อีพิแทกซีสภาวะ เหลวของดีบุกกึ่งตัวนำบนอิน เดียมแอนติโม ไนด์

นายวิทยา อมรกิจบำรุง

วิทยานิพนธ์นี้ เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรดุษฎีบัณฑิต ภาควิชาพิสิกส์

บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

พ.ศ. 2531

ISBN 974-569-301-4

ลิขสิทธ์ของบัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

LIQUID PHASE EPITAXY OF SEMICONDUCTING TIN ON INDIUM ANTIMONIDE

Mr. Vittaya Amornkitbamrung

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

Department of Physics

Graduate School

Chulalongkorn University

1988

ISBN 974-569-301-4

Thesis Title

Liquid Phase Epitaxy of Semiconducting

Tin on Indium Antimonide

By

Mr. Vittaya Amornkitbamrung

Department

Physics

Thesis Advisors

Prof. Virulh Sa-yakanit, F.D.

Assistant Prof. Somphong Chatraphorn

Wirojana Tantraporn, Ph.D.

Accepted by the Graduate School, Chulalongkorn University in Partial Fulfillment of the Requirement for the Doctor's Degree.

..... Jajaas Lab. R. Dean of Graduate School

(Professor Thavorn Vajarabhaya, Ph.D.)

Thesis Committee

(Professor Sippanondha Ketudat, Ph.D.)

Williams Tantrajurn. Thesis Advisor

(Wirojana Tantraporn, Ph.D.)

Thesis Advisor

(Professor Virulh Sa-yakanit, F.D.)

. C. O. st. So. y hych.... Member

(Assoc. Prof. Wijit Senghaphan, Ph.D.)
Phathana Pharametta.

.....Member

(Assoc. Prof. Phathana Phavanantha, Ph.D.)

พิมพ์ตั้นฉบับบทคัดย่อวิทยานิพนธ์ภายในกรอบสีเขียวนี้เพียงแผ่นเดียว

วิทยา อมรกิจบำรุง ซีพีแทกซีสภาวะ เหลว ของดีบุกกึ่งตัวนำบนอินเดียมแอนติโมไนด์ (LIQUID PHASE EPITAXY OF SEMICONDUCTING TIN ON INDIUM ANTIMONIDE อ.ที่ปรึกษา ศ.คร.วิรุฬท์ สายคณิต, ผศ.สมพงศ์ ฉัตราภรณ์, คร.วิโรจน์ ตันตราภรณ์, 112 หน้า.

ผลึกชนาดเล็กของดีบุกกึ่งตัวนำ สามารถเตรียมได้โดยวิธีอีพิแทกซีสภาวะเหลว จากสาร ละลายของดีบุกกับปรอทที่อุณหภูมิ 7.5 – 12.5 C บนแผนรองรับอินเดียมแอนติโมไนด์ หนา(111)B ที่เตรียมได้ผลึกชนาดเล็กนั้นเชื่อวาเพราะมีชั้นออกไซด์บนแผนรองรับอินเดียมแอนติโมไนด์ และมีรูขนาดเล็ก ทะลุชั้นออกไซด์ถึงแผนรองรับนั้น ได้ตรวจสอบผลึกดีบุกกึ่งตัวนำบนอินเดียมแอนติโมไนด์ ด้วยวิธีการ สะทอนกลับของรังสีเอ็กซ์ และวิธีวิเคราะหสารขนาดเล็กด้วยลำอิเลคตรอน (EPMA) ผลึกดีบุกกึ่งตัวนำ ที่ได้มีเสถียรภาพถึงอุณหภูมิประมาณ 60 C ซึ่งใกล้เคียงกับผลที่ได้โดยวิธีอีพิแทกซีจากลำโมเลกุล (MBE) จากผลงานผู้อื่น ตรวจสอบลักษณะของผลึกดีบุกกึ่งตัวนำด้วยกล้องจุลทรรศน์ธรรมดาและกล้องจุลทรรศน์ อิเลคตรอน (SEM)

ภาควิชา	ลายมือชื่อมิสิต ริกษ อนรถกระ	
สาขาวิชา ค.โภกส		_
ปีการศึกษา	ลายมือชื่ออาจารย์ที่ปรึกษา	^S o7
		'

พิมพ์ตั้นฉบับบทคัดย่อวิทยานิพนธ์ภายในกรอบสีเขียวนี้เพียงแผ่นเดียว

VITTAYA AMORNKITBAMRUNG: LIQUID PHASE EPITAXY OF SEMICONDUCTING TIN ON INDIUM ANTIMONIDE. THESIS ADVISORS: PROF.VIRULH SA-YAKANIT, F.D.; ASSIST.PROF. SOMPHONG CHATRAPHORN, M.Sc.; WIROJANA TANTRAPORN, Ph.D. 112 PP.

Islets of α -Sn have been epitaxially grown by the Liquid Phase Epitaxy (LPE) technique on (111)B InSb substrate in Sn-Hg melt at 7.5-12.5°C. That epitaxial growths are in islet form is believed to be due to the presence of an oxide layer with pin-holes on InSb substrate. The x-ray back reflection technique and the Electron-Probe Micro Analysis (EPMA) were used to confirm α -Sn epitaxy on InSb. The α -Sn phase is stable to approximately 60°C, which is comparable to the results obtained by Molecular Beam Epitaxy (MBE) technique reported by other workers. The optical microscope and Scanning Electron Microscope (SEM) were used to evaluate the crystalization results.

ภาควิชาพิผิกส์	ลายมือชื่อนิสิต ริกษ อมรโจมรร
สาขาวิชา พิลักส์	
ปีการศึกษา 🔣 🗸 🗸 🗸 🗸 💮 💮 💮 💮 💮 💮 💮 💮 💮 💮 💮 💮 💮	ลายมือชื่ออาจารย์ที่ปรึกษา

ACKNOWLEDGEMENTS

The author greatly appreciates the encouraging guidance and the unending support received from his advisors, Prof. V. Sa-yakanit, Assist. Prof. S. Chatraphorn, and Dr. W. Tantraporn. The members of Doctoral Committee are thanked for their support. Thanks are also due to Mr. O. Buaphong, Mr. D. Sangphud for technical help, to Miss A. Eongprakornkeaw and Mr. P. Danla for SEM analysis, and to Mrs. L. Sodasoy, Mrs. S. Maneevong, and Mr. P. Songpongs for producing the carefully typed menuscript.

This work was supported by the Unit Cell Program and Rachadapiseksompoj Research Fund, Chulalongkorn University.

CONTENTS

Page
ABSTRACT IN THAI
ABSTRACT IN ENGLISH V
ACKNOWLEDGEMENTS
LIST OF TABLES X
LIST OF FIGURES XI
Chapter
I. INTRODUCTION AND OBJECTIVES
II. LIQUID PHASE EPITAXY EXPERIMENTS 10
The Design and Construction of the
Vertical Liquid Phase Epitaxy
System (VLPE)
Substrate Preparation
Melt Preparation

Liquid	Phase Epitaxy Procedure	26
1.	Saturation Determination T_s (Phase Diagram Data of Hg-Sn)	30
2.	Estimate of Δ (Mass of Sn Out)/ Δ T _s	
	as a Function of T_{s}	34
3.	Estimate of Δ (Mass) Maximum at each T_s	34
4.	Growth Procedure	35
5.	Growth Morphologies	
	(Optical Microscope)	42
6.	Summary	49
III. STRUCTURAL	ANALYSIS	52
	ng Electron Microscopy and X-Ray nalysis	52
1.	X-Ray Production	55

	2.	X-Ray	y Spectra	l Measure	ement:				
		WDS 8	and EDS	• • • •	• • • • •	• • • • •	• • • •	• • •	57
		2.1	Wavelengt						
			Spectrome	eter (WDS	3)	• • • • •	• • • •	• • •	58
		2.2	Energy-Di	ispersive	X-Ray				
			Spectrome	eter (EDS	;)	• • • • •	• • • •	• • •	63
	3.	Resul	lts and Di	iscussion	Based	on			
		Elect	cron Probe	e Micro A	nalysi	s (EPM	IA)	• • •	66
	W D								
	-		Reflection						
	the Ph	ase Ch	nange of (Grey Tin	•	• • • • •	• • • •	• • •	82
	Experi	nental	Results	and Disc	ussion				
	-		Reflection				• • • •		86
IV.	RESULTS ANI	DISC	CUSSION		• • • • •		• • • •	• • •	91
	REFERENCE	• •	• • • • • • • • •	• • • • • • •	• • • • •	• • • • •	• • • •	• • •	94
	ADDENINTY								00
	APPENDIX	• • •		• • • • • • •	• • • • •	• • • • •	• • • •		99
	BIOGRAPHY		• • • • • • • • •					1	112

Table 1	Properties of the α and β
	Modifications of Tin 4
Table 2	LPE Parameters of all Samples in this Study 40
Table 2	The farameters of all samples in this study 40
Table 3	L Series X-Ray Wavelengths and Energies 57
Table 4	Fluorescence in a Sample Containing
	In, Sn, and Sb 57
Table 5	Current (picoamps) from X-Ray Detector
	WDS by Spotting Electron Beam on the Cleaved
	Cross-Section Sample Starting from the Surface
	into the Substrate (1 micron in each step) 80
Table 5	Pattern of α-Sn (Back-Reflection)
Table 6	Pattern of β-Sn (Back-Reflection)

LIST OF FIGURES

		Pag	ţе
Fig.	1	Transmission versus wavelength for 1 mile	
		of air. Water and carbon dioxide absorption	
		bands are indicated	7
Fig.	2	Schematic diagram of the VLPE system 11	
Fig.	3	Surface of (111)B InSb after etching in	
		lactic: HNO3: HF (25:4:1 conc. in volume)	
		for 5, 10, and 15 minutes in (a), (b),	
		and (c) respectively. Observed with	
		optical microscope (200 X) 18)
Fig.	4	Arrangement of three parts of feeding	
		container 21	
Fig.	5	Surface of Hg in crucible at 8.35 °C	
		before saturated with Sn	
Fig.	6	Schematic of temperature controlled	
		system of the melt in crucible 24	

		Page
Fig. 7	Saturating quartz basket	. 24
Fig. 8	The melt Sn in basket during heat for cleaning approximately 550 °C	. 25
Fig. 9	The surface of the melt during saturation	. 25
Fig.10	Ga-As phase diagram	. 28
Fig.11	Sn solidification of Hg-Sn solution after the solution is cooled down 4°C from the saturated temperature 13°C	. 31
Fig.12	Phase diagram of Hg-Sn	. 33
Fig.13	The temperature program of the method (1) which is super-cooled before dipping and maintained constant.	. 36
Fig.14	The temperature program of the method (2) which is dipping at high temperature (20-40 $^{\circ}$ C) then decrease temperature until T $<$ T ₅ and maintaining constant temperature.	. 37

Fig.15	The temperature program of the method (3)
	which is dipping at low temperature 14-16 C
	but T > T_s , then decrease temperature 38
Fig.16	The temperature program of the method (4)
	in which dipping is at T \langle T_{s} , the T is
	decreased further 39
Fig.17	Optical micrographs in dipping method (1)
	which showed the islet form of tin (α or β)
	of different grain sizes and different site
	distribution density. Magnification 200 X 44
Fig.18	Optical micrographs in dipping method (2)
	which showed the etch patterns in triangular
	form as a result of dipping at high temperature
	20-40°C. Magnification 300 X
Fig.19	Optical microgaphs in dipping method (3)
	which showed the texture of a heavy deposit
	of Sn in the form of randomly shaped islets in
	(a), Fig. (b) showed thin foil covered the
	surface of InSb Fig. (c) showed thin foil
	covered the surface of InSb 47

Fig.20	Optical micrographs in dipping method (4)
	which showed surface morphology at different
	magnifications 7X, 30X, 200X in (a), (b), (c)
	respectively. Fig.(a) showed general
	characteristic of surface. Fig.(b) showed the
	islet form of crystals. Fig.(c) showed the area
	is very smooth having the steps in the same
	direction. Using EPMA (WDS) in the next chapter
	showed that it is Sn-thin film 48
Fig.21	Monte Carlo calculations of the interaction volume
	in iron as a function of beam energy: (a) 10 keV,
	(b) 20 keV, (c) 30 keV
Fig.22	Schematic representation of a wavelength-dispersive
	spectrometer 59
Fig.23	Part of x-ray spectrum of Sn on InSb 61
Fig.24	Examples of possible electron paths in a thin
	film on a substrate, Paths 1 and 6 lead to
	backscattering, while paths 2-5 remain in the
	film or substrate 61

Fig.25	The scanning electron image of planar	
	sample Sn/InSb in (a), Sn mapping image	
	in (b), and In mapping image in (c).	62
Fig.26	Schematic representation of an energy-dispersive	
	spectrometer.	64
Fig.27	EDS spectrum of Sn on InSb, energy 15 keV	65
Fig.28	Scanning electron image at various	
	magnifications at some areas show the islets	
	of Sn and the etched surface of InSb of	
	method (1) growth of sample no.13	68
Fig.29	Scanning electron image at various	
	magnifications at some areas show the islets	
	of Sn and the etched surface of InSb of method	
	(1) growth of sample no.14.	69
Fig.30	Scanning electron image at various magnifications	
_	at some areas show the islets of Sn and the	
	etched surface of InSb of method (1) growth of	
	sample no. 15.	70
	Designed Act 101 111111111111111111111111111111111	. 0

Fig.31	Scanning electron image at various	
	magnification at some areas show the islets of	
	Sn and the etched surface of InSb of method (1)	
	growth of sample no. 16	71
Fig.32	Scanning electron image of sample no.5	
	in (a) shows the same oriented islet Sn edges.	
	(b) and (c) show the In and Sn mapping respectively	
	of the same area in (a).	73
Fig.33	Scanning electron image of sample no.9	
	in (a) show the islet Sn on InSb. (b) and (c)	
	show the EPMA/WDS mapping of Sn and Sb	
	respectively of the same area in (a)	75
Fig.34.	Scanning electron image of sample no.9	
	in (a) shows the dense islet Sn on InSb.	
	(b), (c) and (d) show the EPMA/WDS mapping of In,	
	Sn, and (d) respectively of the same area in (a)	76
Fig.35.	Scanning electron image of sample no.10	
	in (a) shows the initial state growth of islet	
	Sn on InSb. (b) and (c) show the EPMA/WDS	
	mapping of Sn and In respectively of the same	-
	area in (a)	77

Pa	ø	6
ıa	5	C

Fig.36	a) Scanning electron beam image of the oxide layer;	
	the substrate body in the region to the right of the	
	band. b) - e) EPMA/WDS data respectively for O, In,	
	Sn, and Sb over the sample place as in a) 7	'8
Fig.37	a)SEM scan showing growth of islet below the dip	
	level; sample 11. b) - d) Low magnification EPMA/WDS	
	scan of the same region as in a). e) (Sample rotated	
	90°, dipped region to the right, higher magnification.)	
	Showing low source energy (15 kV instead of 25 kV)	
	EPMA/WDS integrated signal plotted as jagged curve	
	indicating a presence of Sn. The straight horizontal	
	line indicates the scanned positions 7	ġ
Fig.38	The x-ray detector current vs depth position	
	from the surface into the substrate 8	1
Fig.39	Sample heating stage showing:	
	(a) copper heating stage	
	(b) solder rod heater.	
	The stage is seen clamped in position	
	on a goniometer 8	5

0

Fig.40	X-ray back reflection of islet Sn on InSb		
	to follow the phase change from $\alpha \to \beta$	11	
	(a) showed partial Debye ring from diffracted		
	plane (642) of α -phase. (b) showed partial		
	Debye ring from diffracted plane (541) of β -phase	87	

Fig.41 Back-reflection Laue camera (schematic). A is

the collimator. C is the specimen supported on the

holder B. F is the light-tight film holder (cassette).

r is the distance of spot from center of film.

D is specimen-to-film distance (usually 3 cm). 88