LAYERED SILICATES (SODIUM MONTMORILLONITE) BASED ELASTOMER NANOCOMPOSITES

Tassawuth Pojanavaraphan

A Dissertation Submitted in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan. The University of Oklahoma, and Case Western Reserve University

2010

I28375464

Thesis Title:	Layered silicates (sodium montmorillonite) based elastomer	
	nanocomposites	
By:	Tassawuth Pojanavaraphan	
Program:	Polymer Science	
Thesis Advisors:	Assoc. Prof. Rathanawan Magaraphan	
	Prof. David A. Schiraldi	

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Doctor of Philosophy.

... College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

(Asst. Prof. Pomthong Malakul)

.....

(Prof. David A. Schiraldi)

laparay

(Assoc. Prof. Rathanawan Magaraphan)

.... (Asst. Prof. Manit Nithitanakul)

(Dr. Orasa Onjun)

ABSTRACT

4982004063: Polymer Science Program

Tassawuth Pojanavaraphan: Layered silicates (sodium montmorillonite) based elastomer nanocomposites. Thesis Advisors: Assoc. Prof. Rathanawan Magaraphan (*Thai Advisor*) and Prof. David A. Schiraldi (*Overseas Advisor*)

Keywords:

Advisor) and Prof. David A. Schiraldi (Overseas Advisor) Admicellar polymerization/ Clay aerogel/ Freeze-drying/ Natural Rubber/ Polypyrrole

Two novel techniques known as freeze-drying and electrolytic admicellar polymerization were herein conducted for fabricating the natural rubber (NR)-based composites. These approaches were considered to be ideal for creating various types of NR-based materials that stood out as good candidates for a wide variety of applications ranging from thermal insulation till actuator or sensor. By utilizing a freeze-drying, the granular appearance of pristine clay (sodium montmorillonite, Na⁺-MMT) was converted into a monolith 'house of cards' structure with a bulk density of typically 0.05 g cm⁻³. This was originated from the parallel alignment of clay bundles along the ice crystal through electrostatic interactions between edge and face (EF) of clay particles. As the neat clay aerogel was relatively fragile, natural rubber (NR) latex was then introduced, followed by the cross-linking process to increase the materials structural integrity without harming the bulk density and microstructure. This reinforcement was illustrated by a good connectivity between each single sheet through a web of the NR matrix, thus promoting the load transfer under the applied stress. Further, to enable the production of semiconducting materials based on NR and Na⁺-MMT, polypyrrole (PPy) was introduced and served as a path for an effective charge transportation (electron hopping). This was accomplished by conducting an electrolytic admicellar polymerization of the corresponding aqueous solution. It was seen that the morphological characteristics as well as mass fractions of both PPy and Na⁺-MMT were crucial in determining the composites electrical conductivity, mechanical, and thermal performances.

บทคัดย่อ

ทัสสวุทธิ์ พจนาวราพันธุ์ : ชื่อหัวข้อวิทยานิพนธ์ (ภาษาไทย) นาโนคอมพอสิตของ ยางอิลาสโตเมอร์ และ มอลต์มอลิโลไนต์ (Layered silicates (sodium montmorillonite) based elastomer nanocomposites) อาจารย์ที่ปรึกษา : รศ.คร. รัตนวรรณ มกรพันธุ์ และ ศ.คร. เควิค เอ เฌอราวคี 237 หน้า

ในการงานวิจัยนี้ สองวิธีการใหม่ที่มีชื่อว่ากระบวนการแช่แข็งแห้งและกระบวนการแอด ไมเซลลาพอลิเมอร์ไรเซชั่นแบบอิเล็กโทรไลต์ได้ถูกนำไปใช้สำหรับการผลิตวัสดุคอมพอสิตของ ยางธรรมชาติ ซึ่งมีคุณสมบัติที่แตกต่างกันและเนื่องด้วยเหตุนี้ วัสดุดังกล่าวอาจจะถูกนำไป ประยุกต์ใช้กับหลายๆด้าน อาทิเช่น ด้านความเป็นฉนวนทางความร้อนจนกระทั่งถึงสมบัติด้าน ความต้านทานต่อกลื่นแม่เหล็กไฟฟ้า โดยที่วิธีการแช่แข็งแห้งนั้นสามารถทำให้เกิดการ

เปลี่ยนแปลงรูปพรรณสัณฐานวิทยาของเคลย์จากแบบอนุภาคในระคับไมครอนสู่โครงสร้างที่มี การจัดเรียงตัวเป็นแบบแผ่น ซึ่งมีน้ำหนักที่เบากว่าน้ำหนักของอนุภาคเคลย์คั้งเดิม โครงสร้าง สัณฐานวิทยาแบบลาเมลาร์เกิดขึ้นได้จากการจัดเรียงตัวใหม่ของแผ่นเคลย์โดยผ่านทางแรงดึงดูด แบบไฟฟ้าสถิตระหว่างพื้นผิวหน้าและค้านข้างของอนุภาคเคลย์ อย่างไรก็ตาม เนื่องค้วยความ เปราะบางของเคลย์แอโรเจลนี้ เคลย์แอโนเจลจึงถูกผสมเข้ากันกับน้ำยางธรรมชาติรวมกระทั่งถึง ขั้นตอนของกระบวนการเชื่อมขวาง เพื่อก่อให้เกิดการพัฒนาทางค้านความแข็งแรงเชิงกลของวัสดุ

กอมพอสิตที่ถูกจัดเตรียมขึ้นโดยปราศจากการเปลี่ยนแปลงทางด้านความหนาแน่นและรูปพรรณ สัณฐานวิทยา การเสริมแรงชนิดนี้สามารถถูกอธิบายได้ด้วยการเชื่อมต่อที่พอเหมาะระหว่างแผ่นลา เมลาร์ โดยมียางธรรมชาติเป็นตัวประสานซึ่งส่งผลให้มีการถ่ายเทความเก้นได้เป็นอย่างดี นอกจากนี้เพื่อที่จะทำการผลิตวัสดุกึ่งนำไฟฟ้าจากยางธรรมชาติ พอลิไพรอลจึงนำมาใช้เป็นส่วน

หนึ่งของระบบเพื่อที่จะก่อให้เกิดช่องทางสำหรับการเคลื่อนที่หรือการเดินทางของประจุไฟฟ้า หรือที่เรียกว่าอิเล็กตรอน ซึ่งจะนำไปสู่การนำไฟฟ้าในที่สุด ด้วยเหตุนี้กระบวนการที่เรียกว่า "แอด ใมเซลลาพอลิเมอร์ไรเซชั่นแบบอิเล็กโทรไลด์" จึงถูกเลือกใช้ในการสังเคราะห์วัสดุกึ่งนำไฟฟ้า ชนิดนี้ และมันถูกพบว่าโครงสร้างสัณฐานวิทยาเช่นเดียวกันกับสัดส่วนมวลของพอลิไพรอลและ มอลต์มอลิโลไนต์มีความสำคัญอย่างยิ่งต่อสมบัติทางด้านไฟฟ้า สมบัติเชิงกล และ สมบัติทาง ความร้อนของวัสดุกอมพอสิตที่ถูกจัดเตรียมขึ้น

ACKNOWLEDGEMENTS

The completion of this dissertation would not be possible without sincerely acknowledging Assoc. Prof. Rathanawan Magaraphan, my research advisor, for providing me with exceptional guidance, pure inspiration, encouragement, freedom in every aspect, as well as an opportunity to experience the quality research. It has been a pleasure working with her for the past five years.

I would like to extend my gratitude to Prof. David A. Schiraldi, Chair of the Macromolecular Science and Engineering Department, Case Western Reserve University (CWRU) for his wonderful guidance and for being a truly nice overseas advisor during my period of stay (nine months) at CWRU. It has been a pleasure working with him as well.

I am grateful for the financial support provided by the Thailand Research Fund through the Royal Golden Jubilee Ph.D. Program, Polymer Processing and Polymer Nanomaterials Unit, the Rachadapisek Sompoch Endowment, the Asian Development Bank (ADB), the Petroleum and Petrochemical College (PPC), and the National Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials, Thailand.

I would like to express my appreciation to all the PPC faculties for providing the invaluable fundamental knowledge not only in the polymer science but also in the petroleum and petrochemical fields, and to all PPC staffs for their great contributions throughout my study for the past five years.

Special thanks go to all the PPC and CWRU friends for their great friendship, creative guidance, helpfulness, and encouragement.

Lastly, all of these achievements would be worthless if there was no understanding and emotional support from my parents and brothers. whom I dedicate this dissertation to.

TABLE OF CONTENTS

			PAGE
	Title P	Page	i
	Abstra	ict (in English)	iii
	Abstra	ect (in Thai)	iv
	Ackno	owledgements	ν
	Table	of Contents	vi
	List of	Tables	x
	List of	Figures	xiii
	Abbre	viations	xxi
	List of	Symbols	xxiv
СНА	PTFR		
	I	INTRODUCTION	Ī
	II	THEORETICAL BACKGROUND AND	Ú.
		LITERATURE REVIEW	4
		2.1 Clay Chemistry	4
		2.2 Elastomer Nanocomposites	14
		2.3 Electrically Conducting Polymers (CPs)	22
		2.4 Admicellar Polymerization	28
	111	EXPERIMENTAL	36
		3.1 Materials	36
		3.2 Methodology	36
	IV	PREVULCANIZED NATURAL RUBBER LATEX/CLAY	
		AEROGEL NANOCOMPOSITES	48
		4.1 Abstract	48
		4.2 Introduction	49

78

78

79

80

83

93

113

4.3 Experim	iental Parts	51
4.4 Results a	and Discussion	55
4.5 Conclus	ions	61
4.6 Acknow	ledgements	62
4.7 Reference	ces	62

V MECHANICAL, RHEOLOGICAL, AND SWELLING BEHAVIORS OF NATURAL RUBBER/ MONTMORILLONITE AEROGEL COMPOSITES PRODUCED BY FREEZE-DRYING 5.1 Abstract 5.2 Introduction 5.3 Experimental Parts 5.4 Results and Discussion 5.5 Conclusions

5.6 Acknowledgements	94
5.7 References	94

VI SOLUTION CROSS-LINKED NATURAL RUBBER (NR)/ CLAY AEROGEL COMPOSITES: EMPHASIS ON THE CROSS-LINKING CONDIITONS AND POLYMER CONCENTRATION 6.1 Abstract

6.1	Abstract	113
6.2	Introduction	114
6.3	Experimental Parts	116
6.4	Results and Discussion	119
6.5	Conclusions	127
6.6	Acknowledgement	128
6.7	References	128

IX

PAGE

viii

ELECT	ROLYTIC ADMICELLAR POLY	MERIZATION OF
PYRROLE ON NATURAL RUBBER/CLAY		
NANOC	OMPOSITES	142
7.1 Abstr	ract	142
7.2 Intro	duction	143
7.3 Expe	rimental Parts	145
7.4 Resu	lts and Discussion	149
7.5 Conc	lusions	160
7.6 Ackn	owledgements	160
7.7 Refei	rences	161

VIIIFABRICATION AND CHARACTERIZATION OF NEWSEMICONDUCTING NANOMATERIALS COMPOSED OFNATURAL LAYERED SILICATES, NATURAL RUBBER,AND POLYPYRROLE173& 1 Abstract174

	1/4
8.2 Introduction	174
8.3 Experimental Parts	176
8.4 Results and Discussion	180
8.5 Conclusions	191
8.6 Acknowledgements	193
8.7 References	193
CONCLUSIONS AND RECOMMENDATIONS	215

REFERENCES 219

APPENDICES	225
------------	-----

CHAPTER

Appendix A Preparation of Solution Cross-linked NR/	
Clay Aerogel Composite	225
Appendix B Fabrication of New Semiconducting	
Nanomaterials	228
Appendix C Calculation of the Volume Conductivity	231
CURRICULUM VITAE	236

LIST OF TABLES

TABLE

CHAPTER II

2.1	Comparison between the critical concentration for forming		
	the stable structure	9	
2.2	Aerogels electrical conductivity	14	

CHAPTER III

3.1	Formulation of the rubber compound	37

CHAPTER IV

4.1	Formulation of the rubber compound	66
4.2	Viscosity measurement of different rubber compounds	66
4.3	Curing characteristics of NR and its composites	67
4.4	Swelling ratios and calculated crosslink densities (v_e) of the	
	thermal-and microwave-cured vulcanizates	68
4.5	Heat of reaction (ΔH) of partially-cured vulcanizates	
	involving further vulcanization reaction	68
4.6	Elemental analysis of Na-MMT	69
4.7	Elemental analysis of NR/3MMT	69

CHAPTER V

5.1	Formulation of compounding ingredients	98
5.2	Vulcanization characteristics, kinetic parameters, and	
	activation energies of PNR and the corresponding	
	composites obtained from ODR data	99

5.3	Crosslink density (Ve), equilibrium toluene uptake, and	
	thermodynamic parameters of PNR and the corresponding	
	composites	100
5.4	Diffusion coefficient and transport properties of PNR and	
	the corresponding composites	100
5.5	Compression, density, and void volume fraction	
1- 	measurements of the studied materials	101

CHAPTER VI

-		
÷.	CHAPTER VI	
6.1	The estimated amount of the cross-linker (S_2Cl_2) in contact	
	with 1 g of 2.5 wt% NR aerogels	130
6.2	EDX spectroscopy results of the 2.5 wt% NR aerogels	
	formed at $T_{prep} = -18^{\circ}C$ under various S_2Cl_2 concentrations	130
6.3	The estimated amount of the cross-linker (S_2Cl_2) in contact	
	with 1 g of the NR aerogels	131
6.4	Thermal characteristics of the studied materials	132
6.5	Theoretical and actual values of the organic matter in the	
	dried composites	133

CHAPTER VII

7.1	Electrochemical polymerization data of NR/PPy and a series	
	of the nanocomposites	163
7.2	Elemental analysis of Na-MMT	163
7.3	Summary of the decomposition processes for unfilled	
	NR/PPy and the nanocomposites	164
7.4	Weight percentage of NR/PPy and its nanocomposites	
	remaining at 550°C	165

7.5	Mechanical properties of pure NR, NR/PPy, and the series of	
	nanocomposites	165

CHAPTER VIII

8.1	X-ray scattering	ng data of	Na ⁺ -MMT and nanocomposi	tes 197
8.2	Dynamic mec	hanical pi	operties of NPx and the	
	corresponding	g nanocom	posites	198
8.3	Summary of the thermal characteristics of the studied			l
	materials	- - 		199
		• • •		
		• •	 	

LIST OF FIGURES

FIGURE

CHAPTER II

2.1	The crystal structure of the Na ⁺ -MMT.	3
2.2	Modes of particle association in clay suspensions: (a)	
	dispersed; (b) face-to-face FF; (c) edge-to-face EF; and (d)	
	edge-to-edge EE.	6
2.3	(A) Stable gel; (B) Nucleation at the edge of the vial; (C) Ice	
	growth toward the center of vial; (D) Frozen solution; (E)	
	After sublimation.	8
2.4	SEM micrograph of the clay aerogel.	8
2.5	The growth of ice crystals as a function of molecular weight	
	of the polymer: (A, B) low molecular weight; (C, D) high	
	molecular weight. SEM images of polymer/clay aerogel	
	composites: (E) lamellar structure; (F) disordered structure.	11
2.6	(A) Randomly nucleated; (B) Cryostructured structures.	12
2.7	SEM micrographs of the fired clay aerogel: (A) at 850°C for	
	1 hr; (B) 900°C for 1 hr; (C) 900°C for 3 hr.	14
2.8	Scheme of different types of composite arising from the	
	interaction between layered silicates and polymer matrices.	20
2.9	Chemical oxidative polymerization of pyrrole with FeCl ₃ .	24
2.10	The formation of polarons and bipolarons upon doping the	
	PPy backbone.	24
2.11	Electrochemical polymerization of pyrrole.	27
2.12	Types of surfactant aggregates.	30
2.13	Typical adsorption isotherm of surfactants on a solid surface.	32
2.14	Schematic illustration of the admicellar polymerization	
	process.	34

CHAPTER IV

4.1	Photographs of NR/clay aerogel nanocomposites: (a)		
	NR/1MMT and (b) NR/2MMT.	70	
4.2	XRD patterns of Na-MMT and Na-MMT aerogel.	71	
4.3	XRD patterns of (a) NR/1MMT, (b) NR/2MMT, and (c)		
	NR/3MMT nanocomposites.	71	
4.4	SEM micrographs of (a) Na-MMT, (b) Na-MMT aerogel	11	
	structure, and (c) the void inside the Na-MMT aerogel after		
	the sublimation of ice.	72	
4.5	SEM micrographs of (a) NR. (b) NR/1MMT, (c) NR/2MMT,		
	(d) NR/3MMT, and (e) NR/3MMT at higher magnification.	73	
4.6	Hardness results of freeze-dried NR and nanocomposites.	74	
4.7	DSC thermograms of uncured (a) NR, (b) NR/1MMT, (c)		
	NR/2MMT, and (d) NR/3MMT.	74	
4.8	DSC thermograms of NR and its nanocomposites after		
	microwave curing.	75	
4.9	DSC thermograms of NR and its nanocomposites after		
	thermal curing.	75	
4.10	TGA results of NR and its nanocomposites.	76	
4.11	The UV/vis absorbance spectra of a 1 wt% clay aqueous		
	suspension in (a) distilled water and (b) $0.4M H_2SO_4$.	76	
4.12	Physical comparison between (a) starting clay solution and		
	(b) clay solution after testing with benzidine.	77	
4.13	Mechanism of thermal degradation of NR in the presence of		
	ferric ion.	77	

CHAPTER V

5.1	XRD patterns of the Na ⁺ -MMT and the corresponding	
	composites.	102
5.2	SEM micrographs of (a) Na ⁺ -MMT aerogel, (b) PNR, (c)	
	PNR/M1 composite, (d) PNR/M5 composite, and (e)	
	PNR/M7 composite.	103
5.3	Schematic representation of the structure of Na ⁺ -MMT	
	aerogel/PNR composites.	104
5.4	Rheographic curves of the neat PNR and the corresponding	
	composites at 150°C.	105
5.5	(a) Plot of ln $(D_{max}-D_t)$ versus time and (b) Arrhenius plot	
	between $\ln K$ versus $1000/T$ for the neat PNR and the	
	corresponding composites.	106
5.6	Plots of (a) Q_1 against $t^{1/2}$ and (b) log (Q_1/Q_{∞}) against log t for	
	the neat PNR and the corresponding composites in toluene at	
	room temperature.	107
5.7	Stress-strain curves of the neat PNR and the corresponding	
	composites.	108
5.8	Temperature dependence of (a) storage modulus, E' , and (b)	
	loss tangent, tan δ , for the neat PNR and the corresponding	
	composites.	109
5.9	Comparison amongst experimentally measured dynamic	
	modulus at room temperature and theoretical predictions by	
	introducing MRF.	110
5.10	Strain sweep measurements of the neat PNR and the	
	corresponding composites at 150°C.	111

FIGURE

5.11 Frequency dependence of (a) dynamic complex viscosity, η^* , and (b) dynamic storage modulus, *G'*, and loss modulus, *G''*, of the neat PNR and the corresponding composites at 150°C. 112

CHAPTER VI

6.1 (A) The equilibrium weight q_w (circles) and volume q_v (triangles) swelling ratios of the 2.5 wt% NR aerogels in toluene shown as a function of S_2Cl_2 concentration. $T_{prep} =$ 18°C (filled symbols) and -18°C (open symbols). (B) The total volume of pores (V_p) in 2.5 wt% NR aerogels estimated from the uptake of methanol shown as a function of S₂Cl₂ concentration. $T_{prep} = 18^{\circ}C$ (filled symbols) and -18°C (open 134 symbols). 6.2 (A) Typical stress-strain curves of the 2.5 wt% NR aerogels cross-linked at various S_2Cl_2 concentrations. $T_{prep} = -18^{\circ}C$. (B) Changes in the compressive modulus (filled symbols) and toughness at 30% strain (open symbols) of the 2.5 wt% NR aerogels prepared at various S_2Cl_2 concentrations. $T_{prep} =$ -18°C. (C) Density of the 2.5 wt% NR aerogels shown as a function of the S₂Cl₂ concentration. $T_{prep} = -18^{\circ}C.$ (D) Comparison of the stress-strain curves of the 2.5 wt% NR aerogels formed at different temperatures. $S_2Cl_2 = 1\%$ (v/v). 135 6.3 Variation of the degree of cross-link (V_e) of the 2.5 wt% NR aerogels as a function of S_2Cl_2 concentration. $T_{prep} = -18^{\circ}C$. 136 6.4 SEM images of the 2.5 wt% NR aerogels cross-linked at different levels of S₂Cl₂: (A) the neat control; (B) 0.25% (v/v); (C) 0.5%; (D) 1% (v/v); (E) 5% (v/v). $T_{prep} = -18^{\circ}C$. 136

FIGURE

6.5 The bulk densities of NR aerogels before (filled symbols) and after the cross-linking reaction (open symbols) shown as a function of NR concentration. Tprep = -18° C. S2Cl2 = 1% (v/v). 137 (A) Typical stress-strain curves of the neat and cross-linked 6.6 NR aerogels, containing different weight fractions of NR, as indicated. (B, C) Compressive modulus (circles) and toughness at 30% strain (triangles) of the neat and crosslinked NR aerogels plotted as a function of NR concentration. $T_{\text{prep}} = -18^{\circ}\text{C}$. $S_2\text{Cl}_2 = 1\% (v/v)$. 138 6.7 (A) The equilibrium weight q_w (circles) and volume q_v (triangles) swelling ratios of the neat (filled symbols) and cross-linked (open symbols) NR aerogels in toluene shown as a function of NR concentration. $T_{\text{prep}} = -18^{\circ}\text{C}$. $S_2\text{Cl}_2 = 1\%$ (v/v). (B) The total volume of pores (V_p) in the neat and cross-linked NR aerogels estimated from the uptake of methanol shown as a function of NR concentration. $T_{prep} = -$ 18°C. $S_2Cl_2 = 1\%$ (v/v). (C) Variation of the degree of crosslink (V_e) of the NR aerogels as a function of NR concentration. $T_{\text{prep}} = -18^{\circ}\text{C}$. $S_2\text{C}l_2 = 1\% (v/v)$. 139 SEM micrographs of the 5 and 10 wt% NR aerogels: (A, B) 6.8 before being cross-linked; (C, D) after being cross-linked. $T_{\text{prep}} = -18^{\circ}\text{C} \text{ and } \text{S}_2\text{Cl}_2 = 1\% \text{ (v/v)}.$ 140 6.9 Elemental mapping of the 10 wt% NR aerogel cross-linked at 1% (v/v) of S_2Cl_2 and T_{prep} of -18°C. 140 6.10 (A) TGA and (B) DTG thermograms of the neat and crosslinked NR aerogels, comprising various NR concentrations.

PAGE

.

CHAPTER VII

7.1	FTIR spectra of (a) pure PPy and NR/PPy; and (b) NR/PPy	
	and the nanocomposites.	166
7.2	XRD patterns of Na-MMT and the series of nanocomposites.	167
7.3	TEM photographs of (a) a 1 wt% clay suspension; (b) NR	
	particles; (c) NR/PPy; and the nanocomposites containing	
	(d) 1 phr; (e) 3 phr; (f) 5 phr; (g) 7 phr-MMT loading; and,	
	(h) an ultrathin section of 7 phr-MMT loading.	168
7.4	Schematic of the structure of electropolymerized	
	nanocomposites.	169
7.5	SEM micrographs of (a) NR/PPy; and the nanocomposites	
	containing (b) 1 phr; (c) 3 phr; (d) 5 phr; and, (e) 7 phr-	
	MMT loading at the same magnification (×3500).	170
7.6	Electrical conductivity of NR/PPy and the series of	
	nanocomposites.	170
7.7	TGA curves of pure NR, PPy, and NR/PPy composite.	171
7.8	(a) TGA curves; and, (b) DTG curves of pure NR. NR/PPy	
	and the series of nanocomposites.	172

CHAPTER VIII

8.1	TEM images of the resulting materials: (a), (b), and (c) are	
	micrographs of the NP ₁₀₀ , NP ₂₀₀ , and NP ₈₀₀ composites,	
	respectively; (d), (e), and (f) are micrographs of the	
	NP100M7, NP200M7, and NP800M7 samples, respectively; (g).	
	(h), and (i) are micrographs of an ultra thin section of the	
	$NP_{100}M_7$, $NP_{200}M_7$, and $NP_{800}M_7$ samples, respectively.	201

FIGURE

8.2	SEM micrographs of (a) NP100, (c) NP200, and (e) NP800,	
	with the corresponding nanocomposites (b) NP100M7, (d)	
	NP200M7, and (f) NP800M7 at the same magnification	
	(×3500).	203
8.3	Schematic of the formation mechanism of admicelled	
	rubbers (path a) and the nanocomposites (path b).	204
8.4	XRD patterns of (a) Na ⁺ -MMT and NP ₂₀₀ M _y series, and (b)	
	Na^+ -MMT and NP_xM_7 nanocomposites.	205
8.5	Variation of polymerization rate of the nanocomposites with	
	the clay loading.	. 206
8.6	FTIR spectra of (a) PPy and NP _x composites, and (b) NP _x	
	and $NP_{x}M_{7}$ nanocomposites.	207
8.7	Electrostatic interaction between a protonated PPy chain and	
	the clay layer.	208
8.8	Plot of the DC conductivity against clay loading of the	
	nanocomposites.	208
8.9	Typical stress-strain curves of (a) pure NR and NP _x	
	composites, and (b) NP200 and NP200My series.	209
8.10	Dependence of the mechanical properties of the $NP_{100}M_y$,	
	$NP_{200}M_y$, and $NP_{800}M_y$ series on clay loading: (a) hardness,	
	(b) tensile strength, (c) Young's modulus, and (d) elongation	
	at break.	210
8.11	Temperature dependence of the (a) storage modulus. (b) loss	
	modulus, and (c) loss tangent of NP_x and the corresponding	
	nanocomposites.	211
8.12	TGA curves of (a) pure NR, PPy, and NP _x composites, and	
	(b) NP _x and NP _x M ₇ nanocomposites.	212
8.13	DTG curves of pure NR, NP _x , and NP _x M ₇ nanocomposites.	213

FIGURE

8.14	Plots of $\ln \left\{ \ln \left[(W_0 - W_f) / (W_f - W_f) \right] \right\}$ against θ .	214
8.15	Variation of the calculated activation energy of the	
	nanocomposites with clay loading.	214

PAGE

ABBREVIATIONS

APS	Ammonium Persulfate
AOT	Sodium Bis(2-ethylhexyl) Sulfosuccinate
CAC	Critical Admicelle Concentration
СВ	Carbon Black
CEC	Cation Exchange Capacity
СМС	Critical Micelle Concentration
CNTs	Carbon Nanotubes
CPs	Electrically Conducting Polymers
CR	Chloroprene Rubber
CV	Conventional Vulcanization System
DBSA	Dodecyl Benzene Sulfonic Acid
DI	Deionized Water
DMA	Dynamic Mechanical Analysis
DSC	Differential Scanning Calorimetry
DTG	Derivative Thermogravimetry
EDX	Energy Dispersive X-Ray Spectroscopy
EE	Edge to Edge Association
EF	Edge to Face Association
ER	Electrorheological
EV	Efficient Vulcanization System
FF	Face to Face Association
G	Gibb Free Energy
H	Enthalpy
HATR-FTIR	Horizontal Attenuated Total Reflection-Fourier Transform
	Infrared Spectroscopy
HCI	Hydrochloric Acid
ITO	Indium-Tin Oxide
LCST	Lower Critical Solution Temperature
LDH	Layered Double Hydroxide

LDPE	Low Density Polyethylene
LEDs	Light Emitting Diodes
MRF	Modulus Reduction Factor
MW	Molecular Weight
Na ⁺ -MMT	Sodium Montmorillonite
NR	Natural Rubber
OMCAS	Organically Modified Clay Aerogels
OMLS	Organically Modified Layered Silicates
PAA	Poly(acrylic acid)
PANI	Polyaniline
PHB	Poly[(R)-3-hydroxybutyrate]
PHR	Parts Per Hundred of Rubber
PIB	Butyl Rubber
PNIPAM	Poly (<i>N</i> -isopropyl acrylamide)
PNR	Prevulcanized Natural Rubber
POSS	Polyhedral Oligomeric Silsesquioxane
РРу	Polypyrrole
PS	Polystyrene
PS-PEGMA	Polystyrene-Poly(ethylene glycol) Monomethacrylate
PVOH	Poly(vinyl alcohol)
PZC	Point of Zero Charge
S	Conformational Entropy
SDS	Dodecyl Sulfate Sodium Salt
SEM	Scanning Electron Microscopy
SWCNT	Single-Walled Carbon Nanotubes
TEM	Transmission Electron Microscopy
TGA	Thermogravimetric Analysis
TMTD	Tetramethylthiuram Disulfide
TN	Titanate Nanowire
XNBR	Carboxylated Nitrile Rubber
XRÐ	X-Ray Diffraction

XRF	X-Ray Fluorescence Spectrometer
ZDEC	Zinc Diethyl Dithiocarbamate
ZnO	Zinc Oxide

LIST OF SYMBOLS

Tg	Glass Transition Temperature	
T [*] prep	Preparation Temperature	
n_1^{\star}	Number of Mole of Adsorbed Surfactant/Gram of Solid	
	Adsorbent at Equilibrium	
ΔC	Molar Concentration Difference of Surfactant Before and	
	After Equilibrium Adsorption in Liquid Phase	
m	Mass of the Adsorbent	
V	Volume of Liquid Phase	Ì
Γ_1	Surface Concentration of the Surfactant	
a_s	Surface Area per Unit Mass of the Absorbent	
a_1^s	Surface Area per Adsorbate Molecule	
N	Avogadro`s Number	
Ϋ́	Shear Rate	
ω	Angular Velocity	
R _c	Container Radius	
R _b	Spindle Radius	
χ	Container Radius	
η	Viscosity	
τ	Shear Stress	
λ	X-Ray Wavelength	
d_{001}	Interlayer Spacing	
θ	Diffraction Angle	
$M_{ m c}$	Average Molecular Weight between the Network Crosslinks	
Ve	Cross-Link Density	
$V_{\rm r}$	Volume Fraction of Rubber in a Swollen Network	
V_1	Molar Volume of Toluene	
χı	Flory-Huggins Interaction Parameter	
Wd	Weight of Dry Rubber	

	Ws	Weight of Solvent Adsorbed by the Sample
	fins	Weight Fraction of Fillers
	$ ho_{ m d}$	Density of Rubber
	$ ho_{s}$	Density of Toluene
	n _{S2C12}	Number of Moles of S ₂ Cl ₂
	d_{S2C12}	Density of S ₂ Cl ₂
	MM _{S2CI2}	Molar Mass of S ₂ Cl ₂
25	q_{b}	Amount of Benzene Absorbed by 1 Gram of NR Aerogels
Ţ.	m _b	Weight of Swollen NR Aerogels in Benzene
	K(T)	Specific Rate Constant
	K_0	Constant
4 F	Т	Temperature
	t	Time
	R	Universal Gas Constant
	Ea	Apparent Activation Energy
	Q_t	Toluene Adsorption
	Q_{∞}	Equilibrium Swelling Ratio
	D	Diffusion Coefficient
	h	Sample Thickness
	k	Constant
	п	Transport Mechanism
	$q_{ m w}$	Equilibrium Weight Swelling Ratio
	$q_{\rm v}$	Equilibrium Volume Swelling Ratio
	m _{tol}	Weight of the Equilibrium Swollen NR Aerogels
	m _{dry}	Weight of the Dry NR Aerogels
	$D_{\rm tot}$	Diameter of the Equilibrium Swollen NR Aerogels
	D_{dry}	Diameter of the Dry NR Aerogels
	Vp	Pore Volume of the Network
	m _M	Weight of the NR Aerogels Immersed in Methanol
	d _M	Density of Methanol
	$\sigma_{_{dk}}$	Volume Conductivity

Ļ	\mathcal{I}_{v}	Volume Resistivity
ı	1	Voltage
Ι		Current
ŀ	?	Resistance
7	r _c	Vulcanization Temperature
15	\$ ₂	Scorch Time
tç	90	Optimum Cure Time
S	max	Maximum Rheometric Torque
S	min	Minimum Rheometric Torque
Δ	72	Torque Difference
Ľ	ΔH	Heat of Vulcanization
E	Ĵ	Dynamic Storage Modulus
E	Ē	Tensile Modulus of Matrix
E	² m	Tensile Modulus of Composite
E	Er	Young's Modulus of Na ⁺ -MMT
a	τ	Aspect Ratio
φ)	Volume Fraction of Na ⁺ -MMT
Ę		Constant
C	<i>;</i> ′	Storage Modulus (Dynamic Rheometer)
(<u>;</u> "	Loss Modulus
η	*	Complex Viscosity
7	0	Onset Decomposition Temperature
7	d	Peak Decomposition Temperature
7	S	Reference Temperature
đ	lW/dT	Rate of Weight Loss
H	V ₀	Initial Weight of Sample
H	V _f	Final Weight of Sample
H	V _t	Weight of Sample at time t