IMPROVEMENT IN THE THERMAL CONDUCTIVITY OF PARTICULATE-FILLED EPOXY COMPOSITE

Karnthidaporn Wattanakul

A Dissertation Submitted in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University 2010

I2837566X

Thesis Title:	Improvement in Thermal Conductivity of Particulate-filled
	Epoxy Composite
By:	Karnthidaporn Wattanakul
Program:	Polymer Science
Thesis Advisors:	Assoc. Prof. Nantaya Yanumet
	Asst. Prof. Hathaikarn Manuspiya

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Doctor of Philosophy.

. College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

how och B

(Assoc. Prof. Pramoch Rangsunvigit)

Nantaya Janunet

(Assoc. Prof. Nantaya Yanumet)

Hathailian M

(Asst. Prof. Hathaikarn Manuspiya)

(Asst. Prof. Toemsak Srikhirin)

Thomyalak Chaisuwa

(Dr. Thanyalak Chaisuwan)

Thomas Paying

(Asst. Prof. Thirawut Pongprayoon)

ABSTRACT

4892004063: Polymer Science Program
Karnthidaporn Wattanakul: Improvement in the Thermal
Conductivity of Particulate-Filled Epoxy Composite.
Thesis Advisors: Assoc. Prof. Nantaya Yanumet, Asst. Prof.
Hathaikarn Manuspiya 149 pp.
Keywords: Thermal Conductive Composite/ Epoxy Composite/ Metal Oxide/

Boron Nitride/ Mixing Condition/ Surface Modification/ Admicellar Polymerization/ Silane Treatment/ Interfacial Adhesion/ Surfactant Adsorption

Two approaches to improve thermal conductivity of epoxy composite are considered in this work. One is the approach to form a conductive network and the other approach is the improvement in interfacial adhesion between matrix and filler by surface modification of filler. According to the first approach, the effects of different types and particle sizes of metal oxide on the thermal conductivity of metal oxide-filled epoxy composite is studied. The SEM micrographs of the fractured surface show improvement in particle dispersion of nano-size metal oxide particles resulting in an increase in thermal conductivity of composite. The effect of mixing conditions of the BN-filled epoxy composite can be enhanced with increases in mixing speed, time and temperature. A maximum thermal conductivity of 1.68 W/mK is obtained at 37 vol% filler content and the mixing conditions of 300 rpm, 30 min, 30 °C. Furthermore, surface modifications of BN with different methods: conventional silane treatment, admicellar polymerization and surfactant treatment are also

investigated. The thermal conductivity of BN-filled epoxy composite is significantly enhanced by admicellar polymerization and surfactant treatment. The mechanical properties of the composite also improve significantly.

บทคัดย่อ

กานต์ธิดาพร วัฒนกุล : การปรับปรุงสมบัติการนำความร้อนของสารคอมพอสิทอีพอก ซี (Improvement in the Thermal Conductivity of Particulate-Filled Epoxy Composite) อาจารย์ที่ปรึกษา : รศ. คร. นันทยา ยานุเมศ และ ผศ. คร. หทัยกานต์ มนัสปียะ 149 หน้า

แนวทางในการปรับปรุงสมบัติการนำความร้อนของสารคอมพอสิทอีพอกซีสอง แนวทางได้รับความสนใจในงานวิจัยนี้ แนวทางแรกใช้วิธีการเสริมสร้างโครงข่ายการนำความร้อน ส่วนอีกแนวทางหนึ่งเป็นการเพิ่มแรงยึดติดระหว่างสารอีพอกซีกับ ภายในสารคอมพอสิท สารเติมแต่งโดยการดัดแปรพื้นผิวของอนุภาคสารเติมแต่ง การปรับปรุงสมบัติการนำความร้อน ในแนวทางแรกนั้น งานวิจัยนี้ได้ศึกษาผลของประเภทและขนาคอนุภาคของสารประกอบโลหะ ออกไซด์ที่มีต่อความสามารถในการนำความร้อนของสารคอมพอสิทที่เติมแต่งด้วยสารประกอบ โลหะออกไซค์ ซึ่งจากผลการทคลองพบว่าความสามารถในการนำความร้อนของสารคอมพอสิท ้ดีขึ้น เมื่อมีการใช้สารประกอบโลหะออกไซต์ที่มีขนาดอนุภาคในระดับนาโนเมตร เนื่องจาก อนุภาคเหล่านี้สามารถกระจายตัวได้ดีในสารอีพอกซี นอกจากนี้ ยังได้ศึกษาผลของภาวะที่ที่ใช้ ในการผสมต่อการเพิ่มความสามารถในการนำความร้อนของสารคอมพอสิทระหว่างโบรอนไน ใตรด์กับอีพอกซี ผลการทดลองพบว่ากวามสามารถในการนำความร้อนของสารคอมพอสิท เพิ่มขึ้นเมื่อใช้เวลาในการผสมนานขึ้น รวมทั้งเมื่อใช้ความเร็วและอุณหภูมิในการผสมที่สูงขึ้น โดย ้ ค่าการนำความร้อนสูงสุดที่ได้คือ 1.68 วัตค์/เมตร-เคลวิน ซึ่งได้จากการใช้สารเกิมแต่งในปริมาณ 37 เปอร์เซ็นด์โคยปริมาตร ทำการผสมที่ความเร็ว 300 รอบต่อนาที เป็นเวลา 30 นาที ที่อุณหภูมิ 30 องศาเซลเซียส นอกจากนี้ยังได้ศึกษาและเปรียบเทียบผลของการดัดแปรพื้นผิวของสารเติมแต่ง ้โบรอนในไตรด์ โดยใช้สารจำพวกไซเลน, การใช้กระบวนการทำแอดไมเซลลาร์พอลิเมอไรเซชั่น , และการใช้สารลดแรงตึงผิว เพื่อเพิ่มความสามารถในการยึดติดของสารเติมแต่งกับสารอีพอกซึ ้ผลการทคลองพบว่ากระบวนการทำแอคไมเซลลาร์พอลิเมอไรเซชั่นและการใช้สารลคแรงตึงผิว ้ช่วยเพิ่มความสามารถในการนำความร้อนและยกระดับสมบัติเชิงกลของสารคอมพอสิทอย่างเห็น ได้ชัด

ACKNOWLEDGEMENTS

First of all, the author wishes to express her gratefulness to her advisors— Assoc. Prof. Nantaya Yanumet and Asst. Prof. Hathaikarn Manuspiya—for their useful advice and supports. The author would also like to thank Assoc. Prof. Pramoch Rangsunvigit, Dr. Thanyalak Chaisuwan, Asst. Prof. Toemsak Srikhirin, and Asst. Prof. Thirawudh Pongprayoon for being her thesis committee, and for giving valuable comments and suggestions. The author would like to show her sincere appreciation to Assoc. Prof. Nantaya Yanumet for her scientific guidance, and for reviewing and improving the original manuscripts. The author is so grateful to Dr. Ampornphan Siriviriyanun and Dr. Suchada Tragoonwichian for their discussion and encouragement throughout this work.

This work is financially supported by the National Excellence Center for Petroleum, Petrochemicals, and Advanced Materials (Thailand). The author is deeply grateful for the scholarship provided by the Higher Education Commission of Thailand. The thermal conductivity measurements were kindly supported by the National Metal and Materials Technology Center (MTEC), Thailand, and Aditya Birla Chemicals (Thailand) Ltd kindly supplied the epoxy resin and curing agent.

A STATE STATE

The author wishes to thank all faculty and staff members at the PPC for their kindness. The author also appreciates the supports from all her friends at the PPC.

Finally, the author would like to give her thankfulness to her family for their love, inspiration and supports during her study at the PPC.

TABLE OF CONTENTS

			PAGE
	Title F	lage	i
	Abstra	ct (in English)	iii
	Abstra	ct (in Thai)	iv
	Ackno	wledgements	v
	Table	of Contents	vi
	List of	Tables	х
	List of	Figures	xi
CHA	PTER		
	I	INTRODUCTION	1
	Η	LITERATURE REVIEW	3
	III	EXPERIMENTAL	17
	IV	THE THERMAL CONDUCTIVITY OF METAL OXIDE-	FILLED
		EPOXY COMPOSITE	24
		4.1 Abstract	24
		4.2 Introduction	24
		4.3 Experimental	25
		4.4 Results and Discussion	26
		4.5 Conclusions	28
		4.6 References	28

V **EFFECTS OF FILLER CONTENT AND MIXING CONDITIONS ON THE IMPROVEMENT IN THE THERMAL** CONDUCTIVITY AND MECHANICAL PROPERTIES OF **BN-FILLED EPOXY COMPOSITE** 36 5.1 Abstract 36 5.2 Introduction 36 5.3 Experimental 38 5.4 Results and Discussion 40 5.5 Conclusions 46 5.6 References 46

VI EFFECTIVE SURFACE TREATMENTS FOR ENHANCING THE THERMAL CONDUCTIVITY OF BN-FILLED EPOXY COMPOSITE 62 6.1 Abstract 62

6.2	Introduction	62
6.3	Experimental	64
6.4	Results and Discussion	67
6.5	Conclusions	72
6.6	References	72

VII	ORGANOPHILIC BN THROUGH CATIONIC SURFACT. ADSORPTION: ITS EFFECT ON THE THERMAL	ANT
	CONDUCTIVITY AND MECHANICAL PROPERTIES OF	7
	BN-EPOXY COMPOSITE	87
	7.1 Abstract	87
	7.2 Introduction	87
	7.3 Experimental	89
	7.4 Results and Discussion	92
	7.5 Conclusions	96
	7.6 References	96
VIII	CONCLUSIONS AND RECOMMENDATIONS	113
	REFERENCES	114
	APPENDICES	120
	Appendix A Determination of Thermal Conductivity of Metal	120
	Oxide-filled Epoxy Composite	
	Appendix B Determination of Thermal Conductivity of BN-	121
	filled Epoxy Composite	
	Appendix C Determination of Viscosity of BN-filled Epoxy	126
	Suspension	
	Appendix D Determination of Zeta Potential of BN Particles	128
	Appendix E Determination of Surfactant Adsorption on BN	129
	Surface	
	Appendix F Determination of Mechanical Properties of BN-	130
	filled Epoxy Composite	

CHAPTER

Appendix G	Determination of Contact Angle of Surface-	143
	treated BN particles	
Appendix H	Determination of the Occupied Surface Area of	146
	Surfactant-treated BN particles	

CURRICULUM VITAE 148

LIST OF TABLES

TABL	TABLE	
	CHAPTER V	
5.1	The average dimensions and aspect ratio of BN particles	
	with varying mixing conditions	48
	CHAPTER VI	
6.1	Solubility varameters of epoxy resin, polymethyl	
	methacrylate, and polystyrene	75
	CHAPTER VII	
71	Surface area of PN partials and the area accupied by	

7.1 Surface area of BN particle and the area occupied by surfactant molecule at pH 8.0

99

.

LIST OF FIGURES

FIGURE

PAGE

CHAPTER II

2.1	Relative thermal conductivity as a function of filler volume	
	fraction (K_f , thermal conductivity of filler, K_m , thermal	
	conductivity of matrix or polymer) (Bigg, 1986).	5
2.2	The structure of hexagonal boron nitride (Sichel et al.,	
	1976).	8
2.3	Schematic of the steps in the admicellar polymerization.	11
2.4	Adsorption isotherms of an ionic surfactant on a solid	
	surface.	12
	CHAPTER IV	
4.1	Thermal conductivity of ZnO-filled epoxy composite.	30
4.2	Thermal conductivity of CuO-filled epoxy composite.	31

	include of the current of the constant of the constant of the current of the curr	51
4.3	Comparison of the thermal conductivity of ZnO-filled and	
	CuO-filled epoxy composite.	32
4.4	SEM micrographs of the fractured surface of (a) ZnO (< 1	
	micron) and (b) ZnO (nanoparticle)-filled epoxy composite.	33
4.5	SEM micrographs of the fractured surface of (a) CuO (< 5	
	micron) and (b) CuO (nanoparticle)-filled epoxy composite.	34
4.6	Comparison of particle dispersion between (a) ZnO-filled	
	epoxy composite and (b) CuO-filled epoxy composite.	35

CHAPTER V

5.1	Thermal conductivity of BN-filled epoxy composites at	
	different filler contents (mixing time 30 min, mixing	
	temperature 30 °C).	49

CHAPTER V

5.2	The fitting of experimental data with Lewis-Nielsen, Kanari,	
	Bruggeman, and Maxwell models (mixing speed 80 rpm,	
	mixing time 30 min, mixing temperature 30 °C).	50
5.3	Thermal conductivity of 28 vol% BN-filled epoxy	
	composites at varying (a) mixing speed (30 min, 30°C), (b)	
	mixing time (80 rpm, 30°C), and (c) mixing temperature (80	
	rpm, 30 min).	51
5.4	SEM micrographs (x35) of BN particles in 28 vol% BN-	
	filled composite at the mixing speed of (a) 80 rpm and (b)	
	300 rpm (30 min, 30 °C).	52
5.5	Correlation between the thermal conductivity and the	
	average aspect ratio of extracted BN particles.	53
5.6	Viscosity of BN-epoxy mixture at different filler contents	
	and the fitting of the experimental data with Krieger-	
	Dougherty model.	54
5.7	Viscosity of 28 vol% BN-filled epoxy suspension with	
	varying (a) mixing speed (30 min, 30°C), (b) mixing time	
	(80 rpm, 30°C), and (c) mixing temperature (80 rpm, 30	
	min).	55
5.8	Flexural properties of BN-filled epoxy composite at different	
	filler contents (mixing speed 80 rpm, mixing time 30	
	min, mixing temperature 30 °C).	56
5.9	Flexural properties of 28 vol% BN-filled epoxy with varying	
	(a) mixing speed (30 min, 30°C), (b) mixing time (80 rpm,	
	30°C), and (c) mixing temperature (80 rpm, 30 min).	57

CHAPTER V

5.10	Impact strength of 28 vol% BN-filled epoxy composite at	
	different filler contents (mixing speed 80 rpm, mixing time	
	30 min, mixing temperature 30 °C).	58
5.11	Impact strength of 28 vol% BN-filled epoxy with varying (a)	
	mixing speed (30 min, 30°C), (b) mixing time (80 rpm,	
	30°C), and (c) mixing temperature (80 rpm, 30 min).	59
5.12	SEM micrographs of the fractured surface of 28 vol% BN-	
	filled epoxy composite prepared by mixing at (a) and (b) 80	
	rpm, 30 min, 30°C at x100 and x800, (c) and (d) 80 rpm, 30	
	min, 70°C at x100 and x800, (e) and (f) 300 rpm, 30 min,	
	30°C at x 100 and x800, (g) and (h) 300 rpm, 30 min, 70°C	
	at x 100 and x800.	60

CHAPTER VI

6.1	FTIR spectra of PMMA-coated BN-filled epoxy composite	
	by admicellar polymerization with varying	
	surfactant:monomer molar ratio.	77
6.2	FTIR spectra of PS-coated BN-filled epoxy composite by	
	admicellar polymerization with varying surfactant:monomer	
	molar ratio.	78
6.3	SEM micrographs of (a) untreated BN particles (x1500), (b)	
	untreated BN particles (x8000), (c) 1:10 PMMA-coated BN	
	particles (x8000), (d) 1:10 PS-coated BN particles (x8000),	
	(e) 1:15 PMMA-coated BN particles (x1500), and (f) 1:15	
	PS-coated BN particles (x1500).	79
6.4	Contact angle of water droplet on epoxy and BN surfaces as	
	a function of time.	80

CHAPTER VI

	6.5	Contact angle of epoxy droplet on BN surface as a function	
		of time.	81
	6.6	Thermal conductivity of BN-filled epoxy composite treated	
		with varying (a) surfactant:monomer molar ratio, and (b)	
		silane concentration.	82
	6.7	The mechanical properties of surface-treated BN-filled	
		epoxy composite: (a) and (b) flexural strength of admicellar-	
		treated and silane-treated BN-filled epoxy composites, (c)	
,		and (d) flexural modulus of admicellar-treated and silane-	
		treated BN-filled epoxy composites, (e) and (f) impact	
		strength of admicellar-treated and silane-treated BN-filled	
		epoxy composites, respectively.	83
	6.8	Correlation between thermal conductivity and flexural	
0		strength of admicellar- treated BN-filled composite.	84
	6.9	SEM micrographs of the fractured surface of BN-filled	
		epoxy composite using (a) untreated BN, (b) 0.1 wt% APS-	
		treated BN, (c) 0.1 wt% GPS-treated BN, (d) 1:10 PS-treated	
		BN, and (e) 1:10 PMMA-treated BN. (Magnification x 100).	85
	6.10	The fracture line in (a) untreated BN-filled composite, and	
		(b) surface treated BN-filled composite.	86

CHAPTER VII

7.1	Zeta potential of boron nitride particles as a function of pH.	100
7.2	The amount of adsorbed surfactant on BN surface as a	
	function of pH value of surfactant solution.	101

PAGE

CHAPTER VII

7.3	The amount of adsorbed surfactant on BN particles as a	
	function of chain length of surfactant at pH 5.5, 6.0, 7.0 and	
	8.0.	102
7.4	Contact angle of water droplet on surfactant-treated BN	
	surface.	103
7.5	The occupied surface area of surfactant-treated BN as a	
	function of the amount of adsorbed surfactant.	104
7.6	Thermal conductivity of surfactant-treated BN-filled epoxy	
	composite as a function of the amount of adsorbed surfactant	
	at pH 5.5, 6.0, 7.0, and 8.0.	105
7.7	Thermal conductivity of surfactant-treated BN-filled epoxy	
	composite as a function of chain length of surfactant at pH	
	5.5, 6.0, 7.0, and 8.0.	106
7.8	(a) Flexural properties of HTAB-treated BN-filled epoxy	
	composite at varying pH as a function of the amount of	
	adsorbed surfactant.	107
7.8	(b) Flexural properties of surfactant-treated BN-filled epoxy	
	composite as a function of chain length of surfactant at pH 8.	108
7.8	(c) Flexural properties of HTAB-treated BN-filled epoxy	
	composite with varying pH as a function of thermal	
	conductivity of HTAB-treated BN-filled composite.	109
7.9	(a) Impact properties of HTAB-treated BN-filled epoxy	
	composite with varying pH as a function of the amount of	
	adsorbed surfactant.	110

CHAPTER VII

7.9	(b) Impact properties of surfactant-treated BN-filled epoxy	
	composite as a function of chain length of surfactant at pH 8.	111
7.9	(a) Impact properties of HTAB-treated BN-filled epoxy	
	composite with varying pH as a function of thermal	
	conductivity of HTAB-treated BN-filled composite.	112

PAGE