theory	23
	2.6.2 Electrochemical Impedance Spectroscopy	2 7

1

CHAPTER		PAGE
III	EXPERIMENTAL	39
	3.1 Materials	39
	3.2 Equipment	41
	3.3 Methodology	41
IV	RESULTS AND DISCUSSION	43
	4.1 Surface Characterization	43
	4.1.1 SEM/EDX Analysis	43
	4.1.2 TEM Analysis	50
	4.2 Electrochemical Characterization	84
	4.2.1 Polarization Curve Analysis	84
	4.2.2 Electrochemical Impedance Analysis	85
V	CONCLUSION AND RECOMMENDATIONS	90
	REFERENCES	91
	APPENDICES	
	Appendix A Scanning Electron Microscope Photographs	93
	Appendix B Electron Diffraction Patterns	102
	Appendix C Lift Out Method	113
	CURRICULUM VITAE	118

LIST OF TABLES

TABLE

2.1	Material constructions	3
3.1	Chemical compositions of studied steels	39
4.1	Size distribut ion of oxide particle on different material	46
4.2	Atomic percent of large particle and of fine grain	
	particles on different Cr Modified Steel	47
4.3	Normalized concentration of Fe, Cr and Ni to O ratio	49
4.4	The d-spacing values of A106B inner layer	55
4.5	The d-spacing values and reflection plane indices (h, k, l)	
	of Fe ₃ O ₄ structure	55
4.6	The d-spacing values of outer oxide layer	57
4.7	The d-spacing values of Qinshan inner layer	62
4.8	The d-spacing values of Qinshan inner layer	63
4.9	The d-spacing values of inner layer of 2.5%Cr / 1.0%Mo Steel	68
4.10	The d-spacing values of outer layer of 2.5%Cr / 1.0%Mo Steel	70
4.11	The d-spacing values of inner layer of Stainless Steel Type 304	75
4.12	The d-spacing values of outer layer of Stainless Steel Type 304	76
4.13	Spinel composition $(Ni_xFe_{1-x})(Fe_{2-y}Cr_y)O_4$ of inner oxide and	
	outer oxide layers	82
4.14	Values of equivalent circuit elements used for best fit to impedance	
	diagrams of A106B, Qinshan, 2.5%Cr / 1.0%Mo Steel and	
	304SS in LiOH solution (pH 10.5), at room temperature	88

PAGE

LIST OF FIGURES

FIGURE		PAGE
2.1	Primary coolant system of CANDU reactor	4
2.2	Predominant species diagram at 300 °C	6
2.3	Schematic diagram of the formation mechanism of magnetite 9	
	on the steel surface in high temperature water	
2.4	Experimental Solubility at 523 K and 473 K plotted against	12
	the initial pH of the feed solution	
2.5	SEM pictures showing the oxide surface formed on type	13
	304L SS in 288 °C: (a) under O_2 and (b) H_2 water chemistry	
2.6	Effect of temperature on corrosion of iron in water containing	16
	dissolved oxygen	
2.7	Repassivation curves of various steels at -0.79V (SHE)	17
	in lithitated solution, $pH_{25^{\circ}C}$ of 10.6 at 240°C	
2.8	Four main mechanisms of flow-assisted corrosion	19
2.9	Typical anodic polarization curve of active-passive metal	22
2.10	Anodic polarization curve obtained for 1018 carbon	23
	steel in alkaline sour environment (0.1 M $(NH_4)_2S$ and 10	
	ppm NaCN: pH 9.2), at scan rate of 1 mV/s	
2.11	Schematic representation of electrode kinetic behavior	24
	of pure iron in acid solution	
2.12	The configuration of three-electrode cell	25
2.13	Schematic cathodic and anodic polarization curve	26
2.14	Sinusoidal AC voltage and current signals	28
2.15	Relationship between sinusoida! AC current and rotating	29
	vector representation	
2.16	Nyquist plot with impedance vector	30
2.17	Analogous electrical circuit of Figure 2.16	31
2.18	Bode plot with one time constant	32
2.19	Schematic Diagram of Double layer capacitance	33

•

2.2	0 Equivalent circuit of Randles cell	34
2.2	1 Nyquist plot of Randles cell for metal undergoing uniform	
	corrosion rate	35
2.2	2 Bode plot of Randles cell for metal undergoing uniform	
	corrosion rate	36
2.2	3 Equivalent circuit of coated metal	37
2.2	4 Nyquist plot for coated metal	38
2.2	5 Bode plot for coated metal	38
3.1	The schematic diagram of simulated primary coolant system	
	of CANDU reactors	40
4.1	SEM micrograph showing the oxide surface formed on the	
	tube probe at X100 magnification	44
4.2	SEM micrograph showing the oxide surface formed on the	
	tube probe at X10,000 magnification	45
4.3	TEM micrograph showing the oxide morphology formed	
	on type A106B	50
4.4	Line Scanning result of A106B	51
4.5	EDX mapping of A106B	53
4.6	TEM micrograph of inner oxide layer with electron diffraction	
	pattern of oxide layers developed on A106B_IN_2	54
4.7	TEM micrograph of outer oxide layer with electron diffraction	
	pattern of oxide layer developed on A106B_OUT_1	56
4.8	TEM micrograph showing the oxide morphology formed	
	on type Qinshan (0.33%Cr)	58
4.9	Line scanning result of Qinshan	59
4.10	0 EDX mapping of Qinshan	60
4.1	1 TEM micrograph of inner oxide layer with electron diffraction	
	pattern of oxide layers developed on Qinshan_IN_3	61
4.12	2 TEM micrograph of inner oxide layer with electron diffraction	
	pattern of oxide layers developed on Qinshan_OUT_2	62

FIGURE

PAGE

4.13	3 TEM micrograph showing the oxide morphology formed	
	on type 2.5%Cr / 1.0%Mo steel	64
4.14	Line scanning result of 2.5%Cr / 1.0%Mo steel	65
4.15	EDX mapping of 2.5%Cr / 1.0%Mo Steel	66
4.16	5 TEM micrograph of inner oxide layer with electron diffraction	
	pattern of oxide layers developed on 2.5% Cr IN 3	67
4.17	TEM micrograph of outer layer of 2.5 %Cr / 1.0%Mo	
	Steel with electron diffraction pattern	69
4.18	TEM micrograph showing the oxide morphology formed on	
	stainless Type 304	71
4.19	Line Scanning result of Stainless Steel Type304	72
4.20	EDX mapping of Stainless Steel Type 304	73
4.21	TEM micrograph of inner oxide layer with electron diffraction	
	pattern of oxide layers developed on 304SS_IN_2	74
4.22	TEM micrograph of outer oxide layer with electron diffraction	
	pattern of oxide layers developed on 304SS_2_OUT	75
4.23	Atomic ratio in the inner oxide layer	77
4.24	Atomic ratio in the outer oxide layer	78
4.25	Spinel Stoichiometry of Cr ³⁺ , Fe ²⁺ , Fe ³⁺ and Ni ²⁺	81
4.26	Electron Diffraction Pattern of inner oxide layer in each material	83
4.27	Polarization Curves obtained for A106B (0.03%Cr),	
	Qinshan (0.33%Cr), 2.5%Cr / 1.0%Mo Steel and 304SS	
	(19%Cr), in alkaline environment (LiOH, pH 10.5) at room	
	temperature and scan rate of 0.5 mv/s	84
4. 28	Nyquist diagram obtained for A106B. Qinshan, 2.5%Cr / 1.0%Mo	
	Steel and 304SS in LiOH solution (pH 10.5), at room	
	temperature	85
4.29	Bode diagrams obtained for A106B, Qinshan, 2.5%Cr / 1.0%Mo	
	Steel and 304SS in LiOH solution (pH 10.5), at room temperature	86

FIGURE

4.30	Equivalent circuit used to fit the experimental data of EIS	
	diagram for A106B, Qinshan, 2.5%Cr / 1.0%Mo Steel and	
	304SS in LiOH solution (pH 10.5), at room temperature	87
4.31	Charge transfer resistance and Oxide film resistance	
	(obtained in LiOH, pH 10.5, room temperature) as a	
	function of different content of Cr modified in steels	88

.

•

PAGE

ABBREVATIONS

Ag	Silver
CANDU	Canada Deuterium Uranium
Cr	Chromium
С	Carbon
Со	Cobalt
D_2O	Heavy water
CE	Counter electrode
ECP	Electrochemical corrosion potential
EDXA	Energy dispersive X-ray analysis
EIS	Electrochemical impedance spectroscopy
FAC	Flow-assisted corrosion
Fe	Iron
FRA	Frequency response analyzer
Ga	Gallium
HWC	Hydrogen water condition
Mn	Manganese
Nb	Niobium
Ni	Nickel
NWC	Normal water condition
0	Oxygen
Ox	Oxidized species
PHTS	Primary heat transfer system
Pt	Platinum
RE	Reference electrode
Re	Reduced species
SEM	Scanning electron microscope
STEM	Scanning transmission electron microscope
TEM	Transmission electron microscope
UO ₂	Natural uranium
V	Vanadium

WE Working electrode Zr Zirconium

LIST OF SYMBOLS

А	Exposed area
а	Atomic weight
E	Potential
E'	Real part of potential
E"	Imaginary of potential
I'	Real part of current
I"	Imaginary part of current
E _{corr}	Corrosion potential
E _{oc}	Open circuit potential
F	Faraday's constant (96,480 coulombs/mole)
f	Frequency
Fe ₃ O ₄	Magnetite
Ι	Current
Io	Exchange current density
io	Exchange current density
m	Mass reacted
n	Moles of transferred electron
r	Reaction rate
r _f	Forward reaction rate
r _r	Reverse reaction rate
t	Reaction time
Ζ.	Impedance
Ζ'	Real part of impedance
Ζ"	Imaginary part of impedance
R	Resistance
С	Capacitance
R_{f}	Film resistance
R _{ct}	Charge transfer resistance
R _s	Solution resistance
C _f	Film capacitance

C _{dl}	Double layer capacitance
R	Gas constant
Т	Absolute Temperature
εο	8.85×10 ⁻¹⁴ F/cm
3	Dielectric constant
d	Coating thickness
V	Volt
γ- Fe ₂ O ₃	Maghemite
α-Fe ₂ O ₃	Hematite
η	Over-potential or Over-voltage
Φ	Phase angle shift
ω	Angular velocity