HYDROGEN PRODUCTION FROM WATER SPLITTING UNDER VISIBLE LIGHT IRRADIATION USING SENSITIZED MESOPOROUS-ASSEMBLED TiO₂-SiO₂ MIXED OXIDE PHOTOCATALYSTS

Natee Rungjaroentawon

· · · · · · · · · · ·

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University and Institut Français du Pétrole 2011

Thesis Title:	Hydrogen Production from Water Splitting under Visible
	Light Irradiation Using Sensitized Mesoporous-Assembled
	TiO ₂ -SiO ₂ Mixed Oxide Photocatalysts
By:	Natee Rungjaroentawon
Program:	Petrochemical Technology
Thesis Advisors:	Asst. Prof. Thammanoon Sreethawong
	Prof. Sumaeth Chavadej

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science

..... College Dean

• :

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

Ł

7. Sruthing

(Asst. Prof. Thammanoon Sreethawong)

Chavedy Simaeth

(Prof. Sumaeth Chavadej)

Franseh V

(Assoc. Prof. Pramoch Rangsunvigit)

S. Sutu

(Dr. Singto Sakulkhaemaruethai)

บทคัดย่อ

นที รุ่งเจริญถาวร: การผลิตไฮโครเจนจากการแตกโมเลกุลของน้ำภายใต้สภาวะที่มีแสง ในช่วงตามองเห็นโคยใช้ตัวเร่งปฏิกิริยาออกไซค์ผสมระหว่างไททาเนียมไคออกไซค์และซิลิคอน ไดออกไซค์ที่เกาะตัวกันจนมีรูพรุนขนาคเมโซพอร์ที่ถูกกระตุ้น (Hydrogen Production from Water Splitting under Visible Light Irradiation Using Sensitized Mesoporous-Assembled TiO₂-SiO₂ Mixed Oxide Photocatalysts) อ. ที่ปรึกษา: ผศ. คร. ธรรมนูญ ศรีทะวงศ์ และ ศ. คร. สุเมธ ชวเคช 94 หน้า

ในปัจจุบันแหล่งพลังงานทางเลือกใหม่ โคยเฉพาะอย่างยิ่งไฮโครเจน ถูกพิจารณาว่าเป็น แหล่งพลังงานในอุคมคติในอนาคต ปฏิกิริยาการแตกโมเลกุลของน้ำโคยใช้ตัวเร่งปฏิกิริยาแบบใช้ แสงร่วมเป็นกระบวนการในอุคมคติในการผลิตไฮโครเจน โคยการใช้แสงเป็นแหล่งพลังงานและ ใช้น้ำเป็นสารตั้งค้น งานวิจัยนี้มุ่งเน้นการผลิตไฮโครเงนจากกระบวนการแตกโมเลกุลของน้ำค้วย ้ปฏิกิริยาแบบใช้แสงร่วมภายใค้สภาวะที่มีแสงในช่วงที่ตามองเห็น โคยใช้ตัวเร่งปฏิกิริยาแบบใช้ ้แสงร่วมชนิดออกไซด์ผสมระหว่างไททาเนียมไดออกไซด์และซิลิดอนไดออกไซด์ที่มีการเติม ้ตัวเร่งปฏิกิริยาร่วมโลหะแบบเคี่ยวของแพลทินัม และโลหะแบบผสมของแพลทินัมและทอง โคย ้มีการกระตุ้นด้วยสี่ข้อม โดยตัวเร่งปฏิกิริยาแบบใช้แสงร่วมชนิดออกไซด์ผสมดังกล่าวที่มี ้อัตราส่วนโคยโมลของไททาเนียมไคออกไซค์ต่อซิลิกอนไคออกไซค์ที่ค่าต่างๆนี้ถูกสังเคราะห์ขึ้น ้โดยกระบวนการโซลเจลควบกู่กับการใช้สารลดแรงตึงผิวเป็นสารต้นแบบ โดยได้ศึกษาถึงตัวแปร ้ต่างๆที่มีผลต่อประสิทธิภาพในการเร่งปฏิกิริยาแบบใช้แสงร่วมของตัวเร่งปฏิกิริยา ได้แก่ อุณหภูมิ ในการแคลไซน์ องค์ประกอบเฟสของตัวเร่งปฏิกิริยา และการเติมแพลทินัมและทอง จากผลการ ทคลองพบว่าในกรณีที่ไม่มีการเติมโลหะเป็นตัวเร่งปฏิกิริยาร่วม ตัวเร่งปฏิกิริยาแบบใช้แสงร่วมที่ ้มีค่าอัตราส่วนโดยโมลของไททาเนียมไดออกไซด์ต่อซิลิกอนไดออกไซด์ ที่ค่า 97 ต่อ 3 และแกล ์ ไซน์ที่อุณหภูมิ 500 องศาเซลเซียส มีประสิทธิภาพในการผลิตไฮโครเจนมากที่สุด นอกจากนี้การ เติมโลหะแบบเคี่ยวของแพลทินัม และโลหะแบบผสมของแพลทินัมและทอง ในปริมาณที่ ้เหมาะสมลงบนพื้นผิวของตัวเร่งปฏิกิริยาแบบใช้แสงร่วมด้วยวิธีการยึดเกาะด้วยกระบวนการเคมี โดยใช้แสงร่วม ถูกพบว่าช่วยเพิ่มประสิทธิภาพการผลิตไฮโครเจนของตัวเร่งปฏิกิริยาแบบใช้แสง ร่วมชนิดออกไซด์ผสมระหว่างไททาเนียมไดออกไซด์และซิลิกอนออกไซด์อย่างมาก

ABSTRACT

 5271019063: Petrochemical Technology Program
Natee Rungjaroentawon: Hydrogen Production from Water Splitting under Visible Light Irradiation Using Sensitized Mesoporous-Assembled TiO₂-SiO₂ Mixed Oxide Photocatalysts
Thesis Advisors: Asst. Prof. Thammanoon Sreethawong and Prof. Sumaeth Chavadej 94 pp.

Keywords: Photocatalysis/ Water Splitting/ Hydrogen Production/ Mesoporosity/ TiO₂-SiO₂ Mixed Oxide/ Visible Light

Alternative energy resources, especially hydrogen, are now being recognized as an ideal energy source for the future. The photocatalytic water splitting is an ideal method for producing hydrogen by using solar light as the energy source and water as the feedstock. This work focused on hydrogen production from photocatalytic water splitting under visible light irradiation using Eosin Y-sensitized mesoporous-assembled TiO₂-SiO₂ mixed oxide photocatalysts loaded with monometallic and bimetallic Pt-Au cocatalysts, of which the mesoporous-assembled TiO₂-SiO₂ mixed oxide photocatalyst with various TiO₂-to-SiO₂ molar ratios were synthesized by a sol-gel process with the aid of a structure-directing surfactant. Various parameters affecting the photocatalytic activity, including calcination temperature, phase composition, and Pt and Au loadings, were investigated. The experimental results showed that without metal loading, the TiO₂-SiO₂ photocatalyst with a TiO₂-to-SiO₂ molar ratio of 97:3 calcined at 500 °C provided the maximum photocatalytic hydrogen production activity. Moreover, the monometallic and bimetallic Pt-Au loadings with suitable contents by the photochemical deposition method were found to greatly enhance the photocatalytic activity of the TiO₂-SiO₂ photocatalyst. ł

ACKNOWLEDGEMENTS

The author was grateful for the scholarship and funding of the thesis work provided by the Petroleum and Petrochemical College, Chulalongkorn University, Thailand; by the Center for Petroleum, Petrochemicals, and Advanced Materials, Chulalongkorn University, Thailand; and by the Thailand Research Fund (TRF) and the Commission on Higher Education.

The author would like to express his sincere gratitude to Asst. Prof. Thammanoon Sreethawong and Prof. Sumaeth Chavadej for their invaluable guidance, understanding, and constant encouragement throughout the course of this research.

He would like to express special thanks to Assoc. Prof. Pramoch Rangsunvigit and Dr. Singto Sakulkhaemaruethai for kindly serving on his thesis committee. Their sincere suggestions are definitely imperative for accomplishing his thesis.

His gratitude is absolutely extended to all staffs of the Petroleum and Petrochemical College, Chulalongkorn University, for all their kind assistance and cooperation.

Furthermore, he would like to take this important opportunity to thank all of his graduate friends for their unforgettable friendship.

Finally, he really would like to express his sincere gratitude to his parents and family for the love, understanding, and cheering.

1

Ł

TABLE OF CONTENTS

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	ix
List of Figures	xi

CHAPTER

Ι	INTRODUCTION	
Π	LITERATURE REVIEW	
	2.1 Hydrogen: Fuel of the Future	
	2.2 Water Splitting: Hydrogen Generation Using Solar Energ	у
	2.2.1 Photocatalytic Reaction	
	2.2.2 Splitting Water into Hydrogen	
	2.2.3 Efficiency	
	2.2.4 Semiconductor	
	2.2.5 Types of Semiconductor Systems Proposed for	
	Solar Water Splitting	
	2.2.5.1 Semiconductor Solid State Photovoltaic	
	Based Systems	
	2.2.5.2 Semiconductor Electrode (Liquid Junction)	
	Systems	
	2.2.5.3 Semiconductor Particle Systems	
	2.2.6 The Principle of Water Splitting Using	
	Semiconductor Particle	
	2.3 Photocatalyst	
	2.4 Titanium Oxide Photocatalyst	

CHAPTER

PAGE

	2.4.1 General Remarks	15
	2.4.2 Crystal Structure and Properties	16
	2.4.3 Semiconductor Characteristic and	
	Photocatalytic Activity	18
	2.5 Nano-Photocatalyst	20
	2.5.1 General Remarks	20
	2.5.2 Activity of Nano-Photocatalyst	21
	2.6 Chemical Additive for Enhancement of Photocatalytic	
	H ₂ Production	22
	2.7 Metal Loading for Enhancement of H ₂ Production	24
	2.8 Ion Doping for Enhancement of H ₂ Production	25
	2.8.1 Metal Ion Doping	25
	2.8.2 Anion Doping	27
	2.9 Dye Sensitization	29
	2.10 Composite Semiconductors	31
	2.11 Mixed Oxide System	33
	2.12 Bimetallic System	34
	2.13 Porous Material	35
	2.14 Sol-Gel Process	37
III	EXPERIMENTAL	40
	3.1 Materials	40
	3.2 Equipment	40
	3.3 Methodology	41
	3.4 Photocatalyst Characterizations	44
	3.5 Photocatalytic H ₂ Production System	46
IV	RESULTS AND DISCUSSION	48
	4.1 Photocatalyst Characterizations	48
	4.1.1 TG-DTA Results	48

V

. د

ł

PA	G	Đ
----	---	---

4.1.2 N ₂ Adsorption-Desorption Results	50
4.1.3 XRD Results	56
4.1.4 UV-Visible Spectroscopy Results	63
4.1.5 SEM-EDX Results	68
4.1.6 TEM-EDX Results	72
4.1.7 Hydrogen Chemisorption Results	76
4.2 Photocatalytic Hydrogen Production Activity	77
4.2.1 Effect of TiO ₂ -to-SiO ₂ Molar Ratio in Mixed	
Oxide Photocatalysts	77
4.2.2 Effect of Calcination Temperature	79
4.2.3 Effect of Pt- and Bimetallic Pt-Au Loadings	80
CONCLUSIONS AND RECOMMENDATIONS	85
5.1 Conclusions	85
5.2 Recommendations	86
REFERENCES	87
CURRICULUM VITAE	94

LIST OF TABLES

TABLE		PAGE
2.1	Definitions about porous solids	36
4.1	Thermal decomposition results of the dried synthesized pure TiO_2	
	and 0.97TiO ₂ -0.03SiO ₂ mixed oxide photocatalysts from TG-DTC	3
	analysis	50
4.2	N ₂ adsorption-desorption results of the synthesized	
	mesoporous-assembled pure TiO ₂ and TiO ₂ -SiO ₂	
	mixed oxide photocatalysts calcined at various temperatures	. 54
4.3	N ₂ adsorption-desorption results of the synthesized Pt-loaded	
	mesoporous-assembled 0.97TiO ₂ -0.03SiO ₂ mixed oxide	
	photocatalysts calcined at 500 °C	55
4.4	N_2 adsorption-desorption results of the synthesized bimetallic	
	Pt-Au-loaded mesoporous-assembled 0.97TiO ₂ -0.03SiO ₂	·
	mixed oxide photocatalysts calcined at 500 °C	56
4.5	XRD results of the synthesized mesoporous-assembled	8
· · ·	pure TiO_2 and TiO_2 -SiO ₂ mixed oxide photocatalysts	
	calcined at various temperatures	60
4.6	XRD results of the synthesized Pt-loaded	
	mesoporous-assembled 0.97TiO ₂ -0.03SiO ₂ mixed oxide	
	photocatalysts calcined at 500 °C	62
4.7	XRD results of the synthesized bimetallic Pt-Au-loaded	
	mesoporous-assembled 0.97TiO ₂ -0.03SiO ₂ mixed oxide	
	photocatalysts calcined at 500 °C	63
4.8	Absorption onset wavelength and band gap energy	
	results of the synthesized mesoporous-assembled TiO2-SiO2 mixed	d
	oxide photocatalysts without and with metal loadings and	
	calcined at various temperatures	67

TABLE

4

Ł

PAGE

4.9	Pt dispersion results over the Pt-loaded	
	mesoporous-assembled 0.97TiO ₂ -0.03SiO ₂ mixed oxide	
	photocatalysts calcined at 500 °C	76
4.10	Metal dispersion results over the bimetallic Pt-to-Au loaded	
	mesoporous-assembled $0.97 TiO_2$ - $0.03 SiO_2$ mixed oxide	
	photocatalysts calcined at 500 °C	77

LIST OF FIGURES

J	FIGUR	GURE	
	2.1	Relative emissions of greenhouse gases (expressed in carbon	
		units per km) for vehicles powered by today's internal combustion	
		engine using gasoline compared to vehicles powered by fuel cells	4
	2.2	Types of photocatalytic reactions: (a) photoinduced reaction and	
		(b) photon energy conversion reaction	5
	2.3	Electrochemical cell in which the TiO_2 electrode is connected with	
		a Pt electrode	7
	-2.4	The structure of band gap energy	9
	2.5	Schematic of (a) solid state photovoltaic cell driving a water	
		electrolyzer and (b) cell with immersed semiconductor p/n junction	
		(or metal/semiconductor Schottky junction) as one electrode	10
	2.6	Schematic of liquid junction semiconductor electrode cell	11
	2.7	Representation of semiconductor particulate system for	
		heterogeneous Photocatalysis	12
	2.8	Reaction schematic for water spitting reaction over semiconductor	
		photocatalysts	13
	2.9	Processes occurring in semiconductor photocatalyst under	
		photoexcitation for water splitting reaction	14
	2.10	Band gap energy of the photocatalyst	15
	2.11	Crystal structures of (a) anatase, (b) rutile, and (c) brookite	16
	2.12	Photocatalytic hydrogen production over anatase/rutile TiO_2	
		under the mediation of I ⁻ /IO ₃ ⁻	23
	2.13	Mechanism of dye-sensitized photocatalytic hydrogen production	
		under visible light irradiation	29
	2.14	Electron injection in composite semiconductors	32

FIGURE

3.1 Synthesis procedure for mesoporous-assembled TiO₂-SiO₂ photocatalysts: (a) pure TiO₂-SiO₂ and (b) Pt and/or Au-loaded TiO₂-SiO₂ by PCD method 43 3.2 Setup of photocatalytic H₂ evolution system 46 4.1 TG-DTA curves of the dried synthesized photocatalysts: (a) pure TiO_2 and (b) 0.97TiO_2-0.03SiO_2 mixed oxide 49 4.2 N₂ adsorption-desorption isotherms and pore size distributions (inset) the synthesized mesoporous-assembled photocatalysts calcined at 500 °C: (a) pure TiO₂ and (b) 0.97TiO₂-0.03SiO₂ mixed oxide 52 4.3 N₂ adsorption-desorption isotherms and pore size distribution (inset) of the synthesized 1.25 wt.% Pt-loaded mesoporous-assembled 0.97TiO₂-0.03SiO₂ mixed oxide photocatalyst calcined at 500 °C 53 4.4 N₂ adsorption-desorption isotherms and pore size distribution (inset) of the synthesized 0.75 wt.% Pt-0.75 wt.% Au-loaded mesoporous-assembled 0.97TiO₂-0.03SiO₂ mixed oxide photocatalyst calcined at 500 °C 53 4.5 XRD patterns of the synthesized mesoporous-assembled pure TiO₂ and TiO₂-SiO₂ mixed oxide photocatalysts calcined at 500 °C ($A = Anatase TiO_2$) 57 4.6 XRD patterns of the synthesized mesoporous-assembled photocatalysts calcined at 500-800 °C: (a) pure TiO₂ and (b) 0.97TiO_2 - 0.03SiO_2 mixed oxide $(A = Anatase TiO_2, R = Rutile TiO_2)$ 59 4.7 XRD patterns of the synthesized bimetallic Pt-loaded mesoporous-assembled 0.97TiO₂-0.03SiO₂ mixed oxide photocatalysts calcined at 500 °C ($A = Anatase TiO_2$) 61

PAGE

FIGURE

4.8	XRD patterns of the synthesized bimetallic Pt-Au-loaded	
	mesoporous-assembled 0.97TiO ₂ -0.03SiO ₂ mixed oxide	
	photocatalysts calcined at 500 °C (A = Anatase TiO_2)	62
4.9	UV-visible spectra of the synthesized mesoporous-assembled	
	photocatalysts calcined at 500 $^{\circ}C$: (a) pure TiO ₂ and	
	(b)-(e) TiO ₂ -SiO ₂ mixed oxide	65
4.10	UV-visible spectra of the synthesized mesoporous-assembled	
	0.975TiO ₂ -0.03SiO ₂ mixed oxide photocatalysts calcined	
	at various temperatures	66
4.11	UV-visible spectra of the synthesized mesoporous-assembled	
	photocatalysts calcined at 500 °C: (a) 0.97TiO ₂ -0.03SiO ₂	
	mixed oxide, (b) 1.25 wt.% Pt-loaded $0.975 TiO_2$ - $0.03 SiO_2$	
	mixed oxide, and (c) the 0.75 wt.% Pt-0.75 wt.% Au-loaded	
	0.97TiO ₂ -0.03SiO ₂ mixed oxide	66
4.12	UV-visible spectrum of Eosin Y solution	68
4.13	SEM images of the synthesized mesoporous-assembled	
	photocatalysts calcined at 500 °C: (a) $0.97 TiO_2$ - $0.03 SiO_2$	
	mixed oxide, (b) 1.25 wt.% Pt-loaded $0.97 TiO_2$ - $0.03 SiO_2$	
	mixed oxide, and (c) 0.75 wt.% Pt-0.75 wt.% Au-loaded	
	0.97TiO ₂ -0.03SiO ₂ mixed oxide	69
4.14	SEM image and EDX area mappings of the synthesized	
	1.25 wt.% Pt-loaded mesoporous-assembled	
	$0.97 TiO_2$ - $0.03 SiO_2$ mixed oxide photocatalyst calcined at 500 °C	70
4.15	SEM image and EDX area mappings of the synthesized	
	0.75 wt.% Pt-0.75 wt.% Au-loaded mesoporous-assembled	
	$0.97 TiO_2$ - $0.03 SiO_2$ mixed oxide photocatalyst calcined at 500 °C	71
4.16	TEM images of the synthesized mesoporous-assembled	
	photocatalysts calcined at 500 $^{\circ}$ C: (a) pure TiO ₂ and	
	(b) 0.97TiO ₂ -0.03SiO ₂ mixed oxide	73

FIGURE

4.17	TEM image and EDX point mapping of the synthesized	
	1.25 wt.% Pt-loaded mesoporous-assembled $0.97 TiO_2$ - $0.03 SiO_2$	
	mixed oxide photocatalyst calcined at 500 °C	74
4.18	TEM image and EDX point mapping of the synthesized	
	0.75 wt.% Pt-0.75 wt.% Au-loaded mesoporous-assembled	
	0.97TiO ₂ -0.03SiO ₂ mixed oxide photocatalyst calcined at 500 °C	75
4.19	Effect of TiO ₂ -to-SiO ₂ molar ratio in terms of SiO ₂ content	
	on specific hydrogen production rate over	
	the mesoporous-assembled TiO2-SiO2 mixed oxide photocatalysts	
	calcined at 500 °C (Photocatalyst, 0.2 g; total reaction	
	mixture volume, 150 ml; DEA concentration, 15 vol.%;	
	E.Y. concentration, 0.1 mM; and irradiation time, 5 h)	79
4.20	Effect of calcination temperature on specific hydrogen	
	production rate over the mesoporous-assembled pure TiO_2	
	and 0.97TiO ₂ -0.03SiO ₂ mixed oxide photocatalysts	
	(Photocatalyst, 0.2 g; total reaction mixture volume, 150 ml;	
	DEA concentration, 15 vol.%; E.Y. concentration, 0.1 mM;	
	and irradiation time, 5 h)	81
4.21	Effect of Pt loading on specific H_2 production rate over	
	the mesoporous-assembled $0.93 TiO_2$ - $0.07 SiO_2$ photocatalyst	
	calcined at 500 °C (Photocatalyst, 0.2 g; total reaction mixture	
	volume, 150 ml; DEA concentration, 15 vol.%; E.Y. concentration,	
	0.1 mM; irradiation time, 5 h)	84
4.22	Effect of bimetallic Pt-Au loading on specific H ₂ production rate over	er
	the mesoporous-assembled $0.97 TiO_2$ - $0.03 SiO_2$ photocatalyst	
	calcined at 500 °C (Photocatalyst, 0.2 g; total reaction mixture	
	volume, 150 ml; DEA concentration, 15 vol.%; E.Y. concentration,	
	0.1 mM; irradiation time, 5 h)	84