REFERENCES

- Al-Kassas, R.S., Gilligan, C.A. and Li Wan Po, A., 1993. Processing factors affecting particle size and *in vitro* drug release of sustained-release ibuprofen microspheres. <u>International Journal of Pharmaceutics</u> 94:59-67.
- Allémann, E., Gurny, R. and Leroux, J. C., 1996. Biodegradable nanoparticles of poly (lactic acid) and poly (lactic-co-glycolic acid) for parenteral administration. In H.A. Lieberman; M.M. Rieger; and G. S. Banker (eds.), <u>Pharmaceutical Dosage Forms: Disperse Systems</u> Vol. 3, pp. 163-194, New York: Marcel Dekker, Inc.
- Amselem, S. and Friendman, D., 1998. In S. Bennita (ed.), <u>Submicron emulsions as</u> <u>drug carriers for topical administration</u>, pp153-173. Netherland: Harwood Acadamic publishers.
- Attwood, D., 2002. Disperse system. In M.E. Aulton (ed.), <u>Pharmaceutics: The</u> science of dosage form design, pp.71-100. London: Harcourt publishers.
- Baumann, L. and Weisberg, E. 2002. <u>Cosmetic dermatology: principle and practice</u>, pp 105-116. New York: Marcel Dekker, Inc.
- Bayer, R.E., 1992. an analysis of the role of Coenzyme Q₁₀ in free radical generation and act as antioxidant. <u>Biochemistry Cellular and Biology</u> 70: 390-403.
- Bocca, C., Caputo, O., Cavalli, R., Gabriel, L., Miglietta, A. and Gasco, M.R., 1998.
 Phagocytic uptake of fluorescent stealth and non-stealth solid lipid nanoparticles. <u>International Journal of Pharmaceutics</u> 175:185-193.
- British Pharmacopoeia Commision. 1998. <u>British Pharmacopoeia</u>. Volume II, pp. 293, 294, 1058-1059. London: General Medicine Council.
- Bronaugh, R.L., Hood, H.L., Kraeling, ME.K. and Yourick, J.J., 1999. Determination of percutaneous absorption by *in vitro* techniques. In R.L., Bronaugh and H.I.
 Maibach (eds), <u>Drug and the pharmaceutical science: Percutaneous absorption</u>, pp229-233. New York: Marcel Dekker, Inc.

- Buckton, G., 2002. Solid-state properties. In M.E. Aulton (ed.), <u>Pharmaceutics: The</u> science of dosage form design, pp.141-151. London: Harcourt Publishers.
- Bunjes, H., Drechsler, M., Koch, MH.J. and Westesen, K., 2001. Incorporation of the model drug ubidecarenone into solid lipid nanoparticles. <u>Pharmaceutical</u> <u>Research</u> 18(3): 287-293.
- Carli, F., Chiellini, E.E., Bellich, B., Macchiavelli, S. and Cadelli, G., 2005. Ubidecarenone nanoemulsified composite systems. <u>International Journal of</u> <u>Pharmaceutics</u> 291: 113–118.
- Carmia, B., 2004. Dietary antioxidants and human cancer. Integrative Cancer Therapies 3(4): 333-341.
- Cavalli, R., Caputo, O., Carlotti, M.E., Trotta, M., Scarnecchia, C. and Gasco, M.R., 1997. Sterilization and freeze-drying of drug-free and drug-loaded solid lipid nanoparticles. <u>International Journal of Pharmaceutics</u> 148: 47-54.
- Cavalli, R., Peira, E., Caputo, O. and Gasco, M.R., 1999. Solid lipid nanoparticles as carriers of hydrocortisone and progesterone complexes with β-cyclodextrins. <u>International Journal of Pharmaceutics</u> 182: 59-69.
- Cavalli, R., Gasco., M.R., Chetoni, P., Burgalassi, S. and Saettone, M.F., 2002. Solid lipid nanoparticles (SLN) as ocular delivery system for tobramycin. <u>International Journal for Vitamin and Nutrition Research</u> 238: 241-245.
- Chopra, R.K., Goldman, R., Sinatra, S.T. and Bhagavan, H.N., 1998. Relative bioavailability of coenzyme Q₁₀ formulations in human subjects. <u>International</u> <u>Journal for Vitamin and Nutrition Research</u> 68: 109-113.
- Crane, F.C., 2001. Biochemical functions of coenzyme Q₁₀. Journal of the American College of Nutrition 20(6): 591-598.
- Cui, Z. and Mumper, R.J., 2002 a. Genetic immunization using nanoparticles engineered from microemulsion precursors. <u>Pharmaceutical Research</u> 19: 939-946.
- Cui, Z. and Mumper, R.J., 2002 b. Topical immunization using nanoengineered genetic vaccines. Journal of Controlled Release 81: 173-184.

- Cui, Z., Hsu CH. and Mumper, R.J., 2003. Physical characterization and macrophage cell uptake of mannan-coated nanoparticles. <u>Drug Development and Industrial</u> Pharmacy 29(6): 689-700.
- Date, A.A. and Patravale, V.B., 2004. Current strategies for engineering drug nanoparticles. <u>Current Opinion in Colloid and Interface Sciences</u> 9: 222-235.
- De Campos, A.M., Sánchez, A. and Alonso, M.J., 2001. Chitosan nanoparticles: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A. <u>International Journal of Pharmaceutics</u> 224: 159-168.
- Dean, W. and Fowkes, S.W., 1996. Mitochondria nutrition, aging and cognition [online]. Available from: http:// www. Ceri.com [1996, August 1].
- Dingler, A., Blum, R.P., Niehus, H., Müller, R.H. and Gohla, S.,1999. Solid lipid nanoparticles (SLNTM/LipopearlsTM)-a pharmaceutical and cosmetic carrier for the application of vitamin E in dermal products. Journal of Microencapsulation 16: 205-213.
- Ernster, L. and Dallner, G., 1995. Biochemical, physiological and medical aspects of ubiquinone function. <u>Biochemical and Biophysical Acta</u> 1271: 195-204.
- Freitas, C. and Müller, R.H., 1998. Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLN[™]) dispersions. International Journal of Pharmaceutics 168: 221–229.
- Gasco, M.R., 1997. Solid lipid nanospheres from warm microemulsions. <u>Pharmaceutical Technology Europe</u> 9: 52–58.
- Guttman, C. 2005. Co Q₁₀ shows promising anti-tumor activity [online]. Available from: http://www.HealingWell.com [2005, July 1].
- Heurtault, B., Saulnier, P., Pech, S., Proust, J-E. and Benoit, J-R., 2003. Physicochemical stability of colloidal lipid particles. <u>Biomaterials</u> 24: 4283-4300.
- Heydenreich, A.V., Westmeier, R., Pedersen, N., Poulsen, H.S. and Kristensen, H.G., 2003. Preperation of cationic solid lipid nanospheres- effects on particles size,

physical stability and cell toxicity. <u>International Journal of Pharmaceutics</u> 254: 83-87.

- Hoppe, U., Bergemann, J., Diembeck, W., Ennen, J., Gohla, S., Harris, I., Jacob, J.,
 Kielholz, J., Mei, W., Pollet, D., Schachtschabel, D., Sauermann, G.,
 Schreiner, V., Stäb, F. and Steckel, F., 1999. Coenzyme Q₁₀: a cutaneous antioxidant and energizer. Biofactors 9: 371.
- Hou, D.Z., Xie, C.S., Huang, K.J. and Zhu, C.H. 2003. The production and characteristics of solid lipid nanoparticles (SLNs). <u>Biomaterials</u> 24: 1781-1785.
- Hsu, CH., Cui Z., Mumper R.J. and Jay M., 2003. Preparation and characterization of novel Coenzyme Q₁₀ nanoparticles engineered for microemulsion precursors.
 <u>AAPS Pharmaceutical Science and Technology</u> 4(3): 1-12.
- Igartua, M., Saulnier, P., Heurtault, B., Pech, B., Proust, J.E., Pedraz, J.L. and Benoit, J.P., 2002. Development and characterization of solid lipid nanoparticles loaded with magnetile. <u>International Journal of Pharmaceutics</u> 233: 149-157.
- Illum, L., Jabbal-Gill, I, Hinchcliffe, M., Fisher, A. N. and Davis, S. S., 2001. Chitosan a novel nasal delivery system for vaccines. Advance. Drug. Delivery. Reveiw 51: 81-96.
- Jenning, V., Gysler, A., Schafer-Korting, M. and Gohla, S. H., 2000. Vitamin A loaded solid lipid nanoparticles for topical use: occlusive properties and drug targeting to the upper skin. <u>European Journal of Pharmaceutics and Biopharmaceutics</u> 49: 208-211.
- Jenning, V.and Gohla, S., 2000. Comparison of wax and glyceride solid lipid nanoparticles (SLN[®]). International Journal of Pharmaceutics 219-222.
- Jenning, V., Schafer-Korting, M. and Gohla, S., 2000. Vitamin A-loaded solid lipid nanoparticles for topical use: drug release properties. <u>Journal of Controlled</u> <u>Release</u> 66: 115-126.
- Klang, S. and Benita, S., 1998. Design and evaluation of submicron emulsion as colloidal drug carriers for intravenous administration. In S. Bennita (ed),

Submicron emulsion in drug targeting and delivery, pp.119-152. Netherland: Harwood Acadamic Publishers.

- Kommuru, T.R., Gurley, B., Khan, M.A. and Reddy, I.K., 2001. Self-emulsifying drug delivery systems of coenzyme Q₁₀. International Journal of <u>Pharmaceutics</u> 212(2): 233-246.
- Konan, Y.N., Gurny, R. and Alle'man, E., 2002. Preparation and characterization of sterile and freeze-dried sub-200 nm nanoparticles. <u>International Journal of</u> <u>Pharmaceutics</u> 233: 239-252.
- Koziara, J.M., Lockman, P.R., Allen, D.D. and Mumper, R.J., 2003. In situ bloodbrain barrier transport of nanoparticles. <u>Pharmaceutical Research</u> 20(11): 1772-1778.
- Koziara, J.M., Lockman, P.R., Allen, D.D. and Mumper, R.J., 2004. Paclitaxel NPs for the potential treastment of brain tumor. <u>Journal of Controlled Release</u> 9(2): 259-269.
- Kreilgaard, M., 2002. Influence of microemulsions on cutaneous drug delivery. Advanced Drug Delivery Reviews 54: S77-S98.
- Kreuter, J. 1994. Nanoparticles. In J. Swarbrick and J.C. Boylan (eds.), <u>Encyclopedia</u> of Pharmaceutical Technology vol.10, pp.165-190. Newyork: Marcel Dekker, Inc.
- Kreuter, J., 2001. Nanoparticulate systems for brain delivery of drugs. Advance. <u>Drug</u> <u>Delivery Reveiw</u> 47: 65-81.
- Langsjoen, P.H. and Langsjoen, A.M., 1998. Coenzyme Q₁₀ in cardiovascular disease with emphasis on heart failure and myocardial ischaemia. <u>The Asia Pacific Heart Journal</u> 7(3): 160-168.
- Lawrence, MJ., 2004. Lecture note: emulsion technology. Pharmaceutical Technology (International) program. Chulalongkorn University.
- Lawrence, MJ. and Rees, G.D., 2000. Microemulsion-based media as novel drug delivery systems. Advanced Drug Delivery Reviews 45: 89-121.

- Lim, SJ. and Kim, CK., 2002. Formulation parameters determining the physicochemical characteristics of solid lipid nanoparticles loaded with alltrans retinoic acid. International Journal of Pharmaceutics 243: 135-146.
- Lockman, P.R., Mumper, R.J., Khan, M.A. and Allen, D.D., 2002. Nanoparticles technology for drug delivery across the blood-brain barrier. <u>Drug Development</u> <u>and Industrial Pharmacy</u> 28(1): 1-12.
- Lockman, P.R., Koziara, J., Roder, K.E., Paulson, J., Abbruscato, T.J., Mumper, R.J. and Allen, D.D., 2003. *In Vivo* and *in vitro* assessment of baseline blood-brain barrier parameters in the presence of novel nanoparticles. <u>Pharmaceutical</u> <u>Research</u> 20(5): 705-713.
- Lupo, M.P., 2001. Antioxidants and vitamin in cosmetics. <u>Clinics in Dermatology</u> 19: 467-473.
- Mei, Z., Chen, H., Weng, T., Yang, Y. and Yang, X., 2003. Solid lipid nanoparticle and microemulsion for topical delivery of triptolide. <u>European Journal of</u> <u>Pharmaceutics and Biopharmaceutics</u> 56: 189–196.
- Mehnert, W. and M\u00e4der, K., 2001. Solid lipid nanoparticles: production, characterization and applications. <u>Advanced Drug Delivery Reviews</u> 47: 165– 196.
- Müller-Goymann, C.C., 2004. Physicochemical characterization of colloidal drug delivery systems such as reverse micelles, vesicles, liquid crystals and nanoparticles for topical administration. <u>European Journal of Pharmaceutics</u> <u>and Biopharmaceutics</u> 58(2): 345-356.
- Müller, R.H., Mäder, K. and Gohla, S., 2000. Solid lipid nanoparticles (SLN) for controlled drug delivery- a review of the state of the art. <u>European Journal of</u> <u>Pharmaceutics and Biopharmaceutics</u> 50: 161–177.
- Müller, R.H., Radtke, M. and Wissing, S.A., 2002. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. <u>Advanced Drug Delivery Reviews</u> 54: S131–S155.

- Narain, N.R., Li, J., Woan, K.V., Russell, K.J., Ochoa, M.S., Persaud, I., Fenjves, E.S. and Hsia, S.L., 2004. Coenzyme Q₁₀ induces apoptosis in human melanoma cells. Journal of Investigative Dermatology 122(3): A160.
- Narain, N.R., Li, J., He, J., Russell, K.J., Woan, K.V., Persaud, I. and Hsia, S.L., 2004. Topical formulation of Coenzyme₁₀ inhibit the growth of melanoma tumors. <u>Journal of Investigative Dermatology</u> 122(3): A160.
- Nazzal S., Guven N., Reddy I.K. and Khan, M.A., 2002. Preparation and characterization of Coenzyme Q₁₀-Eudragit[®] solid dispersion. <u>Drug</u> <u>Development and Industrial Pharmacy</u> 28(1): 49-57.
- Oyewumi, M.O. and Mumper, R.J., 2002. Gadolinium-loaded nanoparticles engineered from microemulsion templates. <u>Drug Development and Industrial</u> <u>Pharmacy</u> 28(3): 317-328.
- Oyewumi, M.O. and Mumper, R.J., 2003. Influence of formulation parameters on gadolinium entrapment and tumor cell uptake using folate-coated nanoparticles. <u>International Journal of Pharmaceutics</u> 251: 85-97.
- Park, K.M., Lee, M.K., Hwang, K.J. and Kim, C.K., 1999. Phospholipid-based microemulsions of flurbiprofen by the spontaneous emulsification process. <u>International Journal of Pharmaceutics</u> 183: 145-154.
- Portakal, O., Özaka, Ö., Inal, M.E., Bozan, B., Kosan, M. and Sayek, I., 2000. Coenzyme Q₁₀ concentrations and antioxidant status in tissues of breast cancer patients. <u>Clinical Biochemistry</u> 33(4): 279-284.
- Protocol of nanosep[®] centrifugal devices, Pall life science, USA.
- Rungsimakarn, S., 2001. <u>Development of Coenzyme Q₁₀ Formulation</u>. Master's thesis. Department of Pharmaceutics, Graduate School, Mahidol University.
- Schroeder, U., Sommerfeld, P., Ulrich, S. and Sabel, B. A., 1998. Nanoparticle technology for delivery of drugs across the blood-brain barrier. Journal of <u>Pharmaceutical Science</u> 87: 1305-1307.
- Shah, V., Elkins, J. and Williams, R., 1999. Role of *in vitro* release measurement in semisolid dosage forms. In R.L., Bronaugh and H.I. Maibach (eds), <u>Drug and</u>

the pharmaceutical science: Percutaneous absorption, pp555-569. New York: Marcel Dekker, Inc.

- Sjöström, B. and Bergenståhl, B., 1992. Preparation of submicron drug particles in lecithin-stabilized o/w emulsions. I. Model studies of the precipitation of cholesteryl acetate. International Journal of Pharmaceutics 88: 53-62.
- The United States Pharmacopeia Convention, Inc, 2004. The United States Pharmacopeia 27/The National Formulary 22: USP 27/NF22. Philadelphia: National Publishing.
- Tran, M.T., Mitchell T.M., Kennedy D.T. and Giles J.T., 2001. Role of coenzyme Q₁₀ in chronic heart failure, angina and hypertension. <u>Pharmacotherapy</u> 21(7): 797-805.
- Ugazio, E., Cavalli, R. and Gasco, M.R., 2002. Incorporation of cyclosporine A in solid lipid nanoparticles (SLN). <u>International Journal of Pharmaceutics</u> 241: 341-344.
- Wade, A. and Weller, P.J., 1994. Handbook of Pharmaceutical excipients.2nd edition. pp. 125-126, 469-473, 479-483. London: The Pharmaceutical Press.
- Wissing, S.A., Kayser, O. and Müller, R.H., 2004 a. Solid lipid nanoparticles for parenteral drug delivery. <u>Advanced Drug Delivery Reviews</u> 56: 1257-1272.
- Wissing, S.A., Lippacher, A. and Müller, R.H., 2001 b. Investigation on the occlusive properties of solid lipid nanoparticles (SLN). Journal of Cosmetic Science 52: 313-324.
- Wissing, S.A. and Müller, R.H., 2002. Solid lipid nanoparticles as carrier for sunscreens: *in vitro* release and *in vivo* skin penetration. Journal of Controlled <u>Release</u> 81: 225–233.
- Wissing, S.A. and Müller, R.H., 2002. Cosmetic application for solid lipid nanoparticles (SLN). International Journal of Pharmaceutics 200: 65-68.

- Wong, L.P., Gilligan, C.A. and Po, A.L.W., 1992. Preparation and characterization of sustained-release ibuprofen-cetostearyl alcohol spheres. <u>International Journal</u> <u>of Pharmaceutics</u> 83: 95-114.
- Yalcin A., Kilinc E., Sagcan A. and Kultursay, H., 2004. Coenzyme Q₁₀ concentrations in coronary artery disease. <u>Clinical Biochemistry</u> 37: 706-709.
- Yang, S., Zhu, J., Lu, Y., Liang, B. and Yang, C., 1999. Body distribution of camptothecin solid lipid nanoparticles after oral administration. <u>Pharmaceutical Research</u> 16: 751-757.
- Zhang, Q., Yie, G., Li, Y., Yang, Q. and Nagai, T., 2000. Studies on the cyclosporin A loaded stearic acid nanoparticles. <u>International Journal of Pharmaceutics</u> 200: 153-159.
- Zimmermann, E., Müller, R.H. and Mäder, K., 2000. Influence of different parameters on reconstitution of lyophilized SLN. International Journal of <u>Pharmaceutics</u> 196: 211-213.

APPENDICES

APPENDIX A

14.1

The data of chemical substance used in formulation

The properties of surfactants used are as follows (Wade and Weller, 1994)

Chemical name:	Polyoxyethylene (2) stearyl ether
Molecular formula:	$C_{22}H_{46}O_3$
Molecular weight:	359
HLB:	4.9
Melting point:	43 °C
Specific gravity:	1.09
Solubility:	Soluble in ethanol. Dispersible in cottonseed oil
	Insoluble in mineral oil, propylene glycol and water
Appearance:	White waxy solid
Functional category:	Non-ionic surfactant, emulsifying agent, solubilizing agent and
	wetting agent

2. Brij[®] 78

Chemical name:	Polyoxyethylene (20) stearyl ether
Molecular formula:	$C_{58}H_{118}O_{21}$
Molecular weight:	1151.56
HLB:	15.3
Melting point:	38 °C
Specific gravity:	1.09
Solubility:	Soluble in ethanol and water. Dispersible in cottonseed oil
	Insoluble in mineral oil, propylene glycol
Appearance:	White waxy solid
Functional category:	Non-ionic surfactant, emulsifying agent, solubilizing agent and
	wetting agent

Structural formula:

о́^ Н 2 20 2 0. ς. γ 26 | 0,

3. Cetostearyl alcohol (Laurex[®])

Chemical name:	Cetostearyl alcohol								
Definition:	A mixture of solid aliphatic alcohols. It contains not less than								
40% of stearyl alcohol ($C_{18}H_{38}O$; MW 270.5) and									
	the contents of cetyl alcohol ($C_{16}H_{34}O$; MW 242.4) and of								
	stearyl alcohol is not less than 90.0%								
HLB:	13-14								
Melting point:	48-53 °C								
Density:	0.4 g/cm^3								
Solubility:	Soluble in ethanol (95%), ether and oil								
	Practically insoluble in water								
Appearance:	White flakes or granules. On heating, it melts to a clear,								
	colorless liquid free of suspended matter.								
Functional category:	Emollient, emulsifying agent, viscosity-increasing agent								

4. Cetomacrogol 1000 (Cresmer[®] 1000)

	Chemical name:	Polyoxyethylene glycol 1000
•	Molecular formula:	CH ₃ (CH ₂) $_{m}$ (OCH ₂ CH ₂) $_{n}$ OH where m = 15-17 and n = 20-24
	Molecular weight:	1125-1326
	HLB:	15.8
	Melting point:	38 °C
	Specific gravity:	0.949
	Refractive index:	1.448-1.452
	Solubility:	Soluble in water, toluene and ethanol upon warming
	Appearance:	White waxy solid at room temperature
	Functional category:	Non-ionic surfactant, emulsifying agent, solubilizing agent and
		wetting agent

5. Polysorbate 20 (Tween[®] 20)

Chemical name:	Polyoxyethylene (20) sorbitan monolaurate								
Molecular formula:	C ₅₈ H ₁₁₄ O ₂₆								
Molecular weight:	1128								
HLB:	16.7								
Relative density:	1.1								
Solubility:	Miscible with ethanol, water, ethyl acetate and methanol								
	Insoluble in mineral oil and vegetable oil								
Appearance:	Yellow oily liquid at 25°C								
Functional category:	Non-ionic surfactant, emulsifying agent, solubilizing agent,								
	wetting agent and dispersing/suspending agent								

Structural formula:

10 A. A.

НО[СН2СН2О], Г':--НСН[ОСН2СН2], ОН CH2[OCH2CH2],OCO[CH2]10CH3 [OCH2CH2],OH w + x + y + z = 20

6. Polysorbate 60 (Tween[®] 60)

Chemical name:	Polyoxyethylene (20) sorbitan monostearate
Molecular formula:	$C_{64}H_{126}O_{26}$
Molecular Weight:	1312
HLB:	14.9
Relative density:	1.08
Solubility:	Miscible with ethanol, water, ethyl acetate and methanol
	Practically insoluble in fatty oils and in liquid paraffin
Appearance:	Yellow gelatinous mass at 25°C
Functional category:	Non-ionic surfactant, emulsifying agent, solubilizing agent,
	wetting agent and dispersing/suspending agent

Structural formula:

CH2[OCH2CH2]2OCO[CH2]16CH3 [OCH2CH2],OH w + x + y + z = 20

7. Polysorbate 80 (Tween[®] 80)

Chemical name:	Polyoxyethylene (20) sorbitan monooleate								
Molecular formula:	$C_{64}H_{124}O_{26}$								
Molecular Weight:	1310								
HLB:	15.0								
Relative density:	1.1								
Solubility:	Miscible with water, alcohol, dehydrate alcohol, ethylacetate,								
	and methyl alcohol								
	Pratically insoluble in liquid paraffin and fixed oils								
Appearance:	Yellowish or brownish-yellow oily liquid with a faint								
	characteristic odor,								
Functional category:	Non-ionic surfactant, emulsifying agent, solubilizing agent,								
	wetting agent and dispersing/suspending agent								
Structural formula									
	$HO[CH_2CH_2D]_{*}O + CH_2[OCH_2CH_2]_{*}OH + CH_2[OCH_2CH_2]_{*}OCO[CH_2]_{*}O + CH_2[OCH_2CH_2]_{*}OCO[CH_2]_{*}OCO[CH_2]_{*}O + CH_2[OCH_2CH_2]_{*}OCO[CH_2]_$								

| [OCH2CH2],OH

w + x + y + z = 20

OCH2CH2, OCO(CH2)7

H

APPENDIX B

The details of microemulsion formation and appearance of nanoparticles and Coenzyme Q_{10} – loaded nanoparticles.

All of formulations were prepared to the final volume of 2 mL. The appearance of the samples was recored as seen in Tables B1-B9 and the following symbols were used.

ME = microemulsion; C = clear; ST = slightly turbid; T = turbid; M = milky; P = precipitation or formulation unstable; PY = pale yellow color; YY = yellow color; SY= strong yellow color; N = microemulsion not formed at 60 ± 2 °C; Y = microemulsion formed at 60 ± 2 °C. *mL = milliliter of 100 mM stock solution of 100 mM Brij[®] 78 or 10% Tween[®] 80.

D	Brij® 78			Water		ME	Appearance			
KX	mM	*mL	%w/w	mL	%w/w	formation	10 min	24 hours	l week	
Al	0	0	0	1.996	99.8	N	М	М	Р	
A2	1	0.02	1	1.976	98.8	N	М	М	М	
A3	2	0.04	2	1.956	97.8	N	Т	М	М	
A4	3	0.06	3	1.936	96.8	N	Т	Т	М	
A5	4	0.08	4	1.916	95.8	N	Т	Т	М	
A6	5	0.10	5	1.896	94.8	N	Т	Т	М	
A7	6	0.12	6	1.876	93.8	N	ST	М	М	
A8	7	0.14	7	1.856	92.8	N	ST	М	М	
A9	8	0.16	8	1.836	91.8	N	ST	М	Р	
A10	9	0.18	9	1.816	90.8	N	ST	Р	Р	
A11	10	0.2	10	1.796	89.8	Y	ST	Р	Р	
A12	11	0.22	11	1.776	88.8	Y	ST	Р	Р	
A13	12	0.24	12	1.756	87.8	Y	ST	Р	Р	
A14	13	0.26	13	1.736	86.8	Y	ST	Р	Р	
A15	14	0.28	14	1.716	85.8	Y	ST	Р	Р	
A16	15	0.3	15	1.696	84.8	Y	ST	Р	Р	

Table B1The appearance of formulations consisting of 2 mg/mL wax (4:1cetostearyl alcohol:Tween[®] 20 and different concentrations of Brij[®] 78.

	Brij [®] 78			Water		ME	Appearance		
	mM	*mL	%w/w	mL	%w/w	formation	10 min	24 hours	1 week
A17	0	0	0	1.996	99.8	N	М	М	Р
A18	1	0.02	1	1.976	98.8	N	Т	Т	М
A19	2	0.04	2	1.956	97.8	N	Т	Т	М
A20	3	0.06	3	1.936	96.8	N	ST	Т	М
A21	4	0.08	4	1.916	95.8	N	ST	Т	М
A22	5	0.10	5	1.896	94.8	N	ST	Т	М
A23	6	0.12	6	1.876	93.8	N	ST	T	М
A24	7	0.14	7	1.856	92.8	N	ST	М	Р
A25	8	0.16	8	1.836	91.8	N	ST	М	Р
A26	9	0.18	9	1.816	90.8	Y	ST	Р	Р
A27	10	0.20	10	1.796	89.8	Y	ST	Р	Р
A28	11	0.22	11	1.776	88.8	Y	ST	Р	Р
A29	12	0.24	12	1.756	87.8	Y	ST	Р	Р
A30	13	0.26	13	1.736	86.8	Y	ST	Р	Р
A31	14	0.28	14	1.716	85.8	Y	ST	Р	Р
A32	15	0.30	15	1.696	84.8	Y	ST	Р	Р

Table B2 The appearance of formulations consisting of 2 mg/mL wax (4:1cetostearyl alcohol: Tween[®] 60 and different concentrations of Brij[®] 78.

1.4

	Brij [®] 78			Water		ME	Appearance			
KX	mM	*mL	%w/w	mL	%w/w	formation	10 min	24 hours	l week	
A33	0	0	0	1.996	99.8	N	М	М	Р	
A34	1 ି	0.02	1	1.976	98.8	N	М	М	М	
A35	2	0.04	2	1.956	97.8	N	Т	Т	М	
A36	3	0.06	3	1.936	96.8	N	Т	Т	М	
A37	4	0.08	4	1.916	95.8	N	Т	Т	М	
A38	5	0.10	5	1.896	94.8	N	ST	Т	М	
A39	6	0.12	6	1.876	93.8	N	ST	М	Р	
A40	7	0.14	7	1.856	92.8	N	ST	М	Р	
A41	8	0.16	8	1.836	91.8	N	ST	М	Р	
A42	9	0.18	9	1.816	90.8	Y	ST	Р	Р	
A43	10	0.20	10	1.796	89.8	Y	ST	Р	Р	
A44	11	0.22	11	1.776	88.8	Y	ST	Р	Р	
A45	12	0.24	12	1.756	87.8	Y	ST	Р	Р	
A46	13	0.26	13	1.736	86.8	Y	ST	Р	Р	
A47	14	0.28	14	1.716	85.8	Y	ST	Р	Р	
A48	15	0.30	15	1.696	84.8	Y	ST	Р	Р	

1. . .

D	Brij [®] 78			Water		ME	Appearance			
KX	mM	*mL	%w/w	mL	%w/w	formation	10 min	24 hours	l week	
A49	0	0	0	1.996	99.8	N	М	М	Р	
A50	1	0.02	1	1.976	98.8	N	Т	Т	М	
A51	2	0.04	2	1.956	97.8	N	Т	Т	М	
A52	3	0.06	3	1.936	96.8	N	Т	Т	М	
A53	4	0.08	4	1.916	95.8	N	Т	Т	М	
A54	5	0.10	5	1.896	94.8	N	ST	Т	М	
A55	6	0.12	6	1.876	93.8	Y	ST	ST	Р	
A56	7	0.14	7	1.856	92.8	Y	ST	ST	Р	
A57	8	0.16	8	1.836	91.8	Y	ST	ST	Р	
A58	9	0.18	9	1.816	90.8	Y	ST	ST	Р	
A59	10	0.20	10	1.796	89.8	Y	ST	Т	Р	
A60	11	0.22	11	1.776	88.8	Y	ST	Т	Р	
A61	12	0.24	12	1.756	87.8	Y	ST	Т	Р	
A62	13	0.26	13	1.736	86.8	Y	ST	Р	Р	
A63	14	0.28	14	1.716	85.8	Y	ST	Р	Р	
A64	15	0.30	15	1.696	84.8	Y	ST	Р	Р	

Table B4The appearance of formulations consisting of 2 mg/mL Brij 72[®] and
different concentrations of Brij[®] 78.

	Tw en [®] 80			Water		ME	Appearance			
Rx	mM	*mL	%w/w	mL	%w/w	formation	10 min	24 hours	l week	
B1	0	0	0	1.996	99.80	N	М	М	Р	
B2	2	0.052	2.62	1.944	97.18	N	ST	Т	Т	
B3	4	0.105	5.24	1.891	94.56	N	ST	ST	ST	
B4	6	0.157	7.86	1.839	91.94	N	ST	ST	ST	
B5	8	0.210	10.48	1.786	89.32	N	ST	ST	ST	
B6	10	0.262	13.10	1.734	86.70	N	ST	ST	ST	
B7	12	0.314	15.72	1.682	84.08	N	ST	ST	ST	
B8	14	0.367	18.34	1.629	81.46	N	ST	ST	ST	
B9	16	0.419	20.96	1.577	78.84	N	ST	ST	ST	
B10	18	0.472	23.58	1.524	76.22	N	ST	ST	ST	
B11	20	0.524	26.20	1.472	73.60	N	ST	ST	ST	
B12	22	0.577	28.82	1.420	70.98	N	ST	ST	ST	
B13	24	0.629	31.44	1.367	68.36	N	С	ST	ST	
B14	26	0.681	34.06	1.315	65.74	N	С	ST	ST	
B15	27	0.707	35.37	1.289	64.43	N	С	ST	ST	
B16	28	0.734	36.68	1.262	63.12	Y	C	ST	Т	
B17	29	0.760	37.99	1.236	61.81	Y	C	Т	Т	
B18	30	0.786	39.30	1.210	60.50	Y	С	Т	Т	

Table B5The appearance of formulations consisting of 2 mg/mL wax (4:1
cetostearyl alcohol: Tween[®] 20) and different concentrations of Tween[®] 80.

		T een®	80	Wa	iter	ME		Appearance	;
Rx	mM	*mL	%w/w	mL	%w/w	formation	10 min	24 hours	l week
B19	0	0	0	1.996	99.80	N	М	М	Р
B20	2	0	0	1.996	99.80	N	ST	Т	Т
B21	4	0.052	2.62	1.944	97.18	N	ST	ST	ST
B22	6	0.105	5.24	1.891	94.56	N	ST	ST	ST
B23	8	0.157	7.86	1.839	91.94	N	ST	ST	ST
B24	10	0.210	10.48	1.786	89.32	N	ST	ST	ST
B25	12	0.262	13.10	1.734	86.70	N	ST	ST	ST
B26	14	0.314	15.72	1.682	84.08	N	ST	ST	ST
B27	16	0.367	18.34	1.629	81.46	N	ST	ST	ST
B28	18	0.419	20.96	1.577	78.84	N	ST	ST	ST
B29	20	0.472	23.58	1.524	76.22	N	ST	ST	ST
B30	22	0.524	26.20	1.472	73.60	N	ST	ST	ST
B31	24	0.577	28.82	1.420	70.98	N	С	ST	ST
B32	25	0.655	32.75	1.341	67.05	N	С	ST	ST
B33	26	0.681	34.06	1.315	65.74	N	С	ST	ST
B34	27	0.707	35.37	1.289	64.43	Y	С	ST	ST
B35	28	0.734	36.68	1.262	63.12	Y	С	ST	ST
B36	29	0.760	37.99	1.236	61.81	Y	С	ST	ST
B37	30	0.786	39.30	1.210	60.50	Y	C	ST	ST

Table B6 The appearance of formulations consisting of 2 mg/mL wax (4:1cetostearyl alcohol: Tween[®] 60) and different concentrations of Tween[®] 80.

Table B7 The appearance of formulations consisting of 2 mg/mL wax (4:1cetostearyl alcohol: cetomacrogol) and different concentrations ofTween[®] 80.

Det		Tween®	80	Wa	ater	ME		Appearance	
KX	mM	*mL	%w/w	mL	%w/w	Iormation	10 min	24 hours	1 week
B38	0	0	0	1.996	99.80	N	М	М	Р
B39	2	0.052	2.62	1.944	97.18	N	ST	Т	Т
B40	4	0.105	5.24	1.891	94.56	N	ST	ST	ST
B41	6	0.157	7.86	1.839	91.94	N	ST	ST	ST
B42	8	0.210	10.48	1.786	89.32	N	ST	ST	ST
B43	10	0.262	13.10	1.734	86.70	N	ST	ST	ST
B44	12	0.314	15.72	1.682	84.08	N	ST	ST	ST
B45	14	0.367	18.34	1.629	81.46	N	ST	ST	ST
B46	16	0.419	20.96	1.577	78.84	N	ST	ST	ST
B47	18	0.472	23.58	1.524	76.22	N	ST	ST	ST
B48	20	0.524	26.20	1.472	73.60	N	ST	ST	ST
B49	22	0.577	28.82	1.420	70.98	N	С	ST	ST
B50	23	0.603	30.13	1.393	69.67	N	С	ST	ST
B51	24	0.629	31.44	1.367	68.36	N	С	ST	ST
B52	25	0.655	32.75	1.341	67.05	Y	С	ST	ST
B53	26	0.6812	34.06	1.315	65.74	Y	С	ST	ST
B54	27	0.707	35.37	1.289	64.43	Y	С	ST	ST
B55	28	0.734	36.68	1.262	63.12	Y	С	ST	ST
B56	30	0.786	39.30	1.210	60.5	Y	С	ST	Т

P		Tween®	80	wa wa	ater	ME		Appearance	
Rx	mM	*mL	%w/w	mL	%w/w	formation	10 min	24 hours	1 week
B57	0	0	0	1.996	99.80	N	М	М	Р
B58	2	0.052	2.62	1.944	97.18	N	ST	ST	Т
B59	4	0.105	5.24	1.891	94.56	N	ST	ST	Т
B60	6	0.1572	7.86	1.839	91.94	N	ST	ST	ST
B61	8	0.210	10.48	1.786	89.32	N	ST	ST	ST
B62	10	0.262	13.10	1.734	86.70	N	ST	ST	ST
B63	12	0.314	15.72	1.682	84.08	N	ST	ST	ST
B64	14	0.367	18.34	1.629	81.46	N	ST	ST	ST
B65	16	0.419	20.96	1.577	78.84	N	C	ST	ST
B66	17	0.445	22.27	1.551	77.53	N	C	ST	ST
B67	18	0.472	23.58	1.524	76.22	N	C	ST	ST
B68	19	0.498	24.89	1.498	74.91	Y	C	ST	ST
B69	20	0.524	26.20	1.472	73.60	Y	C	ST	ST
B70	21	0.550	27.51	1.446	72.29	Y	C	ST	ST
B71	22	0.576	28.82	1.420	70.98	Y	C	ST	ST
B73	24	0.629	31.44	1.367	68.36	Y	C	ST	ST
B75	26	0.681	34.06	1.315	65.74	Y	C	ST	ST
B77	28	0.734	36.68	1.262	63.12	Y	C	Т	Т
B78	30	0.786	39.30	1.210	60.50	Y	С	Т	Т

Table B8The appearance of formulations consisting of 2 mg/mL Brij[®] 72 and
different concentrations of Tween[®] 80.

Rx	wax	Co- Q ₁₀	20% T	ween [®] 80	Water	ME formation	Appea	rance
	(%w/w)	(%w/w)	mM	%w/w	(%w/w)	(at 60 ± 2°C)	10 min	24 hours
C11	0.2	0.1	20	13.10	86.60	N	ST, PY	ST, PY
C12	0.2	0.1	24	15.72	83.98	Y	C, PY	ST, PY
C13	0.2	0.1	30	19.65	80.05	Y	C, PY	C, PY
C14	0.2	0.1	35	22.93	76.78	Y	C, PY	C, PY
C15	0.2	0.1	40	26.20	73.50	Y	C, PY	C, PY
C16	0.2	0.1	45	29.48	70.26	Y	C, PY	C, PY
C17	0.2	0.1	50	32.75	66.95	Y	C, PY	C, PY
C18	0.2	0.1	60	39.30	60.40	Y	C, PY	C, PY
C21	0.2	0.2	20	13.10	86.50	N	ST, PY	ST, PY
C22	0.2	0.2	24	15.72	83.88	Y	C, PY	ST, PY
C23	0.2	0.2	30	19.65	79.95	Y	ST, PY	ST, PY
C24	0.2	0.2	35	22.93	76.68	Y	C, PY	ST, PY
C25	0.2	0.2	40	26.20	73.40	Y	C, PY	ST, PY
C26	0.2	0.2	45	29.48	70.13	Y	C, PY	C, PY
C27	0.2	0.2	50	32.75	66.85	Y	C, PY	C, PY
C28	0.2	0.2	60	39.30	60.30	Y	C, PY	C, PY
C32	0.2	0.3	24	15.72	83.78	N	C, YY	ST, YY
C42	0.2	0.4	24	15.72	83.68	N	ST, SY	ST, SY
D11	0.4	0.1	35	22.93	76.58	N	ST,PY	ST,PY
D12	0.4	0.1	40	26.20	73.30	N	ST,PY	ST,PY
D13	0.4	0.1	45	29.48	70.03	N	ST,PY	ST,PY
D14	0.4	0.1	48	31.44	68.06	Y	ST,PY	ST,PY
D15	0.4	0.1	50	32.75	66.75	Y	С,РҮ	ST,PY
D16	0.4	0.1	55	36.03	63.48	Y	C,PY	ST,PY

Table B9 The appearance of Coenzyme Q_{10} -loaded nanoparticles formulation.

Table B9 (Continued)

Rx	wax	Co- Q ₁₀	20% T	ween [®] 80	Water	ME formation	Appearance	
	(%w/w)	(%w/w)	'nМ	%w/w	(%w/w)	(at 60 ± 2°C)	10 min	24 hours
D17	0.4	0.1	60	39.30	60.20	Y	C,PY	ST,PY
D18	0.4	0.1	70	45.85	53.65	Y	C,PY	ST,PY
D21	0.4	0.2	35	22.93	76.48	N	ST,YY	ST,YY
D22	0.4	0.2	40	26.20	73.20	N	ST,YY	ST,YY
D23	0.4	0.2	45	29.48	69.93	N	ST,YY	ST,YY
D24	0.4	0.2	48	31.44	67.96	Y	ST,YY	ST,YY
D25	0.4	0.2	50	32.75	66.65	Y	C,YY	ST,YY
D26	0.4	0.2	55	36.03	63.38	Y	C,YY	ST,YY
D27	0.4	0.2	60	39.30	60.10	Y	C,YY	ST,YY
D28	0.4	0.2	70	45.85	53.55	Y	C,YY	ST,YY
D34	0.4	0.3	48	31.44	67.86	Y	ST, YY	ST, YY
D44	0.4	0.4	48	31.44	67.76	Y	ST, SY	ST, SY
E11	0.6	0.1	35	22.93	76.38	N	T,PY	T,PY
E12	0.6	0.1	40	26.20	73.10	N	ST,PY	T,PY
E13	0.6	0.1	45	29.48	69.83	N	ST,PY	T,PY
E14	0.6	0.1	50	32.75	66.55	N	C,PY	T,PY
E15	0.6	0.1	60	39.30	60.00	N	C,PY	T,PY
E16	0.6	0.1	72	47.16	52.14	Y	C,PY	ST,PY
E17	0.6	0.1	80	52.40	46.90	Y	C,PY	ST,PY
E18	0.6	0.1	90	58.95	40.35	Y	C,PY	ST,PY
E21	0.6	0.2	35	22.93	76.28	N	T,YY	T,YY
E22	0.6	0.2	40	26.20	73.00	N	T,YY	T,YY

Table B9 (continued)

Rx	wax	Co- Q ₁₀	20% T	ween [®] 80	Water	ME formation	Appea	rance
	(%w/w)	(%w/w)	mNi	%w/w	(%w/w)	at 60 ± 2°C	10 min	24 hours
E23	0.6	0.2	45	29.48	69.73	N	T,YY	T,YY
E24	0.6	0.2	50	32.75	66.45	N	ST,YY	ST,YY
E25	0.6	0.2	60	39.30	59.90	N	C,YY	ST,YY
E26	0.6	0.2	72	47.16	52.04	Y	C,YY	ST,YY
E27	0.6	0.2	80	52.40	46.80	N	C,YY	ST,YY
E28	0.6	0.2	90	58.95	40.25	N	C,YY	ST,YY
E36	0.6	0.3	72	47.16	51.94	Y	ST, YY	ST, YY
E46	0.6	0.4	72	47.16	51.84	Y	ST, SY	ST, SY

APPENDIX C

The data and graph of particle size and size distribution of nanoparticles and Coenzyme Q_{10} –loaded nanoparticles

The data of nanoparticle sizes (average diameter or z-average) and size distribution (Polydispersity Index; PI) were reported as mean \pm SD (n=3). The data are in Tables C1-C6 and Figure C1.

Table C1 Average diameter (z-average) and polydispersity index (PI) of drug-free nanoparticles prepared by simple cooling method using Brij[®] 78 as a surfactant determined at 4 hours and 24 hours.

D	Time		Z-a	verage (r	າມມ)			PI	
КХ	(hrs)	1	2	3	Mean ± SD	1	2	3	Mean ± SD
	4	94.60	92.0	91.60	92.73 ± 1.63	0.193	0.192	0.200	0.318 ± 0.004
A9	24	861.90	341.30	454.60	552.60 ± 273.79	1	1	1	1
	4	56.50	53.70	54.10	54.77 ± 1.51	0.307	0.338	0.310	0.318 ± 0.020
AII	24	1682.40	2097.10	1008.00	1595.83 ± 549.69	1	1	1]
A 13	4	55.80	54.30	54.90	55.00 ± 0.75	0.387	0.350	0.304	0.347 ± 0.040
	24	663.00	1622.60	835.10	1040.23 ± 511.63	1	l	1	1
	4	106.40	102.20	102.30	103.63 ± 2.40	0.255	0.227	0.237	0.240 ± 0.010
A24	24	365.20	336.70	286.80	329.57 ± 39.68	1	1	1	l
	4	72.40	73.60	71.10	72.37 ± 1.25	0.360	0.355	0.340	0.35 ± 0.010
A26	24	743.40	325.90	345.30	471.53 ± 235.64	1	0.955	0.903	0.95 ± 0.450
4.26	4	60.90	68.80	63.80	64.50 ± 3.40	0.410	0.434	0.379	0.408 ± 0.028
A20	24	837.40	605.00	409.30	617.23 ± 214.31	1	1	1	1

Table C1 (Continued)

Pv	Time		Z-av	verage (n	m)	РІ				
KX.	(hrs)	1	2	3	Mean ± SD	1	2	3	Mean ± SD	
A 40	4	93.10	91.50	91.90	92.17 ± 0.83	0.168	0.175	0.158	0.167 ± 0.010	
A40	24	119.20	121.10	121.80	120.70 ± 1.35	0.256	0.342	0.333	0.310 ± 0.050	
A 42	4	60.50	59.40	58.60	59.50 ± 0.95	0.307	0.240	0.228	0.258 ± 0.040	
A42	24	149.10	119.20	161.80	143.37 ± 21.87	0.633	0.531	0.572	0.579 ± 0.050	
	4	51.90	52.80	50.10	51.60 ± 1.37	0.298	0.253	0.217	0.256 ± 0.041	
A44	24	175.70	167.20	151.40	164.77 ± 12.33	0.663	0.589	0.754	0.669 ± 0.083	
A 53	4	468.10	488.30	446.20	467.53 ± 21.06	0.378	0.366	0.380	0.375 ± 0.008	
AJJ	24	592.80	578.40	595.00	588.73 ± 9.016	0.471	0.501	0.486	0.486 ± 0.015	
A 55	4	550.50	545.50	549.80	548.60 ± 2.71	0.399	0.382	0.367	0.383 ± 0.017	
	24	609.00	621.10	582.40	604.17 ± 19.80	0.522	0.554	0.469	0.515 ± 0.043	
A57	4	416.50	410.20	402.30	409.67 ± 7.12	0.262	0.200	0.187	0.211 ± 0.040	
	24	489.00	472.40	465.70	475.70 ± 12.0	0.356	0.363	0.352	0.357 ± 0.006	

Table C2Average diameter (z-average) and polydispersity index (PI) of drug-freenanoparticles prepared by simple cooling method using Tween[®]80 as asurfactant determined at 4 hours and 24 hours.

	Time		Z-a	verage (n	m)	PI				
KX	(hrs)	1	2	3	Mean ± SD	1	2	3	Mean ± SD	
B14	4	178.60	170.40	165.10	171.37 ± 6.80	0.429	0.457	0.476	0.454 ± 0.024	
	24	200.90	180.40	172.40	184.57 ± 14.70	0.366	0.416	0.437	0.406 ± 0.036	
B16	4	255.60	223.60	213.30	230.83 ± 2.06	0.389	0.449	0.479	0.439 ± 0.046	
	24	242.90	231.00	216.40	230.10 ± 13.27	0.405	0.430	0.440	0.425 ± 0.018	
B18	4	988.50	1067.60	957.80	1004.60 ± 56.65	0.607	0.568	0.578	0.584 ± 0.020	
	24	1602.20	1723.20	1614.40	1646.60 ± 66.62	0.881	1	1	0.96 ± 0.069	
B32	4	108.30	100.80	96.90	102.00 ± 5.79	0.378	0.448	0.434	0.42 ± 0.037	
	24	109.90	97.70	98.10	101.90 ± 6.93	0.366	0.414	0.399	0.393 ± 0.026	
B34	4	135.60	117.30	111.90	121.60 ± 12.42	0.364	0.457	0.487	0.436 ± 0.064	
	24	135.70	122.20	115.80	124.57 ± 10.16	0.369	0.412	0.435	0.405 ± 0.034	
B36	4	220.60	195.30	184.60	200.17 ± 18.49	0.412	0.491	0.505	0.469 ± 0.050	
	24	213.30	197.90	186.40	199.20 ± 13.50	0.441	0.437	0.484	0.424 ± 0.026	

Table C2 (Continued)

D	Time		Z-av	verage (nr	n)	PI				
Kx	Thic	1	2	3	Mean ± SD	1	2	3	Mean ± SD	
	4 hrs	79.00	72.40	70.40	73.93 ± 4.50	0.358	0.408	0.412	0.393 ± 0.030	
B50	24 hrs	88.20	82.00	80.80	83.67 ± 3.97	0.357	0.393	0.386	0.362 ± 0.019	
230	48 hrs	124.00	116.30	112.80	117.70 ± 5.73	0.386	0.388	0.429	0.401 ± 0.020	
	l wk	125.60	122.00	119.20	122.27 ± 3.20	0.385	0.394	0.419	0.399 ± 0.018	
B52	4 hrs	89.40	79.50	76.80	81.90 ± 6.63	0.373	0.425	0.420	0.406 ± 0.029	
	24 hrs	97.40	86.50	84.20	89.37 ± 7.05	0.340	0.397	0.406	0.381 ± 0.036	
	48 hrs	109.90	105.60	102.90	106.13 ± 3.53	0.439	0.464	0.458	0.454 ± 0.013	
	l wk	120.40	111.90	110.50	114.27 ± 5.36	0.399	0.450	0.466	0.438 ± 0.035	
	4 hrs	76.60	71.30	68.90	72.3 ± 3.93	0.356	0.375	0.393	0.375 ± 0.019	
B54	24 hrs	90.70	83.00	81.80	85.20 ± 4.83	0.319	0.351	0.343	0.338 ± 0.017	
	48 hrs	111.50	98.20	92.50	100.73 ± 9.75	0.369	0.429	0.452	0.417 ± 0.043	
	l wk	118.00	114.10	112.70	114.93 ± 2.75	0.370	0.401	0.392	0.388 ± 0.016	

Table C2 (Continued)

Rx	Time		Z-av	verage (ni	m)	PI			
	(hrs)	1	2	3	Mean ± SD	1	2	3	Mean ± SD
B66	4	76.60	71.60	71.30	73.20 ± 2.98	0.335	0.365	0.347	0.349 ± 0.015
Duo	24	102.00	96.60	77.80	92.10 ± 12.70	0.303	0.339	0.533	0.392 ± 0.124
B68	4	79.30	69.90	67.70	72.30 ± 6.16	0.400	0.409	0.425	0.411 ± 0.012
200	24	106.80	96.30	94.30	99.10 ± 6.71	0.386	0.425	0.423	0.412 ± 0.022
B70	4	134.60	125.30	119.30	126.40 ± 7.71	0.458	0.472	0.499	0.476 ± 0.021
	24	160.20	141.80	137.20	146.40 ± 12.17	0.438	0.459	0.484	0.460 ± 0.023

.

Table C3 Average diameter (z-average) and polydispersity index (PI) of drug-free nanoparticles prepared by rapid cooling method using Tween[®]80 as a surfactant.

	Time		Z-av	erage (nn	n)	PI				
Rx	1 mile	1	2	3	Mean ± SD	1	2	3	Mean ± SD	
	4 hrs	59.40	54.40	53.50	55.77 ± 3.18	0.455	0.496	0.499	0.483 ± 0.025	
B50	24 hrs	77.40	73.50	72.90	74.60 ± 2.44	0.421	0.440	0.429	0.430 ± 0.010	
	48 hrs	87.80	78.70	75.60	80.70 ± 6.34	0.377	0.432	0.445	0.418 ± 0.036	
	1 wk	98.20	90.40	86.50	91.70 ±5.96	0.356	0.399	0.418	0.391 ± 0.032	
	4 hrs	55.10	52.00	51.60	52.90 ± 1.92	0.550	0.550	0.564	0.555 ± 0.008	
B52	24 hrs	93.00	92.80	91.60	92.47 ± 0.76	0.499	0.485	0.380	0.455 ± 0.065	
	48 hrs	102.20	95.50	94.00	97.23 ± 4.37	0.359	0.389	0.404	0.384 ± 0.023	
	l wk	113.20	107.20	102.80	107.73 ± 5.22	0.367	0.396	0.415	0.393 ± 0.024	
	4 hrs	20.90	23.30	19.40	21.20 ± 1.97	0.448	0.416	0.409	0.424 ± 0.021	
B54	24 hrs	51.50	47.50	42.30	47.10 ± 4.61	0.500	0.517	0.522	0.513 ± 0.012	
	48 hrs	70.10	59.50	56.40	62.00 ± 7.18	0.449	0.515	0.537	0.500 ± 0.046	
	1 wk	104.70	91.30	94.50	96.83 ± 7.00	0.446	0.502	0.419	0.456 ± 0.042	

Table C4Average diameter (z-average) and polydispersity index (PI) of CoenzymeQ10-loaded nanoparticles prepared by rapid cooling method determined at24 hours.

		Z-	average ((nm)			PI		
Rx	1	2	3	Mean ± SD	1	2	3	Mean ± SD	
C11	73.90	71.20	67.60	70.90 ± 3.16	0.460	0.490	0.495	0.482 ± 0.019	
C12	65.30	62.70	61.50	63.17 ± 1.94	0.491	0.506	0.507	0.501 ± 0.009	
C13	35.30	30.60	29.00	31.63 ± 3.27	0.556	0.544	0.544	0.548 ± 0.007	
C14	55.90	48.30	44.30	49.50 ± 5.89	0.568	0.570	0.568	0.569 ± 0.001	
C15	55.10	40.30	30.90	42.10 ± 12.20	0.622	0.631	0.612	0.622 ± 0.010	
C16	53.50	37.70	27.60	39.60 ± 13.05	0.614	0.629	0.587	0.610 ± 0.021	
C17	40.40	29.40	24.60	31.47 ± 8.10	0.623	0.604	0.520	0.582 ± 0.055	
C18	35.50	26.60	22.40	28.17 ± 6.69	0.623	0.574	0.546	0.581 ± 0.039	
C21	93.80	90.70	88.80	91.10 ± 2.52	0.455	0.473	0.481	0.470 ± 0.013	
C22	64.10	55.50	51.40	57.00 ± 6.48	0.549	0.552	0.556	0.552 ± 0.004	
C23	49.40	42.90	38.90	43.73 ± 5.30	0.537	0.538	0.527	0.534 ± 0.006	
C24	77.10	63.50	60.50	67.03 ± 8.85	0.489	0.524	0.522	0.512 ± 0.020	
C25	53.70	39.10	32.50	41.77 ± 10.85	0.605	0.595	0.584	0.595 ± 0.011	
C26	51.00	35.50	26.10	37.53 ± 12.57	0.627	0.624	0.579	0.610 ± 0.027	
C27	52.70	35.20	25.60	37.83 ± 13.74	0.619	0.601	0.577	0.599 ± 0.021	
C28	41.10	28.40	38.10	35.87 ± 6.64	0.629	0.596	0.340	0.522 ± 0.158	
C32	50.80	44.80	41.10	45.57 ± 4.90	0.590	0.584	0.573	0.582 ± 0.009	
C42	89.00	83.50	79.70	84.07 ± 4.68	0.672	0.668	0.661	0.667 ± 0.005	

Table C4 (Continued)

		Z-a	average (r	nm)	PI			
Rx	1	2	3	Mean ± SD	-ortogra	2	3	Mean ± SD
DII	113.20	107.50	105.00	108.57 ± 4.20	0.312	0.320	0.320	0.317 ± 0.005
D12	102.30	96.60	94.70	97.87 ± 3.96	0.382	0.399	0.422	0.401 ± 0.020
D13	112.40	98.20	92.20	100.93 ± 10.37	0.353	0.382	0.416	0.384 ± 0.032
D14	94.80	88.90	86.50	90.07 ± 4.27	0.364	0.377	0.381	0.374 ± 0.009
D15	90.80	79.10	78.80	82.90 ± 6.84	0.336	0.410	0.425	0.390 ± 0.048
D16	83.70	80.99	77.30	80.60 ± 3.20	0.391	0.381	0.400	0.391 ± 0.009
D17	68.40	60.80	57.10	62.10 ± 5.76	0.479	0.516	0.542	0.512 ± 0.032
D18	76.00	68.20	64.80	69.67 ± 5.74	0.543	0.557	0.563	0.554 ± 0.010
D21	107.10	100.30	99.20	102.20 ± 4.28	0.336	0.358	0.347	0.347 ± 0.011
D22	127.30	118.70	118.70	121.57 ± 4.97	0.415	0.419	0.423	0.419 ± 0.004
D23	86.20	75.80	73.20	78.40 ± 6.88	0.423	0.473	0.481	0.459 ± 0.031
D24	91.60	85.70	83.00	86.77 ± 4.40	0.460	0.471	0.474	0.469 ± 0.007
D25	85.20	75.00	71.20	77.13 ± 7.24	0.424	0.470	0.478	0.457 ± 0.029
D26	73.80	67.00	64.40	68.40 ± 4.85	0.533	0.559	0.557	0.550 ± 0.015
D27	70.50	60.70	57.00	62.73 ± 6.98	0.488	0.541	0.555	0.528 ± 0.035
D28	69.30	59.20	54.00	60.83 ± 7.78	0.604	0.602	0.596	0.601 ± 0.004
D34	91.80	84.40	80.90	85.70 ± 5.57	0.469	0.501	0.504	0.491 ± 0.020
D44	96.80	84.40	77.80	86.33 ± 9.65	0,496	0.516	0.533	0.515 ± 0.018

Table C4 (Continued)

Rx		Z-a	verage (ni	m)	PI			
	1	2	3	Mean ± SD	1	2	3	Mean ± SD
E11	124.40	117.50	116.30	119.40 ± 4.37	0.323	0.327	0.321	0.323 ± 0.003
E12	105.90	99.30	98.50	101.23 ± 4.06	0.229	0.251	0.248	0.243 ± 0.012
E13	112.90	106.00	104.80	107.90 ± 4.37	0.252	0.269	0.27	0.262 ± 0.009
E14	125.10	117.70	113.40	118.73 ± 5.92	0.314	0.338	0.347	0.333 ± 0.017
E15	129.90	120.10	117.90	122.73 ± 6.39	0.283	0.307	0.311	0.300 ± 0.015
E16	128.30	126.90	123.10	126.10 ± 2.69	0.490	0.477	0.483	0.483 ± 0.006
E17	94.00	89.70	87.20	90.30 ± 3.44	0.417	0.452	0.456	0.442 ± 0.021
E18	104.10	91.80	86.30	94.07 ± 9.11	0.491	0.515	0.523	0.510 ± 0.017
E21	116.40	110.40	107.40	111.40 ± 4.58	0.274	0.275	0.282	0.277 ± 0.004
E22	121.50	112.00	109.80	114.43 ± 6.22	0.282	0.312	0.329	0.308 ± 0.024
E23	125.20	119.00	118.40	120.87 ± 3.76	0.305	0.327	0.326	0.319 ± 0.013
E24	117.40	109.10	107.50	111.33 ± 5.31	0.298	0.330	0.339	0.322 ± 0.021
E25	113.70	106.20	104.40	108.10 ± 4.93	0.356	0.387	0.392	0.378 ± 0.019
E26	95.90	89.20	85.40	90.17 ± 5.32	0.462	0.474	0.501	0.479 ± 0.020
E27	95.40	88.40	85.30	89.70 ± 5.17	0.450	0.469	0.477	0.465 ± 0.014
E28	103.50	95.30	89.10	95.97 ± 7.22	0.468	0.479	0.500	0.483 ± 0.016
E36	92.40	87.60	86.30	88.77 ± 3.21	0.474	0.504	0.514	0.497 ± 0.020
E46	126.5	116.00	113.70	118.73 ± 6.82	0.435	0.462	0.467	0.455 ± 0.017

Rx	Time	Z-average (nm)			РІ				
		1	2	3	Mean ± SD	1	2	3	Mean ± SD
	24 hrs	108.30	95.30	90.10	97.90 ± 9.37	0.388	0.411	0.429	0.409 ± 0.020
D24	l wk	106.40	94.90	93.40	98.23 ± 7.11	0.406	0.437	0.428	0.424 ± 0.016
	4 wks	102.10	98.30	95.50	98.63 ± 3.31	0.431	0.423	0.438	0.431 ± 0.008
	8 wks	102.80	95.80	92.70	97.10 ± 5.17	0.433	0.443	0.458	0.444 ± 0.013
	24 hrs	96.80	84.40	77.80	86.33 ± 9.65	0.496	0.516	0.533	0.515 ± 0.018
D44	1 wk	103.30	89.90	82.40	91.87 ± 10.59	0.513	0.532	0.527	0.524 ± 0.010
2	4 wks	95.80	86.30	82.00	88.03 ± 7.06	0.517	0.523	0.524	0.522 ± 0.004
	8 wks	100.00	90.10	84.20	91.43 ± 7.98	0.509	0.531	0.526	0.522 ± 0.012

Table C5 The stability data of Average diameter (z-average) and polydispersity index(PI) of Coenzyme Q10-loaded nanoparticles (rapid cooling method).

Table C6 Average diameter (z-average) and polydispersity index (PI) of freeze-driedCoenzyme Q10- loaded nanoparticles (Rx D24 and D44), determined after1-week at 25°C.

Rx	Manitol		Z-av	verage (1	ım)	PI			
	(%)	1	2	3	Mean ± SD	1	2	3	Mean ± SD
D24	1	85.2	83.2	83.9	84.10 ± 1.06	0.061	0.580	0.573	0.587 ± 0.018
	2	87.6	84.4	85.9	85.97 ± 1.60	0.611	0.602	0.586	0.600 ± 0.013
	4	93.3	90.0	92.0	91.77 ± 1.66	0.527	0.516	0.483	0.508 ± 0.023
	1	81.0	79.5	79.6	80.03 ± 0.84	0.552	0.551	0.565	0.556 ± 0.008
D44	2	74.0	73.2	72.2	73.13 ± 0.90	0.523	0.513	0.519	0.518 ± 0.005
	4	84.3	84.1	82.9	83.77 ± 0.76	0.480	0.461	0.460	0.467 ± 0.012

(a)

Figure C1 Particle size distribution of Coenzyme Q₁₀- loaded nanoparticles, a) Rx D24, b) Rx D44, determined at 24 hours after preparation.

APPENDIX E

Statistical analysis data using SPSS program

Table E1The statistical analysis of concentration of Brij[®] 78 and nanoparticle sizeusing cetostearyl alcohol and Tween[®] 20 as core material.

Particle size								
	Sum of Squares	df	Mean Square	F	Sig.			
Between Groups	6096274.423	5	1219254.885	11.450	.000			
Within Groups	1277774.907	12	106481.242					
Total	7374049.329	17						

Tukey	HSD

		Subset for alpha = .05				
Brij 78 concentration	N	1	2	3		
10 mM 4 hours	3	54.7667				
12 mM 4 hours	3	55.0000				
8 mM 4 hours	3	92.7333				
8 mM 24 hours	3	552.6000	552.6000			
12 mM 24 hours	3		1040.2333	1040.2333		
10 mM 24 hours	3			1595.8333		
Sig.		.463	.484	.355		

Table E2 The statistical analysis of concentration of Brij[®] 78 and nanoparticle sizeusing cetostearyl alcohol and Tween[®] 60 as core material.

One way ANOVA

Particle size								
	Sum of Squares	df	Mean Square	F	Sig.			
Between Groups	820351.723	5	164070.345	9.552	.001			
Within Groups	206110.853	12	17175.904					
Total	1026462.576	17						

Tukey HSD							
		Subset for alpha = .05					
Brij 78 concentration	N	1	2				
11 mM 4 hours	3	64.5000					
9 mM 4 hours	3	72.3667					
7 mM 4 hours	3	103.6333					
7 mM 24 hours	3	329.5667	329.5667				
9 mM 24 hours	3		471.5333				
11 mM 24 hours	3		617.2333				
Sig.		.205	.149				

Tukey HSD

Table E3 The statistical analysis of concentration of Brij[®] 78 and nanoparticle sizeusing cetostearyl alcohol and cetomacrogol as core material.

Particle size									
Sum of Squares df Mean Square F Sig.									
Between Groups	31128.945	5	6225.789	58.761	.000				
Within Groups	1271.420	12	105.952						
Total	32400.365	17							

		Subset for alpha = $.05$					
Brij 78 concentration	N	1	2	3	4		
11 mM 4 hours	3	51.6000					
9 mM 4 hours	3	59.5000					
7 mM 4 hours	3		92.1667				
7 mM 24 hours	3			120.7000			
9 mM 24 hours	3			143.3667	143.3667		
11 mM 24 hours	3				164.7667		
Sig.		.928	1.000	.147	.185		

Table E4	The statistical analysis of concentration of Brij® 78 and nanoparticle size
	using Brij [®] 72 as core material.

One way ANOVA

Particle size						
	Sum of Squares	df	Mean Square	F	Sig.	
Between Groups	88217.153	5	17643.431	94.652	.000	
Within Groups	2236.847	12	186.404			
Total	90454.000	17				

Tukey HSD						
			Subset for	alpha = .05		
Brij 78 concentration	N	1	2	3	4	
8 mM 4 hours	3	409.6667				
4 mM 4 hours	3		467.5333			
8 mM 24 hours	3		475.7000			
6 mM 4 hours	3			548.6000		
4 mM 24 hours	3				588.7333	
6 mM 24 hours	3				604.1667	
Sig.		1.000	.974	1.000	.735	

148

Tukey	HSD
IUNCY	1150

Table E5 The statistical analysis of concentration of Tween[®] 80 and nanoparticlesize using cetostearyl alcohol and Tween[®] 20 as core material.

Particle size						
	Sum of Squares	df	Mean Square	F	Sig.	
Between Groups	5656864.558	5	1131372.912	791.891	.000	
Within Groups	17144.367	12	1428.697			
Total	5674008.925	17		:		

Tukey HSD						
		Sub	set for alpha =	= .05		
Tween 80 concentration	N	1	2	3		
26 mM 4 hours	3	171.3667				
26 mM 24 hours	3	184.5667				
28 mM 24 hours	3	230.1000				
28 mM 4 hours	3	230.8333				
30 mM 4 hours	3		1004.6333			
30 mM 24 hours	3			1646.6000		
Sig.		.432	1.000	1.000		

Table E6 The statistical analysis of concentration of Tween[®] 80 and nanoparticlesize using cetostearyl alcohol and Tween[®] 60 as core material.

One way ANOVA

Particle size					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	31746.583	5	6349.317	44.142	.000
Within Groups	1726.073	12	143.839		
Total	33472.656	17			

Tukey HSD					
		Subset for	alpha = .05		
Tween 80 concentration	N	1	2		
25 mM 24 hours	3	101.9000			
25 mM 4 hours	3	102.0000			
27 mM 4 hours	3	121.6000			
27 mM 24 hours	3	124.5667			
29 mM 24 hours	3		199.2000		
29 mM 4 hours	3		200.1667		
Sig.		.260	1.000		

149

Table E7 The statistical analysis of concentration of Tween[®] 80 and nanoparticlesize using cetostearyl alcohol and cetostearyl alcohol as core material.

One way ANOVA

Particle size						
	Sum of Squares	df	Mean Square	F	Sig.	
Between Groups	664.432	5	132.886	4.729	.013	
Within Groups	337.213	12	28.101			
Total	1001.645	17				

Tukey HSD					
		Subset for	alpha = .05		
Tween 80 concentration	N	1	2		
27 mM 4 hours	3	72.2667			
23 mM 4 hours	3	73.9333			
25 mM 4 hours	3	81.9000	81.9000		
23 mM 24 hours	3	83.6667	83.6667		
27 mM 24 hours	3	85.1667	85.1667		
25 mM 24 hours	3		89.3667		
Sig.		.093	.542		

Table E8 The statistical analysis of concentration of Tween[®] 80 and nanoparticlesize using Brij[®] 72 as core material.

One way ANOVA

Particle size						
	Sum of Squares	df	Mean Square	F	Sig.	
Between Groups	13154.178	5	2630.836	34.253	.000	
Within Groups	921.660	12	76.805			
Total	14075.838	17				

Tukey HSD					
		Sub	set for alpha =	= .05	
Tween 80 concentration	N	1	2	3	
19 mM 4 hours	3	72.3000			
17 mM 4 hours	3	73.1667			
17 mM 24 hours	3	92.1333	92.1333		
19 mM 24 hours	3		99.1333		
21 mM 4 hours	3			126.4000	
21 mM 24 hours	3	,		146.4000	
Sig.		.131	.916	.126	

150

Table E9 The statistical analysis of cooling method and nanoparticle size (Rx B50).

Particle size								
	Sum of Squares	df	Mean Square	F	Sig.			
Between Groups	10670.372	7	1524.339	71.346	.000			
Within Groups	341.847	16	21.365					
Total	11012.218	23						

			Tukey HSD			
Cooling method				Subset for	alpha = .05	
Cooming method	N		1	2	3	4
rapid cooling 4 hours	3		55.7667			
simple cooling 4 hours	3			73.9333		
rapid cooling 24 hours	3			74.6000		
rapid cooling 48 hours	3			80.7000	80.7000	
simple cooling 24 hours	3			83.6667	83.6667	
rapid cooling 1 week	3				91.7000	
simple cooling 48 hours	3					117.7000
simple cooling 1 week		3				122.2667
Sig.			1.000	.232	.134	.917

Table E10 The statistical analysis of cooling method and nanoparticle size (Rx B52).

One way ANOVA

Particle size							
	Sum of						
	Squares	df	Mean Square	F	Sig.		
Between Groups	7811.860	7	1115.980	48.139	.000		
Within Groups	370.920	16	23.183				
Total	8182.780	23					

Cooling method		Subset for alpha = .05						
Cooling method	N	1	2	3	4	5		
rapid cooling 4 hours	3	52.9000						
simple cooling 4 hours	3		81.9000					
simple cooling 24 hours	3		89.3667	89.3667				
rapid cooling 24 hours	3		92.4667	92.4667				
rapid cooling 48 hours	3			97.2333	97.2333			
simple cooling 48 hours	3				106.1333	106.1333		
rapid cooling 1 week	3				107.7333	107.7333		
simple cooling 1 week	3					114.2667		
Sig.		1.000	.196	.510	.201	.471		

Tukey HSD

Table E11 The statistical analysis of cooling method and nanoparticle size (Rx B54).

Particle size							
	Sum of Squares	df	Mean Square	F	Sig.		
Between Groups	20058.736	7	2865.534	85.759	.000		
Within Groups	534.373	16	33.398				
Total	20593.110	23					

			Tukey HS	D			
Cooling method	N	Subset for alpha = .05					
		1	2	3	4	5	6
rapid cooling 4 hours	3	21.2000					
rapid cooling 24 hours	3		47.1000				
rapid cooling 48 hours	3		62.0000	62.0000			
simple cooling 4 hours	3			72.2667	72.2667		
simple cooling 24 hours	3				85.1667	85.1667	
rapid cooling 1 week	3					96.8333	
simple cooling 48 hours	3					100.7333	100.7333
simple cooling 1 week	3						114.9333
Sig.		1.000	.087	.413	.182	.068	.114

Table E12The statistical analysis of Tween[®] 80 concentration and CoenzymeQ10-
loaded nanoparticle size (1 mg/mL of CoenzymeQ10).

One way ANOVA

Particle size								
	Sum of Squares	df	Mean Square	F	Sig.			
Between Groups	5107.007	7	729.572	11.940	.000			
Within Groups	977.627	16	61.102					
Total	6084.633	23						

Tukey H	ISD
---------	-----

		Subset for alpha = .05			
Tween 80 concentration	N	1	2	3	
60 mM	3	28.1667			
50 mM	3	31.4667			
30 mM	3	31.6333			
45 mM	3	39.6000			
40 mM	3	42.1000	42.1000		
35 mM	3	49.5000	49.5000	49.5000	
24 mM	3		63.1667	63.1667	
20 mM	3			70.9000	
Sig.		.062	.067	.061	

152

Table E13The statistical analysis of Tween[®] 80 concentration and CoenzymeQ10-
loaded nanoparticle size (2 mg/mL of CoenzymeQ10).

One way ANOVA

Particle size								
	Sum of Squares	df	Mean Square	F	Sig.			
Between Groups	7862.993	7	1123.285	13.546	.000			
Within Groups	1326.760	16	82.923					
Total	9189.753	23						

		Sub	set for alpha =	= .05
Tween 80 concentration	N	1	2	3
60 mM	3	35.8667		
45 mM	3	37.5333		
50 mM	3	37.8333		
40 mM	3	41.7667	41.7667	
30 mM	3	43.7333	43.7333	
24 mM	3	57.0000	57.0000	
35 mM	3		67.0333	67.0333
20 mM	3			91.1000
Sig.		.152	.056	.076

Table E14The statistical analysis of wax concentration and $CoenzymeQ_{10}$ -
loaded nanoparticle size prepared from 60 mM of Tween 80 and 1
mg/mL of CoenzymeQ_{10}.

One way ANOVA

Particle size								
	Sum of Squares	df	Mean Square	F	Sig.			
Between Groups	13739.707	2	6869.853	173.559	.000			
Within Groups	237.493	6	39.582					
Total	13977.200	8						

Tukey HSD				
		Subset for alpha = .05		
wax concentration	N	1	2	3
2 mg/mL	3	28.1667		
4 mg/mL	3		62.1000	
6 mg/mL	3			122.6333
Sig.		1.000	1.000	1.000

153

Table E15The statistical analysis of wax concentration and CoenzymeQ10-loaded nanoparticle size prepared from 60 mM of Tween 80 and 2mg/mL of CoenzymeQ10.

One way ANOVA

Particle size					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	7997.607	2	3998.803	102.484	.000
Within Groups	234.113	6	39.019		
Total	8231.720	8			

Tukev	HSD
IUNCY	1100

		Subset for $alpha = .05$		
wax concentration	N	1	2	3
2 mg/mL	3	35.8667		
4 mg/mL	3		62.7333	
6 mg/mL	3			108.1000
Sig.		1.000	1.000	1.000

Table E16The statistical analysis of CoenzymeQ10 concentration and
CoenzymeQ10- loaded nanoparticle size prepared from 24 mM of
Tween[®] 80 and 2 mg/mL of wax.

One way ANOVA

Particle size					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	2356.756	4	589.189	27.247	.000
Within Groups	216.240	10	21.624		
Total	2572.996	14			

Tukey HSD					
		Sub	set for alpha =	.05	
Co Q10 concentration	N	1	2	3	
3 mg/mL	3	45.5667			
2 mg/mL	3	57.0000	57.0000		
no Q10	3		60.5000		
1 mg/mL	3		63.1667		
4 mg/mL	3			84.0667	
Sig.		.077	.516	1.000	

Table E17 The statistical analysis of CoenzymeQ₁₀ concentration and CoenzymeQ₁₀- loaded nanoparticle size prepared from 48 mM of Tween[®] 80 and 4 mg/mL of wax.

One way ANOVA

	Particle size				
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	89.129	4	22.282	.608	.666
Within Groups	366.660	10	36.666		
Total	455.789	14			

Tukey HSD				
		Subset for alpha =		
		.05		
Co Q10 concentration	N	1		
3 mg/mL	3	85.7000		
4 mg/mL	3	86.3333		
2 mg/mL	3	86.7667		
1 mg/mL	3	90.0667		
no Q10	3	92.0000		
Sig.		.712		

Table E18 The statistical analysis of CoenzymeQ₁₀ concentration and CoenzymeQ₁₀- loaded nanoparticle size prepared from 72 mM of Tween[®] 80 and 6 mg/mL of wax.

	Particle size				
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	3376.563	4	844.141	27.419	.000
Within Groups	307.867	10	30.787		
Total	3684.429	14			

Tukey HSD					
		Sub	set for alpha =	05	
Co Q10 concentration	N	1	2	3	
3 mg/mL	3	88.7667			
2 mg/mL	3	90.1667			
no Q10	3		109.7667		
4 mg/mL	3		118.7333	118.7333	
l mg/mL	3			126.1000	
Sig.		.998	.341	.515	

Particle size					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	3.796	2	1.898	.064	.938
Within Groups	176.653	6	29.442		
Total	180.449	8			

Tukey HSD			
		Subset for alpha = .05	
Storage time	N	11	
8 weeks	3	97.1000	
o week	3	98.2333	
4 weeks	3	98.6333	
Sig.		.937	

Table E20The statistical analysis of storage time and Coenzyme Q10-loaded
nanoparticle of Rx D44

One way ANOVA

Particle size					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	40.460	2	20.230	.294	.756
Within Groups	413.320	6	68.887		
Total	453.780	8			

Particle size

Tukey HSD

Storage time	N	Subset for alpha = .05
o week	3	86.3333
4 weeks	3	88.0333
8 weeks	3	91.4333
Sig.		.743

Table E21 The statistical analysis of concentration of mannitol and particle size(RxD24).

One way ANOVA

Particle size					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	96.490	3	32.163	5.006	.030
Within Groups	51.400	8	6.425		
Total	147.890	11			

Tukey HSD					
Mannitol		Subset for alpha = .05			
concentration	N	1	2		
1%	3	84.1000			
2%	3	85.9667	85.9667		
0%	3	86.7667	86.7667		
4%	3		91.7667		
Sig.		.594	.088		

Table E22 The statistical analysis of concentration of mannitol and particle size

(RxD44).

One way ANOVA

Particle size					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	296.350	3	98.783	4.153	.048
Within Groups	190.287	8	23.786		
Total	486.637	11			

Tukey HSD				
Manitol concentration	N	Subset for alpha = .05		
		1	2	
2%	3	73.1333		
1%	3	80.0333	80.0333	
4%	3	83.7667	83.7667	
0%	3		86.3333	
Sig.		.106	.439	

157

VITA

Miss Patcharaporn Manopinives was born on May 12, 1979 in Bangkok, Thailand. She graduated with a Bachelor's Degree in pharmaceutical sciences in 2001, from Faculty of Pharmaceutical Sciences, Chulalongkorn University. She worked at Siriraj hospital as Pharmacist for 3 years, during 2001-2004.

,