การสร้างแบบจำลองทางคณิตศาสตร์ของปฏิกิริยาออกซิเคชั่น ของก๊าซซัลเฟอร์ไคออกไซค์ในพลูมโคยใช้วิธีมอนทิคาร์โล

นางสาว มุทิตา ตรีวิทยาภูมิ

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต ภาควิชาวิศวกรรมสิ่งแวคล้อม บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

พ.ศ. 2537

ISBN 974-584-825-5

ลิขสิทธิ์ของ บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

I16450950

Modeling of Sulfur Dioxide Oxidation in Plume Using the Monte Carlo Method

Miss Mutita Triwittayapoom

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Engineering

Department of Environmental Engineering

Graduate School

Chulalongkorn University

1994

ISBN 974-584-825-5

Copyright of the Graduate School, Chulalongkorn University

Thesis Title	Modeling of Sulfur Dioxide Oxidation in Plume Using the	
	Monte Carlo Method	
By	Miss Mutita Triwittayapoom	
Department	Environmental Engineering	
Thesis Advisor	Dr. Sangsant Panich	

Accepted by the Graduate School, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master 's Degree.

Sant: Thorngouran

Dean of Graduate School

(Associate Professor Dr. Santi Thoongsuwan)

Thesis Committee

Wargen Kin

Chairman

Thesis Advisor

(Associate Professor Wongpun Limpaseni)

Sont Pul.

(Dr. Sangsant Panich)

Sasithan boon-Long .

Member

(Assistant Professor Dr. Sasithorn Boon-Long)

Rusa Karot

Member

(Associate Professor Dr. Theera Karot)

พนพลันอยันแหล้วสอวัยยามีพบร่อายในกรอบส่าง่ยานี้เพียาแน่นเลี้ยา

มุทิตา ตรีวิทยาภูมิ : การสร้างแบบจำลองทางคณิตศาสตร์ของปฏิกิริยาออกซิเดชั่นของก๊าซซัลเฟอร์ไดออกไซด์ในพลูมโดย ใช้วิธีมอนทิคาร์โล (MODELING OF SULFUR DIOXIDE OXIDATION IN PLUME USING THE MONTE CARLO METHOD) อ. ที่ ปรึกษา : อ. ดร. แลงสันติ์ พานิซ, 167 หน้า, ISBN 974-584-825-5

การวิจัยนี้ประกอบด้วยการสร้างแบบจำลองทางคณิตศาสตร์ของปฏิกิริยาออกซิเดชั่นของก๊าซซัลเฟอร์ไดออกไซด์ในพลูมโดย ใช้วิธีมอนทิคาร์โลสำหรับแหล่งกำเนิดแบบจุดและลักษณะภูมิประเทศเป็นที่ราบ แบบจำลองทางคณิตศาสตร์แบบกายภาพและเคมีนี้สามารถ ประมวลผลการแพร่กระจายแบบเกาส์เสียนและการเปลี่ยนแปลงทางปฏิกิริยาเคมีของก๊าซซัลเฟอร์ไดออกไซด์ ปฏิกิริยาเคมีของ Brimblecombe และ Speeding (1974) ปฏิกิริยาเคมีของ Freiberg (1974) ในสภาพแวดล้อมที่มีแอมโมเนียมาก และ แอมโมเนียจำกัด และ ปฏิกิริยาเคมีของ Ibusuki, Ohsawa และ Takeuchi (1990) ในสภาพแวดล้อมที่มีแอมโมเนียมาก ทั้ง 3 ปฏิกิริยานี้เป็นปฏิกิริยาที่ใช้ในการศึกษาวิเคราะห์ ความไวทางปฏิกิริยาเคมีด้วยแบบจำลองทางคณิตศาสตร์ โดยทำการแปรเปลี่ยนตัวแปรต่าง ๆ ดังนี้ คือ ความเสถียรของบรรยากาศ ความชื้นสัมพัทธ์ อุณหภูมิ ความเข้มข้นของเหล็ก และ แอมโมเนีย ในการศึกษานี้ความเข้มข้นของซัลเฟตที่วัดได้ในอากาศบริเวณบางนา ถูกเปรียบเทียบกับความเข้มข้นของสัลเฟตที่ประมวลผลได้จากปฏิกิริยาเคมีของ Freiberg (1974) และ Alkezweeny และ Powell (1977) ด้วย

ผลการศึกษาของการเกิดซัลเฟตของปฏิกิริยาเคมีทั้ง 3 แบบ พบว่า ปฏิกิริยาเคมีของ Freiberg (1974) ทั้งในสภาพแวดล้อมที่มีแอมโมเนียมาก และ แอมโมเนียจำกัด มีซัลเฟดเกิดขึ้นที่ความขึ้นลัมพัทธ์สูง แต่ปฏิกิริยาเคมีของ Brimblecombe และ Spedding (1974) และ ปฏิกิริยาเคมีของ Ibusuki et al. (1990) ในสภาพแวดล้อมที่มีแอมโมเนียมาก กลับพบว่า มีการเกิดซัลเฟตได้น้อยมาก ในทุกสถานการณ์

ผลการวิเคราะห์ความไวทางปฏิกิริยาเคมีของปฏิกิริยาเคมีแบบ Freiberg (1974) ในสภาพแวดล้อมที่มีแอมโมเนียมาก และ แอมโมเนียจำกัด พบว่า อัตราการเกิดซัลเฟตจะเพิ่มขึ้น เมื่อความขึ้นสัมพัทธ์ ความเข้มข้นของเหล็ก และ แอมโมเนียเพิ่มขึ้น และ เมื่ออุณหภูมิลดลง ในสภาพแวดล้อมที่มีแอมโมเนียมาก และ แอมโมเนียจำกัด จะพบ่ว่า ปริมาณซัลเฟตจะเกิดขึ้นในกรณีแรกมากกว่า ในกรณีที่สองสำหรับที่เงื่อนไขเดียวกัน ในการทดลองแปรเปลี่ยนความเสถียรของบรรยากาศ พบว่า ปริมาณซัลเฟตที่เกิดขึ้นมีค่าต่ำมากในความ เสถียรของบรรยากาศแบบไม่เสถียร และ แบบสะเทิน ในทางกลับกัน ปริมาณซัลเฟตที่เกิดขึ้นมีค่าสูงมากในความเสถียรของบรรยากาศ แบบเสถียรเนื่องจากเป็นปฏิกิริยาเคมีแบบอันดับที่สอง

ปริมาณขัลเฟตต่อขัลเฟอร์ไดออกไซด์ที่วัดได้ที่จุดตรวจวัดบริเวณบางนา และ ที่ความเร็วลมเท่ากับ 2 เมตร ต่อ วินาที เปรียบเทียบกับบริมาณขัลเฟตต่อขัลเฟอร์ไดออกไซด์ที่ได้จากปฏิกิริยาเคมีของ Freiberg (1974) ให้ข้อสรุปว่า ปฏิกิริยาเคมีของ Freiberg (1974) อาจมีความสำคัญในการออกซิไดซ์ขัลเฟอร์ไดออกไซด์ให้กลายเป็นซัลเฟต หากในสภาวะแวดล้อมมีปัจจัย เช่น ความขึ้นสัมพัทธ์ ความเข้มข้น ของแอมโมเนีย และ เหล็กที่สูง และ อุณหภูมิที่ด่ำ

ภาควิชา วิศวกรรมสิ่ง แว คลอม สาขาวิชา วิศวกรรมสุขาภิบาล ปีการศึกษา 2537......

ลายมือซื้อนิสิต มู่ที่อา ตรีวิทยากมี ลายมือชื่ออาจารย์ที่ปรึกษา...... ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

C517508 MAJOR SANITARY ENGINEERING

KEY WORD: SULFUR DIOXIDE OXIDATION / MATHEMATICAL MODEL / MONTE CARLO

> MUTITA TRIWITTAYAPOOM : MODELING OF SULFUR DIOXIDE OXIDATION IN PLUME USING THE MONTE CARLO METHOD. THESIS ADVISOR : SANGSANT PANICH, Ph.D. 167 pp. ISBN 974-584-825-5

This research succeeds in modeling of sulfur dioxide oxidation in plume using the Monte Carlo method for a single point source and flat terrain. The physico-chemical mathematical model is capable of simulating the Gaussian dispersions and chemical transformations of sulfur dioxide. The mathematical model was also used to assess sensitivity analysis of Brimblecombe and Spedding (1974)'s reaction rate, Freiberg (1974)'s reaction rate in ammonia-rich environment and in ammonia-deficient environment and Ibusuki, Ohsawa and Takeuchi (1990)'s reaction rate in ammonia-rich environment, which effects sulfate formation by varying parameters such as atmospheric stability class, relative humidity, temperature, iron and ammonia concentrations. In this study, the measured sulfate concentration in Bang Na was compared with the simulated sulfate concentrations calculated from Freiberg (1974)'s reaction rate and Alkezweeny and Powell (1977)'s first order reaction rate.

In comparison with yields of three chemical reactions, it is found that no yield occurs for Brimblecombe and Spedding (1974)'s reaction rate. Only at relative humidity of 99%, Freiberg (1974)'s reaction rate in both of ammonia-rich environment and ammonia-deficient environment plays a significant role in sulfate formation for every atmospheric stability class, temperature, iron concentration or ammonia concentration variations. Ibusuki et al. (1990)'s reaction rate in ammonia-rich environment does not cause significant yield for each atmospheric stability class, nor as a result of the temperature decrease or the relative humidity increase or the ammonia concentration increase or iron concentration increase.

The results of sensitivity analysis of Freiberg(1974)'s reaction rate in ammonia-rich environment and in ammoniadeficient environment indicate that the sulfate formation increases with increasing relative humidity, iron and ammonia concentrations and with decreasing temperature. Between ammonia-rich environment and ammonia-deficient environment, the yield in the first condition is much more than that in the latter condition for the same given condition. In the cases of varying atmospheric stability class, the sulfate production is very low in the unstable and neutral atmospheric stabilities, vice versa, the conversion of sulfur dioxide to sulfate is very high in the stable atmosphere due to the nature of second order reaction rate.

The measured yield during the dry season at the location of Bang Na with wind velocity of 2 m/s and Freiberg (1974)'s yields in some cases provide the comparable yields, which indicate that Freiberg (1974)'s reaction rate may become important if relative humidity, ammonia and iron concentrations are high with low temperature in the environment.

ภาควิชา	<u>วิศวกรรมสิ่ง แวคล้อม</u>	ลายมือชื่อนิสิต มู่ก็อา หรู้การกฎม
สาขาวิชา	วิศวกรรมสุขาภิบาล	ลายมือชื่ออาจารย์ที่ปรึกษา
ปีการศึกษา	2537	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

Acknowledgment

First I would like to express my profound gratitude to my advisor, Dr. Sangsant Panich, for his understanding, hard working, invaluable suggestions, grammar check of this report and encouragement in all aspects throughout the period of this thesis work.

Also, I would like to gratefully thank to Associate Professor Wongpun Limpaseni, Assistant Professor Dr. Sasithorn Boon-Long and Associate Professor Dr. Theera Karot for kindly accepting to be my committee members.

Furthermore I wish to thankfully acknowledge all of brothers, sisters, friends and staffs of Chulalongkorn University Unix Center for their help and support.

To my parents whose invariable love, care and understanding are beyond the reach of words, I dedicate this modest piece of work.

Contents

Page

Thai A	lbstract	iv
Englisl	h Abstract	\mathbf{v}
Ackno	wledgement	vi
List of	f Tables	xi
List of	f Figures	xii
Nome	nclature	xx
Chapte	F	
Ι	Introduction	1
	1.1 Rationale of the Study	1
	1.2 Objectives of the Study	2
	1.3 Scopes of the Study	2
	1.4 Expected Uses of the Study	3
П	Literature Review	4
	2.1 Atmospheric Dispersion	4
	2.2 Mathematical Models of Air Pollution Simulations	6
	2.2.1. Analytical Models	6
	Gaussian Plume Model	7
	2.2.2. Numerical Models	12
	• Numerical Models Simulated by the Monte Carlo Method	12
	2.3 Sulfur Dioxide	14
	2.3.1 Sources of Sulfur Dioxide	14
	2.3.2 Properties of Sulfur Dioxide	15
	2.4 Atmospheric Oxidation of Sulfur Dioxide	15
	2.4.1 Photochemical Reactions in the Gas-Phase	15
	2.4.2 Heterogeneous Reactions in the Liquid-Phase	16

Contents (Continued)

Chapter

	2.4.2.1 Mechanisms of the Catalytic Oxidation of Sulfur	
	Dioxide in the Liquid-Phase	16
	2.4.2.2 Absorption Equilibria of Sulfur Dioxide in Water	17
	2.4.2.3 Liquid-Phase Oxidation of Sulfur Dioxide by O ₂	
	Catalyzed by Transition Metal Ions	18
	2.5 Potential Role of Ammonia on the Atmospheric Oxidation of	
	Sulfur Dioxide in the Liquid-Phase	22
Ш	Methodology	24
	3.1 Development of Mathematical Model of Sulfur Dioxide Oxidation	
	in Plume Using the Monte Carlo Method	25
	3.1.1 Description of Physical Mathematical Model	25
	3.1.1.1 Advection	25
	3.1.1.2 Dispersion	26
	3.1.2 Description of Chemical Reaction Mathematical Model	29
	3.1.2.1 The First Order Reaction Rate of Sulfur Dioxide	
	Oxidation	30
	3.1.2.2 The Non-First Order Reaction Rate of Sulfur Dioxide	
	Oxidation	31
	• In Case of Freiberg (1974)'s Reaction Rate in Ammonia-Rich	
	Environment	35
	• In Case of Ibusuki, Ohsawa and Takeuchi (1990)'s Reaction	
	Rate in Ammonia-Rich Environment	36
	• In Case of Freiberg (1974)'s Reaction Rate in Ammonia-	
	Deficient Environment	42

Page

Contents (Continued)

Chapter
3.2 Verification of Mass Conservation of Mathematical Model of Sulfur
Dioxide Oxidation in Plume Using the Monte Carlo Method 47
3.3 Evaluation of the Values of the Simulated Horizontal and Vertical
Dispersion Coefficients in Comparison to Pasquill-Gifford
Dispersion Coefficients 47
3.3.1 Calculation of the Empirical Concentrations of Sulfur
Dioxide 48
3.3.2 Calculation of the Numerical Concentrations of Sulfur
Dioxide 49
3.4 Application of the Mathematical Model of Sulfur Dioxide Oxidation
in Plume Using the Monte Carlo Method to a Stack of the South
Bangkok Power Plant in Samut Prakarn 50
3.5 Sensitivity Analysis of Chemical Reactions of the Mathematical
Model of Sulfur Dioxide Oxidation in Plume Using the Monte
Carlo Method with a Stack of the South Bangkok Power Plant in
Samut Prakarn 51
IV Results and Discussion
4.1 Verification of Mass Conservation of Mathematical Model of Sulfur
Dioxide Oxidation in Plume Using the Monte Carlo Method 56
4.2 Evaluation of the Values of the Simulated Horizontal and Vertical
Dispersion Coefficients in Comparison to Pasquill-Gifford Dispersion
Coefficients
4.3 Sensitivity Analysis of Chemical Reactions of Mathematical Model
of Sulfur Dioxide Oxidation in Plume Using the Monte Carlo Method

Page

Contents (Continued)

Chapter	
with a Stack of the South Bangkok Power Plant in Samut	
Prakarn	59
4.3.1 Brimblecombe and Spedding (1974)'s Reaction Rate	60
4.3.2 Freiberg (1974)'s Reaction Rate in Ammonia-Rich	
Environment and in Ammonia-Deficient Environment	60
4.3.2.1 Effect of Relative Humidity on %Yield	78
4.3.2.2 Effect of Temperature on %Yield	79
4.3.2.3 Effect of Iron Concentration on %Yield	79
4.3.2.4 Effect of Ammonia Concentration on %Yield	80-
4.3.2.5 Effect of Atmospheric Stability Class on %Yield	81
4.3.3 Ibusuki, Ohsawa and Takeuchi (1990)'s Reaction Rate in	
Ammonia-Rich Environment	82
4.4 Evaluation of Simulated Sulfate Concentrations in Comparison to	
Measured Sulfate Concentrations of a Stack of the South Bangkok	
Power Plant in Samut Prakarn	83
V Conclusions and Recommendations	85
5.1 Conclusions	85
5.2 Recommendations	88
References	89
Appendix A Details of Programs of Physico-Chemical Mathematical Models	93
Appendix B Results of Simulations	110
Vita	167

List of Tables

.

1	able		Page
	2.1	Pasquill Chart for Determing Atmospheric Stability Class	9
	2.2	Effect of Temperature on the Value of $K_0 * \beta_s * K_s * \beta_n * K_n / K_w \dots$	19
	3.1	The Probability of Sulfur Dioxide to Sulfate Transformation for the	
		Non-First Order Reaction Rate	34
	3.2	The Data of the 5 th Sulfur Dioxide Emission Source	51
	3.3	Measured Sulfur Dioxide and Sulfate Concentrations in Bang Na	54
	4.1	Comparison of Pasquill-Gifford Dispersion Coefficients and the	
		Simulated Horizontal and Vertical Dispersion Coefficients for Every	
		Atmospheric Stability Class at 1, 5 and 10 km Downwind from the	
		Source	58
	4.2	Comparison of %Yield of Brimblecombe and Spedding (1974)'s	
		Reaction Rate, Freiberg (1974)'s Reaction Rate and Ibusuki, Ohsawa	
		and Takeuchi (1990)'s Reaction Rate in Ammonia-Rich Environment	
		at 10 km Downwind from the Source	61
	4.3	%Yield of Freiberg (1974)'s Reaction Rate in Ammonia-Deficient	
		Environment at 10 km Downwind from the Source	75
	4.4	Comparison of Measured Yield, Freiberg's Yields and Alkezweeny and	
		Powell's Yields at Temperature of 25 °C and 7 km Downwind from the	;
		Source	83

xi

List of Figures

Figure		Page
2.1	Three-Dimensional Concentration Profiles of Gaussian Plume Model	
		8
2.2	Pasquill-Gifford Dispersion Coefficients	10
2.3	ASME Dispersion Coefficients	11
3.1	Dispersion of Sulfur Dioxide or Sulfate Aerosol Concentration in Y	
	or Z Direction	27
3.2	Flow Chart of the Physico-Chemical Mathematical Model for	
	Brimblecombe and Spedding (1974)'s Reaction Rate, Freiberg	
	(1974)'s Reaction Rate in Ammonia-Rich Environment and Ibusuki	
	et al., (1990)'s Reaction Rate in Ammonia-Rich Environment	38
3.3	Flow Chart of the Physico-Chemical Mathematical Model for Freiberg	
	(1974)'s Reaction Rate in Ammonia-Deficient Environment	44
3.4	The Location of Survey Area	53
4.1	Comparison of the Empirical and Numerical Concentrations of SO_2	
	for Atmospheric Stability Class A at 1 km Downwind from the	
*	Source	111
4.2	Comparison of the Empirical and Numerical Concentrations of SO_2	
	for Atmospheric Stability Class B at 1 km Downwind from the	
	Source	112
4.3	Comparison of the Empirical and Numerical Concentrations of SO_2	
	for Atmospheric Stability Class C at 1 km Downwind from the	
	Source	113
4.4	Comparison of the Empirical and Numerical Concentrations of SO_2	
	for Atmospheric Stability Class C at 5 km Downwind from the	
	Source	114

Figure		Page
4.5	Comparison of the Empirical and Numerical Concentrations of SO_2	
	for Atmospheric Stability Class C at 10 km Downwind from the	
	Source	115
4.6	Comparison of the Empirical and Numerical Concentrations of SO ₂	
	for Atmospheric Stability Class D at 1 km Downwind from the	
	Source	116
4.7	Comparison of the Empirical and Numerical Concentrations of SO_2	
	for Atmospheric Stability Class D at 5 km Downwind from the	
	Source	117
4.8	Comparison of the Empirical and Numerical Concentrations of SO ₂	
	for Atmospheric Stability Class D at 10 km Downwind from the	
	Source	118
4.9	Comparison of the Empirical and Numerical Concentrations of SO_2	
	for Atmospheric Stability Class E at 1 km Downwind from the	
	Source	119
4.10	Comparison of the Empirical and Numerical Concentrations of SO_2	
	for Atmospheric Stability Class E at 5 km Downwind from the	
	Source	120
4.11	Comparison of the Empirical and Numerical Concentrations of SO_2	
	for Atmospheric Stability Class E at 10 km Downwind from the	
	Source	121
4.12	Comparison of the Empirical and Numerical Concentrations of SO_2	
	for Atmospheric Stability Class F at 1 km Downwind from the	
	Source	122
4.13	Comparison of the Empirical and Numerical Concentrations of SO ₂	

Figure		Page
	for Atmospheric Stability Class F at 5 km Downwind from the	
	Source	123
4.14	Comparison of the Empirical and Numerical Concentrations of SO_2	
	for Atmospheric Stability Class F at 10 km Downwind from the	
	Source	124
4.15	%Yield VS Time of Freiberg(1974)'s Reaction Rate in Ammonia-Rich	
	Environment for Atmospheric Stability Class C at [Fe] = 1201 ng/m ³	
	and $[NH_3] = 50 \text{ ppb}$	125
4.16	%Yield VS Time of Freiberg(1974)'s Reaction Rate in Ammonia-Rich	
	Environment for Atmospheric Stability Class C at [Fe] = 1201 ng/m ³	
	and $[NH_3] = 80 \text{ ppb}$	126
4.17	%Yield VS Time of Freiberg(1974)'s Reaction Rate in Ammonia-Rich	
	Environment for Atmospheric Stability Class C at [Fe] = 1201 ng/m ³	
	and $[NH_3] = 100 \text{ ppb}$	127
4.18	%Yield VS Time of Freiberg(1974)'s Reaction Rate in Ammonia-Rich	
	Environment for Atmospheric Stability Class C at $[Fe] = 0.1 \text{ mg/m}^3$	
	and $[NH_3] = 50 \text{ ppb}$	128
4.19	%Yield VS Time of Freiberg(1974)'s Reaction Rate in Ammonia-Rich	
	Environment for Atmospheric Stability Class C at [Fe] = 0.1 mg/m ³	
	and $[NH_3] = 80 \text{ ppb}$	129
4.20	%Yield VS Time of Freiberg(1974)'s Reaction Rate in Ammonia-Rich	
	Environment for Atmospheric Stability Class C at [Fe] = 0.1 mg/m ³	
	and $[NH_3] = 100 \text{ ppb}$	130
4.21	%Yield VS Time of Freiberg(1974)'s Reaction Rate in Ammonia-Rich	
	Environment for Atmospheric Stability Class D at [Fe] = 1201 ng/m ³	

xiv

Figure		Page
	and $[NH_3] = 50 \text{ ppb}$	131
4.22	%Yield VS Time of Freiberg(1974)'s Reaction Rate in Ammonia-Rich	
	Environment for Atmospheric Stability Class D at [Fe] = 1201 ng/m ³	
	and $[NH_3] = 80 \text{ ppb}$	132
4.23	%Yield VS Time of Freiberg(1974)'s Reaction Rate in Ammonia-Rich	
	Environment for Atmospheric Stability Class D at [Fe] = 1201 ng/m ³	
	and [NH ₃] = 100 ppb	133
4.24	%Yield VS Time of Freiberg(1974)'s Reaction Rate in Ammonia-Rich	
	Environment for Atmospheric Stability Class D at $[Fe] = 0.1 \text{ mg/m}^3$	
	and $[NH_3] = 50 \text{ ppb}$	134
4.25	%Yield VS Time of Freiberg(1974)'s Reaction Rate in Ammonia-Rich	
	Environment for Atmospheric Stability Class D at [Fe] = 0.1 mg/m ³	
	and $[NH_3] = 80 \text{ ppb}$	135
4.26	%Yield VS Time of Freiberg(1974)'s Reaction Rate in Ammonia-Rich	
	Environment for Atmospheric Stability Class D at $[Fe] = 0.1 \text{ mg/m}^3$	
	and $[NH_3] = 100 \text{ ppb}$	136
4.27	%Yield VS Time of Freiberg(1974)'s Reaction Rate in Ammonia-Rich	
	Environment for Atmospheric Stability Class E at [Fe] = 1201 ng/m ³	
	and $[NH_3] = 50 \text{ ppb}$	137
4.28	%Yield VS Time of Freiberg(1974)'s Reaction Rate in Ammonia-Rich	
	Environment for Atmospheric Stability Class E at [Fe] = 1201 ng/m ³	
	and $[NH_3] = 80 \text{ ppb}$	138
4.29	%Yield VS Time of Freiberg(1974)'s Reaction Rate in Ammonia-Rich	
	Environment for Atmospheric Stability Class E at [Fe] = 1201 ^a ng/m ³	
	and [NH ₃] = 100 ppb	139

.

.

Figure		Page
4.30	%Yield VS Time of Freiberg(1974)'s Reaction Rate in Ammonia-Rich	
	Environment for Atmospheric Stability Class E at $[Fe] = 0.1 \text{ mg/m}^3$	
	and $[NH_3] = 50 \text{ ppb}$	140
4.31	%Yield VS Time of Freiberg(1974)'s Reaction Rate in Ammonia-Rich	
	Environment for Atmospheric Stability Class E at [Fe] = 0.1 mg/m^3	
	and $[NH_3] = 80 \text{ ppb}$	141
4.32	%Yield VS Time of Freiberg(1974)'s Reaction Rate in Ammonia-Rich	
	Environment for Atmospheric Stability Class E at [Fe] = 0.1 mg/m ³	
	and $[NH_3] = 100 \text{ ppb}$	142
4.33	%Yield VS Time of Freiberg(1974)'s Reaction Rate in Ammonia-Rich	
	Environment for Atmospheric Stability Class F at [Fe] = 1201 ng/m ³	
	and $[NH_3] = 50 \text{ ppb}$	143
4.34	%Yield VS Time of Freiberg(1974)'s Reaction Rate in Ammonia-Rich	
	Environment for Atmospheric Stability Class F at [Fe] = 1201 ng/m ³	
	and $[NH_3] = 80 \text{ ppb}$	144
4.35	%Yield VS Time of Freiberg(1974)'s Reaction Rate in Ammonia-Rich	
	Environment for Atmospheric Stability Class F at [Fe] = 1201 ng/m ³	
	and $[NH_3] = 100 \text{ ppb}$	145
4.36	%Yield VS Time of Freiberg(1974)'s Reaction Rate in Ammonia-Rich	
	Environment for Atmospheric Stability Class F at $[Fe] = 0.1 \text{ mg/m}^3$	
	and $[NH_3] = 50 \text{ ppb}$	146
4.37	%Yield VS Time of Freiberg(1974)'s Reaction Rate in Ammonia-Rich	
	Environment for Atmospheric Stability Class F at $[Fe] = 0.1 \text{ mg/m}^3$	
	and $[NH_3] = 80 \text{ ppb}$	147
4.38	%Yield VS Time of Freiberg(1974)'s Reaction Rate in Ammonia-Rich	

Figure		Page
	Environment for Atmospheric Stability Class F at [Fe] = 0.1 mg/m ³	
	and [NH ₃] = 100 ppb	148
4.39	%Yield VS Time of Freiberg(1974)'s Reaction Rate in Ammonia-	
	Deficient Environment for Atmospheric Stability Class C at Relative	
	Humidity = 99% and [Fe] = 1201 ng/m^3	149
4.40	%Yield VS Time of Freiberg(1974)'s Reaction Rate in Ammonia-	
	Deficient Environment for Atmospheric Stability Class C at Relative	
	Humidity = 99% and [Fe] = 0.1 mg/m^3	150
4.41	%Yield VS Time of Freiberg(1974)'s Reaction Rate in Ammonia-	
	Deficient Environment for Atmospheric Stability Class D at Relative	
	Humidity = 99% and [Fe] = 1201 ng/m ³	151
4.42	%Yield VS Time of Freiberg(1974)'s Reaction Rate in Ammonia-	
	Deficient Environment for Atmospheric Stability Class D at Relative	
	Humidity = 99% and [Fe] = 0.1 mg/m^3	152
4.43	%Yield VS Time of Freiberg(1974)'s Reaction Rate in Ammonia-	
	Deficient Environment for Atmospheric Stability Class E at Relative	
	Humidity = 99% and [Fe] = 1201 ng/m ³	153
4.44	%Yield VS Time of Freiberg(1974)'s Reaction Rate in Ammonia-	
	Deficient Environment for Atmospheric Stability Class E at Relative	
	Humidity = 99% and [Fe] = 0.1 mg/m^3	154
4.45	%Yield VS Time of Freiberg(1974)'s Reaction Rate in Ammonia-	
	Deficient Environment for Atmospheric Stability Class F at Relative	
	Humidity = 99% and [Fe] = 1201 ng/m ³	155
4.46	%Yield VS Time of Freiberg(1974)'s Reaction Rate in Ammonia-	
	Deficient Environment for Atmospheric Stability Class F at Relative	

xvii

Figure		Page
	Humidity = 99% and [Fe] = 0.1 mg/m^3	156
4.47	Comparison of Freiberg(1974)'s Yield between in Ammonia-Rich	
	Environment and in Ammonia-Deficient Environment for	
	Atmospheric Stability Class C at Relative Humidity = 99% and	1
	$[Fe] = 1201 \text{ ng/m}^3$	157
4.48	Comparison of Freiberg(1974)'s Yield between in Ammonia-Rich	
	Environment and in Ammonia-Deficient Environment for	
	Atmospheric Stability Class C at Relative Humidity = 99% and	
	$[Fe] = 0.1 \text{ mg/m}^3$	158
4.49	Comparison of Freiberg(1974)'s Yield between in Ammonia-Rich	
	Environment and in Ammonia-Deficient Environment for	
	Atmospheric Stability Class D at Relative Humidity = 99% and	
	$[Fe] = 1201 \text{ ng/m}^3$	159
4.50	Comparison of Freiberg(1974)'s Yield between in Ammonia-Rich	
	Environment and in Ammonia-Deficient Environment for	
	Atmospheric Stability Class D at Relative Humidity = 99% and	
	$[Fe] = 0.1 \text{ mg/m}^3$	160
4.51	Comparison of Freiberg(1974)'s Yield between in Ammonia-Rich	
	Environment and in Ammonia-Deficient Environment for	
	Atmospheric Stability Class E at Relative Humidity = 99% and	
	$[Fe] = 1201 \text{ ng/m}^3$	161
4.52	Comparison of Freiberg(1974)'s Yield between in Ammonia-Rich	
	Environment and in Ammonia-Deficient Environment for	
	Atmospheric Stability Class E at Relative Humidity = 99% and	
	$[Fe] = 0.1 \text{ mg/m}^3$	162

F	igure		Page
	4.53	Comparison of Freiberg(1974)'s Yield between in Ammonia-Rich	
		Environment and in Ammonia-Deficient Environment for	
		Atmospheric Stability Class F at Relative Humidity = 99% and	
		$[Fe] = 1201 \text{ ng/m}^3$	163
4.54		Comparison of Freiberg(1974)'s Yield between in Ammonia-Rich	
		Environment and in Ammonia-Deficient Environment for	
		Atmospheric Stability Class F at Relative Humidity = 99% and	
		$[Fe] = 0.1 \text{ mg/m}^3$	164
	4.55	Sulfur Dioxide, Remaining Ammonia and Sulfate Concentration	
		Profiles of Freiberg (1974)'s Reaction Rate in Ammonia-Deficient	
		Environment for Atmospheric Stability Class D at 4 km Downwind	
		from the Source, Relative Humidity = 99%, $T = 25 \text{ °C}$, [Fe] = 0.1	
		mg/m^3 and $[NH_3] = 100 \text{ ppb}$	165
	4.56	Sulfur Dioxide, Remaining Ammonia and Sulfate Concentration	
		Profiles of Freiberg (1974)'s Reaction Rate in Ammonia-Deficient	
		Environment for Atmospheric Stability Class F at 2 km Downwind	
		from the Source, Relative Humidity = 99%, T = 20 °C, [Fe] = 0.1	
		mg/m^3 and $[NH_3] = 100 \text{ ppb}$	166

xix

Nomenclature

.

С	concentration of the non-gaseous pollutant	(g/m ³)
d	stack diameter	(m)
g	gravitational acceleration	(m/s²)
Δh	plume rise	(m)
Н	effective height	(m)
K _d	diffusion coefficient	(m²/s)
K _n	dissociation constant of ammonia	(mole/m ³)
K _o	rate constant of the reaction	(m ³ /mole-min)
K _s	first dissociation constant of sulfurous acid	(mole/m ³)
K _w	dissociation constant of water	(mole/m ³) ²
K _x	diffusion coefficient in x direction	(m²/s)
Ky	diffusion coefficient in y direction	(m²/s)
Kz	diffusion coefficient in z direction	(m²/s)
m	m th order with respect to oxidizing agent or inert	
	substance or catalyst concentration	(-)
n	n th order with respect to sulfur dioxide	
	concentration	(-)
Р	probability of sulfur dioxide to sulfate	
	transformation of each sulfur dioxide quantum	(-)
P1	probability of sulfur dioxide to sulfate	
	transformation of the first sulfur dioxide quantum	(-)
P2	probability of sulfur dioxide to sulfate	
	transformation of the second sulfur dioxide quantur	n (-)

Nomenclature (Continued)

Ptotal	probability of sulfur dioxide to sulfate	
	transformation of the both sulfur dioxide quanta	(-)
Q	sulfur dioxide emission rate	(g/s)
RH	relative humidity	(-)
t	time	(s or min)
Т	temperature	(°C)
T _a	absolute temperature of ambient atmosphere	(K)
T _s	absolute flue gas exit temperature	(K)
ū	average wind velocity	(m/s)
Vs	stack gas exit velocity	(m/s)
x	distance downwind from the source	(m)
У	distance horizontally from the plume center line	(m)
Z	distance vertically from the plume center line	(m)
β_n	Ostwald's constant for ammonia	(-)
β_{s}	Ostwald's constant for sulfur dioxide	(-)
λ	pressure-lowering coefficient for ammonium sulfate	(m ³ /mole)
$\sigma_{\rm y}$	horizontal dispersion coefficient	(m)
σ_{z}	vertical dispersion coefficient	(m)
[]	molar concentration of the component	(mole/m ³)
subscript [] _o	initial condition	(-)
subscript [] _{react}	reacting condition	(-)
subscript [] _{remaining}	remaining condition	(-)
subscript () _{acc}	accumulation condition	(-)

Nomenclature (Continued)

subscript () _{in}	input condition	(-)
subscript () _{out}	output condition	(-)