REMOVAL OF TRACE CADMIUM IONS USING CONTINUOUS MULTISTAGE ION FOAM FRACTIONATION

Visarut Rujirawanich

A Dissertation Submitted in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University

2011

I28375531

Thesis Title:	Removal of Trace Cadmium Ions Using Continuous
	Multistage Ion Foam Fractionation
By:	Visarut Rujirawanich
Program:	Petrochemical Technology
Thesis Advisors:	Prof. Sumaeth Chavadej
	Prof. John H. O'Haver
	Assoc. Prof. Ratana Rujiravanit

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Doctor of Philosophy.

...... College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

(Asst. Prof. Pomthong Malakul)

_____ (Prof. John H. O'Haver)

T. Settد

(Asst. Prof. Thammandon Sreethawong)

Sumuth Chundy

(Prof. Sumaeth Chavadej)

Ratana Ryjiravanit

(Assoc. Prof. Ratana Rujiravanit)

thin (

(Assoc. Prof. Adrian E. Flood)

บทคัดย่อ

วิศรุต รุจิรวนิช : การแขกไอออนแกดเมียมปริมาณน้อยมากโดยการแขกลำดับส่วนฟอง ไอออนแบบต่อเนื่อง (Removal of Trace Cadmium Ions Using Continuous Multistage Ion Foam Fractionation) อ. ที่ปรึกษา : ศ. คร. สุเมธ ชวเคช ศ. คร. จอห์น เอช โอฮาเวอร์ และ รศ. คร. รัตนา รุจิรวนิช

ในการศึกษานี้ คอลัมน์สัคส่วนฟองไอออนหลายขั้นตอนแบบต่อเนื่องที่มีถาด ประกอบด้วยถ้วยฟองถกนำมาใช้เพื่อแยกไอออนแคดเมียมจากน้ำที่มีความเข้มข้นแคดเมียมใน มก./ล.) และโซเคียมโคเคคซิลซัลเฟต (SDS) ถกใช้สร้างฟอง ในการทำให้ ระดับต่ำ (10 ประสิทธิภาพการกำจัดแกดเมียมสูงสุดในรูปของอัตราส่วนการกำจัด แฟคเตอร์การแยก และแฟค เตอร์ที่เหลือของแคคเมียม ระบบต้องถูกควบคุมให้มีการขนส่งในแบบดูคซับสูงสุดคั้วยมีการ งนส่งแบบของเหลวต่ำสุด ในการเพิ่มของอัตราส่วน โมล SDS ต่อแคคเมียมในน้ำสามารถเพิ่มการ ้ กำจัดไอออนแคคเมียมอย่างมีนัยสำคัญ สัคส่วน โมลของ SDS ต่อแคคเมียมในน้ำของฟอง พบว่ามี ้ก่าใกล้เคียงกับอัตราส่วนทางทฤษฎีที่เท่ากับ 2 ต่อ 1 ในการดูดซับบนผิวอากาศต่อน้ำของฟอง ภายใต้สภาวะการทำงานที่เหมาะสม ระบบที่ศึกษานี้สามารถแยกไอออนแคดเมียมได้สูงกว่า 99 เปอร์เซนต์ การมีไอออนร่วม (SO4², NO,, และ Cl) พบว่าไม่มีผลต่อประสิทธิภาพการกำจัดทั้ง SDS และไอออนแกคเมียม แต่ทางตรงกันข้ามพบว่า การเติมไอออนตรงกันข้าม (Na $^{+}$, K $^{+}$, Ca $^{2+}$ และ Mg²๋)มีผลทำให้การกำจัดแคดเมียมลดลงแต่การแยก SDS สูงขึ้น ในการเติมไอออนบวกที่มี วาเลนซีสอง (Ca²+ และ Mg²+) ให้ผลสูงกว่าการเติมไอออนบวกที่มีวาเลนซีหนึ่ง (Na ่และ K+) ทั้งนี้ เพราะไอออนบวกที่มีวาเลนซีสองสามารถดูคซับร่วมกับ SDS ได้คีกว่าไอออนบวกที่มีวาเลนซี หนึ่ง

ABSTRACT

4981002063:	Petrochemical Technology Program
	Visarut Rujirawanich: Removal of Trace Cadmium Ions Using
	Continuous Multistage Ion Foam Fractionation.
	Thesis Advisors: Prof. Sumaeth Chavadej, Prof. John H. O'Haver,
	and Assoc. Prof. Ratana Rujiravanit 132 pp.
Keywords:	Ion foam fractionation/ Heavy metal/ Cadmium removal

In this work, a continuous multistage ion foam fractionation column with bubble-cap trays was used to remove cadmium ions from water having a low cadmium concentration (10 mg/L) and sodium dodecyl sulphate (SDS) was used to generate the foam. To optimize the removal efficiency of cadmium ions in terms of enrichment ratio, removal, separation factor and residual factor of cadmium, the system has to be operated to have the highest adsorptive transport with the lowest bulk liquid transport. An increase in feed SDS/Cd molar ratio enhanced significantly the removal of cadmium ions. The molar ratio of SDS/Cd in foamate was found to be close to the theoretical adsorption molar ratio of 2/1 on the air-water interface of foam. Under the optimum operational conditions, the studied multistage ion foam fractionation system was able to remove cadmium ions greater than 99 %. The presence of added co-ions (SO₄²⁻, NO₃⁻, and Cl⁻) was found to exhibit no effect on the removal efficiency of both SDS and cadmium ions. In contrast, the addition of counterions (Na⁺, K⁺, Ca²⁺, and Mg²⁺) decreased the cadmium removal whereas it increased the SDS separation. The added divalent cations (Ca^{2+} and Mg^{2+}) gave the higher effect than the added monovalent cations (Na⁺ and K⁺) because the divalent cations can co-adsorb more preferentially than the monovalent ones with the SDS.

ACKNOWLEDGEMENTS

This work is dedicated to my beloved parents who have gone forever from my life but will stay constantly in my memory.

I had never dreamt of attending Ph.D. program until one day in March, 2007 when I met Assoc. Prof. Ratana Rujiravanit by chance. No one still knows whether good or bad on this way but I would like to give appreciative thanks to her who encouraged me to attend Ph.D. program when I was a second year Master's degree student. My Ph.D. experience would not have begun Prof. Sumaeth Chavadej had not selected me as his student for RGJ scholarship received. I would like to give deeply grateful thanks for the great opportunity and support. It's my honour to work with and learn so great lessons, ranging from lifestyle to academic subject, from him. Without such the good and generous advisor, this book is not possible to be finished. I would like to give thanks to Asst. Prof. Pomthong Malakul, Asst. Prof. Thammanoon Sreethawong, and Assoc. Prof. Adrian E. Flood for being as my dissertation committees and their useful suggestions on this work. I am grateful for the scholarship and funding of the thesis work provided by the Royal Golden Jubilee Ph.D Program; the Petroleum and Petrochemical College; and the National Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials, Thailand.

I would like to thank Prof. John H. O'Haver, Prof. Robert B. Albritton, and Ms. Nantaporn Albritton for taking care of me during visit to US, especially when I had a surgery. I specially thank to Prof. John H. O'Haver for great advice and recommendation on this work.

On the day of Wai Kru ceremony 2010, I missed an excellent English teacher forever, Mr. Robert Wright, who improves my English skill. Thank him for reviewing and grammatical correcting my papers. Without aid of PPC staffs, this work cannot be done successfully. I would like to thank all PPC staffs, especially Ms. Jintana Chumnunmanoonthum, Mr. Polrat Mansripatanakul, and Ms. Waeonet Mansripatanakul. Among my friends, I would like to mention my best friend, Ms. Thritima Sritapunya, who has made an invaluable to this work, in my memory. Lastly, thanks to the earth for providing natural resources and energy for this work.

TABLE OF CONTENTS

		PAGE
Tit	le Page	i
Ab	stract (in English)	iii
Ab	stract (in Thai)	iv
Ac	knowledgements	v
Tal	ble of Contents	vi
Lis	t of Tables	x
Lis	t of Figures	xii
CHADT	FD	
CHAFI		1
I	INTRODUCTION	1
	1.1 State of Problem	1
	1.2 Objectives	3
	1.3 Scope of Work	3
II	LITERATURE REVIEW	5
	2.1 Surfactants	5
	2.2 Foam	6
	2.2.1 Foam Formation	6
	2.2.2 Structure of Foam	7
	2.2.3 Foam Stability	9
	2.2.3.1 Liquid Film Stability	9
	2.2.3.2 Liquid Film Drainage	11
	2.3 Surfactant Adsorption at Air–Water Interface	14
	2.4 Adsorptive Bubble Separation	14
	2.4.1 Principles of Foam Fractionation	16
	2.4.2 Mole Balance in Foam Fractionation Column	18
	2.4.3 Literature Review on Surfactant Recovery Us	ing Foam
	Fractionation	22

III

2.5 Ion Foam Fractionation22	3
2.5.1 Principle of Foam Fractionation for Ion Separation 2.	3
2.5.2 Kinetics of Ion Foam Fractionation 24	4
2.5.3 Recovery of Metal Product from Foamate 2.	5
2.5.4 Literature review on Ion Foam Fractionation and Ion	
Flotation 2	7
REMOVAL OF TRACE Cd ²⁺ USING CONTINUOUS	
MULTISTAGE ION FOAM FRACTIONATION: PART	
-THE EFFECT OF FEED SDS/Cd MOLAR RATIO 29	9
3.1 Abstract 29	9
3.2 Introduction 30	0
3.3 Experimental 32	2
3.3.1 Materials 32	2
3.3.2 Setup of The Multistage Foam Fractionation Unit 32	2
3.3.3 Operation of The Multistage Foam Fractionation Unit 32	2
3.3.4 Analytical Methods 33	3
3.3.5 Calculations 34	4
3.4 Results and Discussion 3.	5
3.4.1 Operating Limits 3:	5
3.4.2 Surface Tension Isotherm Results 33	8
3.4.3 Correlation of Cd and SDS in Foamates and Effluents 4	1
3.4.4 Effect of Feed SDS/Cd Molar Ratio 4.	5
3.5 Conclusions 4	8
4.6 Acknowledgements 4	9
3.7 References 4	9

PAGE

IV	REMOVAL OF TRACE Cd ²⁺ USING CONTINUOUS MULTISTAGE ION FOAM FRACTIONATION: PART		
	II—THE EFFECTS OF OPERATIONAL PARAMETERS	53	
	4.1 Abstract	53	
	4.2 Introduction	54	
	4.3 Experimental	56	
	4.3.1 Materials	56	
	4.3.2 Multistage Ion Foam Fractionation System	57	
	4.3.3 Methodology	57	
	4.3.4 Analytical Methods	58	
	4.3.5 Surface Tension Measurement	59	
	4.4 Results and Discussion	59	
	4.4.1 Effect of Foam Height	59	
	4.4.2 Effect of Air Flow Rate	63	
	4.4.3 Effect of Feed Flow Rate	67	
	4.4.4 Effect of Feed Cd Concentration	71	
	4.5 Conclusions	75	
	4.6 Acknowledgements	76	
	4.7 References	76	
V	REMOVAL OF TRACE Cd²⁺ USING CONTINUOUS		
	MULTISTAGE ION FOAM FRACTIONATION:		
	EFFECT OF SALT ADDITION	79	
	5.1 Abstract	79	
	5.2 Introduction	80	

5.2	Introduction	00
5.3	Experimental	82
	5.3.1 Materials	82
	5.3.2 Equipment	83
	5.3.3 Methodology	83

PAGE

	5.3.4 Analytical Methods	85
	5.3.5 Surface Tension Measurement	85
	5.4 Results and Discussion	85
	5.4.1 Specie Distribution Diagram	85
	5.4.2 Surface Tension Isotherm Results	89
	5.4.2.1 Type of Counterion	91
	5.4.2.2 Type of Co-ions	95
	5.4.3 The Effect of Salt Addition on Separation Effic	iency of
	Multistage Ion Foam Fractionation	96
	5.4.3.1 Separation Efficiency of SDS	96
	5.4.3.2 Separation Efficiency of Cd	100
	5.5 Conclusions	104
	5.6 Acknowledgements	105
	5.7 References	105
VI	CONCLUSIONS AND RECOMMENDATIONS	109
	REFERENCES	112
	APPENDIX	119
	CURRICULUM VITAE	131

LIST OF TABLES

CHAPTER III

Calculated values of CMC, γ_{cmc} , pC₂₀, and saturated surface

TABLE

3.1

concentrations (Γ_m) of SDS alone and in the presence of cadmium and sodium ion concentrations **CHAPTER V** 5.1 Chemical equilibrium reactions of cadmium complexes with 86 different ligands and their stability constants 5.2 Dependence of swamping counterion concentration, 90 effective hydrated diameter, and the calculated value of a partition coefficient for the partition of a counterion between the air-water interface and the bulk liquid **APPENDIX** Surface tension of SDS solution with various concentrations 119 A1 of added NaCl at 25 °C to 27 °C Surface tension of SDS solution with added Cd(NO₃)₂ 120 A2 concentration of 10 mg/L and various concentrations of added NaCl at 25 °C to 27 °C Surface tension of SDS solution with various concentrations 121 A3 of added NaNO₃ at 25 °C to 27 °C Surface tension of SDS solution with added Cd(NO₃)₂ 122 A4 concentration of 10 mg/L and various concentrations of added NaNO₃ at 25 °C to 27 °C Surface tension of SDS solution with various concentrations 123 A5 of added Na₂SO₄ at 25 °C to 27 °C

PAGE

40

TABLE

A6	Surface tension of SDS solution with added Cd(NO ₃) ₂	124
	concentration of 10 mg/L and various concentrations of	
	added Na ₂ SO ₄ at 25 °C to 27 °C	
A7	Surface tension of SDS solution with various concentrations	125
	of added KNO ₃ at 25 °C to 27 °C	
A8	Surface tension of SDS solution with added Cd(NO ₃) ₂	126
	concentration of 10 mg/L and various concentrations of	
	added KNO3 at 25 °C to 27 °C	
A9	Surface tension of SDS solution with various concentrations	127
	of added Mg(NO ₃) ₂ at 25 °C to 27 °C	
A10	Surface tension of SDS solution with added Cd(NO ₃) ₂	128
	concentration of 10 mg/L and various concentrations of	
	added Mg(NO ₃) ₂ at 25 °C to 27 °C	
A11	Surface tension of SDS solution with various concentrations	129
	of added Ca(NO ₃) ₂ at 25 °C to 27 °C	
A12	Surface tension of SDS solution with added Cd(NO ₃) ₂	130
	concentration of 10 mg/L and various concentrations of	
	added Ca(NO ₃) ₂ at 25 °C to 27 °C	

LIST OF FIGURES

FIGURE

CHAPTER II

2.1	Schematic of a surfactant molecule.	5
2.2	Formation of foam.	7
2.3	Plateau border at point of meeting of three bubbles.	7
2.4	Structure of foam.	8
2.5	Schematic of foam structure in a column.	8
2.6	Surface elasticity of foam film.	10
2.7	Reduction of foam film drainage by particle trapped in the	11
	plateau border.	
2.8	(a) Surfactants at the air-liquid interface in the absence of	13
	thin film drainage. (b) Surface tension gradient on the	
	surface is created as the surfactants are displaced due to the	
	bulk viscous drag force in the presence of drainage. (c) The	
	Marangoni effect results in a decrease in the net drainage	
	rate.	
2.9	Classification for the adsorptive bubble separation methods.	15
2.10	Principle of foam fractionation.	17
2.11	Material balance around foam phase.	17
2.12	Dependence of normalized bulk liquid transport on foamate	19
	volumetric ratio as described by Equation 2.12.	
2.13	Dependence of % surfactant recovery on foamate volumetric	20
	ratio and normalized adsorptive transport as described by	
	Equation 2.13.	
2.14	Schematic of bubble caps tray.	21
2.15	Co-adsorption of surfactant and metal mechanism for ion	24
	separation in ion foam fractionation.	

2.16	A conceptual diagram of foam fractionation of ions	26	
	integrated with the recovering unit (FF-Electrolysis).		
	CHAPTER III		
3.1	(a) Schematic of a multi-stage foam fractionation unit and	35	
	(b) schematic of a base of a tray (top view).		
3.2	Boundaries of the operational zone of the studied foam	37	
	fractionator at a feed SDS/ Cd molar ratio of 7/1, a foam		
	height of 60 cm, a feed Cd concentration of 10 mg/L, and the		
	number of trays equal to 5.		
3.3	Surface tension isotherms of SDS with various	38	
	concentrations of Cd(NO ₃) ₂ and NaNO ₃ at 25 °C to 27 °C.		
3.4	Adsorption density as a function of concentration of SDS	39	
	and SDS with 10 mg/L of Cd^{2+} at 25 °C to 27 °C in the		
	absence of NaNO ₃ .		
3.5	Correlations between Cd and SDS concentration (a) in the	43	
	foamate and (b) in the effluent at a number of stages equal to		
	5 with different feed flow rates, air flow rates, and feed		
	SDS/Cd molar ratios (≥2).		
3.6	Effect of feed SDS/Cd molar ratio on (a) % SDS recovery	44	
	and Cd removal, (b) enrichment ratios of SDS and Cd and		
	foamate volumetric ratio (V_f/V_i), (c) residual factors of SDS		
	and Cd, (d) effluent concentrations of SDS and Cd, (e) molar		
	ratios of SDS/Cd in the foamate and effluent, and (f)		
	separation factors of SDS and Cd at an air flow rate of 60		
	L/min, a feed flow rate of 40 mL/min, a foam height of 30		
	cm, a feed Cd concentration of 10 mg/L, and the number of		
	trays equal to 5.		

FIGURE

xiii

CHAPTER IV

4.1	Schematic of a multistage foam fractionation unit.	56
4.2	Effect of foam height on (a) the enrichment ratios of Cd and	61
	SDS; (b) foamate volumetric ratio and molar ratio of	
	SDS/Cd in foamate; (c) SDS recovery and Cd removal; (d)	
	the residual factors of SDS and Cd; and (e) the separation	
	factors of SDS and Cd; and (f) effluent SDS and Cd	
	concentration at air flow rate = $60 \text{ dm}^3/\text{min}$, feed flow rate =	
	40 mL/min, number of trays =5, feed Cd concentration = 10	
	mg/L, and two feed SDS/Cd molar ratios of 8/1 and 10/1.	
4.3	Effect of air flow rate on the enrichment ratios of Cd and	65
	SDS (a); foamate volumetric ratio and molar ratio of	
	SDS/Cd in foamate (b); SDS recovery and Cd removal (c);	
	the residual factors of SDS and Cd (d); and the separation	
	factors of SDS and Cd (e) at foam height = 60 cm, feed flow	
	rate = 60 mL/min , number of trays = 5, feed Cd	
	concentration = 10 mg/L , and two feed molar ratios of	
	SDS/Cd of 7/1 and 10/1.	
4.4	Effect of feed flow rate on the enrichment ratios of Cd and	68
	SDS (a); foamate volumetric ratio and molar ratio of	
	SDS/Cd in foamate (b); SDS recovery and Cd removal (c);	
	the residual factors of SDS and Cd (d); and the separation	
	factors of SDS and Cd (e) at two conditions. (Condition A	
	(wet foam): foam height = 60 cm, air flow rate = 60	
	dm^3/min , SDS/Cd = 10/1, feed Cd concentration = 10 mg/L,	
	and number of trays = 5 and Condition B (dry foam): foam	
	height = 90 cm, air flow rate = $60 \text{ dm}^3/\text{min}$, SDS/Cd = $10/1$,	
	feed Cd concentration = 10 mg/L , and number of trays = 5).	

- 4.5 Effect of feed Cd concentration on the enrichment ratios of
 Cd and SDS (a); foamate volumetric ratio and molar ratio of
 SDS/Cd in fomate (b); SDS recovery and Cd removal (c);
 the residual factor of SDS and Cd (d); effluent Cd and SDS
 concentration (e); and the separation factor of SDS and Cd
 (f) at foam height = 90 cm, feed flow rate = 80 mL/min, air
 flow rate = 60 dm³/min, feed SDS concentration = 0.71 mM,
 and number of trays = 5.
- 4.6 The measured values of pC₂₀ (a) and the adsorption density 73 of SDS (b) of SDS from surface tension isotherm in the presence of cadmium ion as a function of cadmium ion concentration.

CHAPTER V

5.1	Schematic of a multistage foam fractionation unit.	83
5.2	Specie distribution diagrams of Cd in aqueous solutions	87
	having different Cd salts as a function of (a) nitrate, (b)	
	sulfate, and (c) chloride concentration at total Cd	
	concentration = 10 mg/L (0.09 mM), initial solution $pH = 7$,	
	and temperature = $25 ^{\circ}$ C.	
5.3	Surface tension isotherms of SDS at various concentrations	88
	of added NaCl (a), NaNO ₃ (b), Na ₂ SO ₄ (c), KNO ₃ (d),	
	$Mg(NO_3)_2$ (e), $Ca(NO_3)_2$ (f) in the presence and absence of	
	10 mg/L of Cd at 25-27 °C as compared with that of pure	
	SDS system.	
5.4	Effect of type and concentration of counterion on surface	91

Effect of type and concentration of counterion on surface tension reduction (pC_{20}) of SDS solution at 25–27 °C (pC_{20}) = 2.68 for the pure SDS system).

PAGE

FIGURE

5.5	Surface tensions of (a) SDS-Na, (b) SDS-K, (c) SDS-Mg,	94	
	(d) SDS-Ca, and (e) SDS-Cd systems as a function of		
	dodecylsulfate concentration at pH 7. The added cation		
	counterions and dodecylsulfate were present in		
	stoichiometric ratios.		
5.6	Effect of counterion addition on (a) enrichment ratio, (b)	97	
	foamate volumetric ratio, (c) residual factor, (d) recovery,		
	and (e) separation factor of SDS at an air flow rate of 35		
	dm ³ /min, a feed flow rate of 60 mL/min, a foam height of 60		
	cm, the number of trays equal to 5, and a feed molar ratio of		
	SDS/Cd of 10/1.		
5.7	Effect of counterion addition on (a) enrichment ratio, (b)	100	
	residual factor, (c) recovery of Cd, and (d) separation factor		
	of Cd at an air flow rate of 35 dm ³ /min, a feed flow rate of		
	60 mL/min, a foam height of 60 cm, the number of trays		
	equal to 5, and a feed molar ratio of SDS/Cd of 10/1.		