REFERANCES

- Alan, B.R., and others. 1990. Molecular characterization of the human macrophage mannose receptor: demonstration of multiple carbohydrate recognition-like domains and phagocytosis of yeasts in Cos-1 cells. <u>The Journal of experimental medicine</u>.172: 1785-1794.
- Amano, F and Noda, T. 1995. Improved detection of nitric oxide radical (NO') production in an activated macrophage culture with a radical scavenger, carboxy PTIO, and Griess reagent. <u>Federation of European Biochemical Societies Letters</u>. 368: 425-428.
- Andrea, T., and others. 2000. Shosaiko-to and other Kampo (Japanese herbal) medicines: A review of their immunomodulatory activities. Journal of Ethnopharmacolo gy. 73: 1–13.
- Auttachoat, w., and others. 2004. Immunomodulation by Dok Din Daeng (*Aeginetia indica* Roxb.) extracts in female B6C3F1 mice (I): Stimulation of T cells. International Immunopharmacology. 4: 1367-1379.
- Azuma, Y. 2001. Histamine inhibits chemotaxis, phagocytosis, superoxide anion production, and the production of TNFalpha and IL-12 by macrophages via H2-receptors. International Immunopharmacolology. 1(9-10):1867-1875.
- Chompoonuch Boonarkart. 2003. <u>Immunostimulation of some Thai medicine plant</u> <u>extracts</u>. Master's Thesis. Department of Biochemistry, Faculty of Pharmaceutical Science, Chulalongkorn University.
- Caruso, A., and others. 1996. Flow cytometric analysis of activation markers on stimulated T cells and their correlation with cell proliferation. <u>Cytometry</u>. 27: 71-76.

- Chen, JM., and others. 1996. Purification and characterization of polysaccharide PP III from *Sterculia lychnophora* Hance. <u>Zhongquo Zhongyao Zazhi</u>. 21: 39-41.
- Christian, B. 2001. Nitric oxide and the immune response. <u>Nature immunology</u>. 2: 907-916.
- Cochet, O., and others. 1998. <u>Immunological techniques made easy</u>. New York: John Wiley & Sons, Inc.
- David, A. F. 2004. Phosphoinositide 3-kinase and its targets in B-cell and T-cell signaling. <u>Current Opinion in Immunology</u>.16: 314–320.
- David, M. U. and Adrian, O., 2002. Phagocytosis of microbe complexity in action. <u>Annual review of immunoloay</u>. 20: 825-852.
- Ferenczi, K., and others. 2000. CD69, HLA-DR and the IL-2R identify persistently activated T cells in psoriasis vulgaris lesional skin: blood and skin comparisons by flow cytometry. Journal of autoimmunity. 14: 63-78.
- Gerlier, D. and Thomasset, N.1986. Use of MTT colorimetric assay to measure cell activation. Journal of immunological methods. 94: 57-63.
- Goldsby, R.A., and others. 2003. Immunology. 5th Edit. New York: W.H. Freeman and Company.
- Gordon, D. B. and Siamon, G. 2001. Immune recognition: A new receptor for b -glucans. Nature. 413: 36 - 37.
- Guo, FC. 2004. Effects of mushroom and herb polysaccharides on cellular and humoral immune responses of *Eimeria tenella*-infected chickens. <u>Poultry Science</u>. 83(7): 1124-1132.

- Guo, Y. 2000. Effects of a pectic polysaccharide from a medicinal herb, the roots of *Bupleurum falcatum* L. on interleukin6 production of murine B cells and B cell lines. <u>Immunopharmacology</u>. 49(3): 307-316.
- Han, S.B., and others. 2003. Toll-like receptor-mediated activation of B cells and macrophages by polysaccharide isolated from cell culture of *Acanthopanax senticosus*. International Immunopharmacology. 3: 1301–1312
- Harry, E.P. and Mary, L.N. 1997. CD69 expression reliably predicts the anti-CD3induced proliferative response of lymphocytes from human immunodeficiency virus type1-infected patients. <u>Clinical and Diagnostic Laboratory Immunology</u>. 4: 217-222.
- Hayman, AR., and others. 1988. Isolate of histamine from the fruits of *Sterculia sacaphigera*. <u>Fitoterapia</u>. 59: 338.
- Hldebert, W.1988. Immunologically active polysaccharides of *Echinacea Purpurea* cell cultures. <u>Phytochemis</u>. 27(I): 119-126.
- Itokawa, H., and others. 1990. Screening test for anti-tumor activity of crude drugs (III): Studies on antitumor activity of Indonesian medicinal plants. <u>Shoyakugaku Zasshi</u>. 44: 58-62.
- Jae, B.P. 2003. Phagocytosis induces superoxide form action and apoptosis in macrophage. <u>Experimental and Molecular medicine</u>. 35: 325-335.
- James, D.F. and John, L.S. 2003. Clinical and laboratory assessment of immunity. Journal allergy clinical immunology. 111: 702-711.
- Jantan, IB., and others. 1996. Inhibitory effect of Malaysian medicinal plants on the platelet-activiting factor (PAF) receptor binding. <u>Natural Product Sciences</u>. 2(2): 86-9.

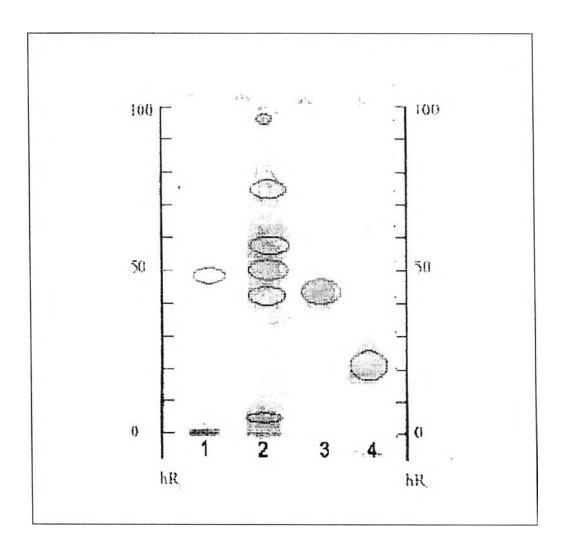
- John, M., and others. 1997. Nitric oxide and macrophage function. <u>Annual Review of</u> <u>Immunology</u>. 15: 323-350.
- Jorge, E.A. and Jonathan, S.R.1998. Role of nitric oxide in metastasis reviews mediation of macrophage cytotoxicity and apoptosis. <u>Cancer and Metastasis</u>.17: 39–53.
- Julian, K.H. 1998. Measuring human T-lymphocyte function. <u>Expert Reviews in Molecular</u> <u>Medicine.1-20</u>.
- Kim, GY. 2003. Proteoglycan isolated from *Phellinus linteus* activates murine B lymphocytes via protein kinase C and protein tyrosine kinase. <u>International Immunopharmacolologv</u>. 3(9): 1281-1292.
- Kun, Y. L. and Young, J.J. 2005. Macrophage activation by polysaccharide isolated from *Astragalus membranaceus*. International Immunopharmacology. 5: 1225–1233.
- Kun, Y. L., and others. 2004. Polysaccharide isolated from *Poria cocos sclerotium* induces NF-nB/Rel activation and iNOS expression through the activation of p38 kinase in murine macrophages. <u>International Immunopharmacology</u>. 4: 1029–1038.
- Linda, D. and Actor J.K. <u>Innate Immunity: Macrophage, T and B cell biology</u>[Online]. Available from: <u>http://medic.med.uth.tmc.edu/edprog/immuntbl.htm</u>. [2005, March 3]
- Manosroi, A., and others. 2003. Immunomodulatory activity of *Clausena excavata* Burm.f.wood extracts. Journal of Ethnopharmacology. 89: 155-160.
- Marzio, R., and others. 1999. CD69 and regulation of the immune function. <u>Immunophar</u> <u>macology and immunotoxicology</u>. 21(3): 565-582.

- Matsumoto, T. 2003. Induction of cell cycle regulatory proteins by murine B cell proliferating pectic polysaccharide from the roots of *Bupleurum falcatum* L. <u>Immunology Letters</u>. 89(2-3): 111-118.
- Nakaya, TA., and others. 2004. *Panax ginseng* induces production of proinflammatory cytokines via toll-like receptor. <u>Journal of interferon & cytokine research : the official</u> journal of the International Society for Interferon and Cytokine Research. 24(2):93-100.
- Paulsen, B. S. 2001. Plant polysaccharides with immunostimulatory activities. <u>Current</u> <u>Organic Chemistry</u>. 5: 939-950.
- Reddy, M., and others. 2004. Comparative analysis of lymphocyte activation marker expression and cytokine secretion profile in stimulated human peripheral blood mononuclear cell cultures: an in vitro model to monitor cellular immune function. Journal of immunological methods. 293: 127-142.
- Rostyslav, S., and others. 2001. In vitro response of phagocytic cells to immunomodulating agents. <u>Medical Science Monitor</u>. 7(4): 652-658.
- Ruth, P. 1999. Cyclic GMP-dependent protein kinases: understanding in vivo functions by gene targeting. <u>Pharmacology & therapeutics</u>. 82: 355-372.
- Sanchez, M.G. and Rosales C. 1998. Signal transduction by immunoglobulin Fc receptors. Journal of Leukocyte Biology. 63(5): 521-533.
- Shao, BM. 2004. A study on the immune receptors for polysaccharides from the roots of Astragalus membranaceus, a Chinese medicinal herb. <u>Biochemical and biophysical</u> <u>research communications</u>. 320(4): 1103-1111.
- Shin, JY. 2002. Immunostimulating effects of acidic polysaccharides extract of Panax ginseng on macrophage function. <u>Immunopharmacol Immunotoxicol</u>. 24(3): 469-482.

- Simm, P.E. and Ellis, T.M. 1996. Utility of flow cytometric detection of CD69 expression as a rapid method for determining poly- and oligoclonal lymphocyte activation. Clinical and Diagnostic Laboratory Immunology. 3(3): 301-304.
- Steven, G. and Sergio, G. 2002. Phagocytosis and innate immunity. <u>Current Opinion in</u> <u>Immunology</u>.14: 136-145.
- Tafalla, C., and others. 2003. Nitric oxide production by carpet shell clam (*Ruditapes decussatus*) hemocytes. <u>Developmental and Comparative Immunology</u>. 27: 197–205.
- Teri, L., and others. 2001. Effects of *Gingo biloba* extract (EGb761) and quercetin on lipopolysacharide-induced release of nitric oxide. <u>Chemical-Biological Interactions</u>. 137: 43-58.
- Thailand Institute of Scientific and Technological Research. 1991. <u>Manual of Pung-ta-lai</u>. Bangkok: Thailand Institute of Sciencetific and Technological Research.
- Thaimedicinalplant. <u>Pung-ta-lay[Online]</u>. Available from: <u>http://thaimedicinalplant.com/popup/Pungtalay.html</u>. [2005, March 3]

The official National Institutes of Health resource for stem cell research. <u>Autoimmune</u> <u>Diseases and the Promise_of Stem Cell-Based_Therapies</u> [Online]. Available from: <u>http://stemcells.nih.gov/info/scireport/chapter6.asp</u>. [2005' July 3]

University of Washington. Phagocytosis. Available from: <u>http://faculty.washington.edu/hepeter/118/photos/non-specific_images.htm</u>. [2005, March 3]


Wanger, H. 1990. Search for plant derived natural products with immunostimulatory activity (recent advances). Pure & Applied Chemistry. 62(7): 1217-1222.

- Weichert, H., and others. 1991. The MTT-assay as a rapid test for cell proliferation and cell killing:application to human peripheral blood lymphocytes (PBL). <u>Allergie und Immunologie.</u> 37: 139-144.
- Xiantang, L., and others. 1997. Effects of 4-ipometanol on bovine alveolar macrophage function. <u>Veterinary Immunology and Immunopathathology</u>. 58: 133-145.
- Yoon YD., and others. 2004. Activation of mitogen-activated protein kinases and AP-1 by polysaccharide isolated from the radix of *Platycodon grandiflorum* in RAW 264.7 cells. International immunopharmacology. 4(12):1477-1487.
- Zane, HD. 2001. <u>Immunology: theoretical & practical concepts in laboratory medicine</u>. Philadelphia: W.B. Saunders Company.
- Zvetkova, E. 2001. Aqueous extracts of *Crinum latifolium* (L.) and *Camellia sinensis* show immunomodulatory properties in human peripheral blood mononuclear cells. <u>International Immunopharmacology</u>. 1: 2143–2150.

APPENDICES

APPENDIX A

<u>Figure A</u> Thin–layer chromatography of carbohydrates (TLC) fingerprint from *Scaphium scarphigerum* fruit extract

Adsorbent: Silica gel 60 F 254 , precoated TLC plates (Merck, Darmstadt)Solvent System: Dichloromethane-Methanol-Water15 : 7 : 1Detection: 0.2% Naphthoresorcinol in butanol and 10% phosphoric acidTrack 1 = S. scaphigerum fruit extract

Track 2 = Hydrolysed S. scaphigerum fruit extract by 2 M Trifluoroacetic acid

Track 3 = D(+) - Glucose

Tractk4 = Lactose

APPENDIX B

EXPERIMENTS RESULTS

<u>Table A</u> Mitogenic activity of PHA on human PBMCs by MTT assay. The results were expressed as the percentage of stimulation over untreated control (mean± S.E.M.), (n=3).

Sample	concentration (µg/ml)	% stimulation
РНА	5	21.84 ± 3.81 *
	10	53.08 ± 8.56 *
	50	102.32 ± 10.61*
	100	85.37 ± 4.30 *

<u>Table B</u> Mitogenic activity of S. scaphogerum fruit extract on PBMCs by MTT assay. The results were expressed as the percentage of stimulation over untreated control (mean \pm S.E.M.), (n=5). * p <0.05 compared with the untreated control.

Sample	concentration (µg/ml)	% stimulation
S.scaphigerum	10	-20.12 ± 4.96
	30	-6.92 ± 4.15
	100	19.89 ± 2.78 *
	300	105.53 ± 7.07 *
	500	169.10 ± 9.25 *
РНА	10	71.42 ± 4.30 *

Sample	concentration (µg/ml)	% stimulation
S.scaphigerum	75	32.34 ± 3.92 *
	150	69.01 ± 5.64 *
	300	145.86 ± 10.78 *
РНА	10	23,687.74 ± 4,690.54 *

<u>Table C</u> The percentage of stimulation of *S. scaphogerum* fruit extract on human PBMCs by tritiated thymidine incorporation assay. The results were expressed as the percentage of stimulation over untreated control (mean \pm S.E.M.), (n=5). * p <0.05 compared with the untreated control.

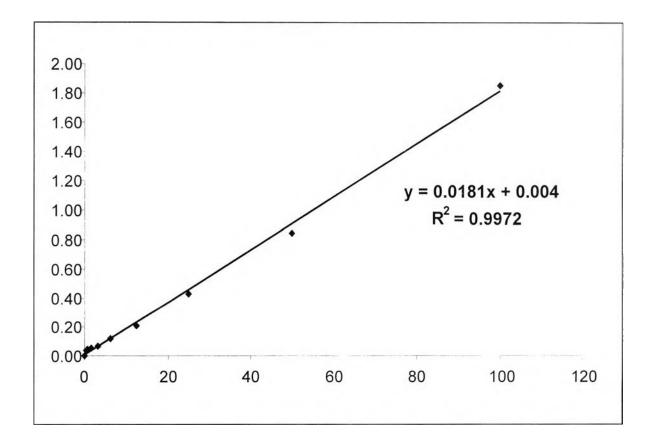
<u>Table D</u> The percentage of stimulation of S. scaphogerum fruit extract on T cells by CD69 detection assay. The results were expressed as the percentage of stimulation over untreated control (mean \pm S.E.M.), (n=5). * p <0.05 compared with the untreated control.

Sample	concentration (µg/ml)	% CD3/CD69 expression
RPMI 1640 medium		0.44 ± 0.14
S.scaphigerum	75	0.66 ± 0.16
	150	0.80 ± 0.17
	300	1.00 ± 0.13
	600	1.45 ± 0.07
РНА	10	25.33 ± 3.91 *

Sample	concentration (µg/ml)	% stimulation
S.scaphigerum	75	8.62 ± 0.16
	150	21.50 ± 3.75 *
	300	33.68 ± 3.13 *
	600	43.87 ± 2.56 *
LPS	5	33.44 ± 1.79 *

<u>Table E</u> Effect of *S scaphogerum* fruit extract on phagocytosis of J774A.1 cells by phagocytosis zymosan assay. The results were expressed as the percentage of stimulation over untreated control (mean \pm S.E.M.), (n=5). * p <0.05 compared with the untreated control.

•


Table F Effect of LPS on nitrict oxide production from J774A.1 cells by Griess reaction (n=2).

Sample	concentration (µg/ml)	NO ₂ (μM)
RPMI 1640 medium		4.76 ± 0.52
LPS	1	8.56 ± 0.78 *
	2.5	9.58 ± 0.82 *
	5	10.60 ± 0.63 *
	10	12.81 ± 1.06 *

Sample	concentration (µg/ml)	NO ₂ (μM)
Negative		6.17 ± 0.19
S.scaphigerum	75	7.47 ± 0.21
	150	8.56 ± 0.25 *
	300	9.60 ± 0.38 *
	600	15.01 ± 0.89 *
LPS	1	12.06 ± 0.25 *

<u>Table G</u> Effect of S. scaphogerum fruit extract on nitrict oxide production release from J774A.1 cells by Griess reaction (n=3).

<u>Figure H</u> Representative of NO_2 standard curve of J774A.1 cells by Griess reaction.

APPENDIX C

Buffers and Reagents

1. RPMI 1640 stock solution 1 liter

RPMI powder	10.4	g
NaHCO ₃	1.5	g
Glucose		
Нере	10	ml
Penicillin/Streptomycin	10	ml
ddH ₂ O	900	ml

Adjust pH to 7.2 with 1M HCI

Add ddH₂O to 1 liter and Sterilized by filtering through a 0.45 membrane filter

- 2. Complete RPMI 1640 medium 20 ml **RPMI** stock 18 ml L-glutamine 200 μl 2 Fetal Bovine Serum ml
- 3. HBSS stock solution 1 liter

HBSS powder	9.25	g
NaHCO ₃	0.35	g
ddH ₂ O	900	ml

Adjust pH to 7.2 with 1M HCl

Add ddH₂O to 1 liter and Sterilized by filtering through a 0.45 membrane filter

μI

4. 2µl/ml Heparin in HBSS 22.5 ml HBSS stock 45 Heparin

5. 10x Phosphate Buffered Saline (PBS) 1 liter

NCI	80	g
KCI	2	g
Na ₂ HPO ₄	9.136	g
NH_2PO_4	2	g
ddH ₂ O	900	ml
Adjust pH to 7.4 with 1M HCI		
Add ddH ₂ O to 1 liter and sterilized by autoclaving		
6. 1x Phosphate Buffered Saline (PBS) 1 liter		
10xPBS	100	ml
ddH ₂ O	900	ml
Sterilized by autoclaving		
7. DMEM stock solution 1 liter		
DMEM powder	10.4	g
NaHCO ₃	1.5	g
Нере	10	ml
ddH ₂ O	900	ml

Adjust pH to 7.2 with 1M HCl

Add ddH₂O to 1 liter and Sterilized by filtering through a 0.45 membrane filter

8. Complete DMEM 150 ml

RPMI stock	135	mi
L-glutamine	1.5	ml
Fetal Bovine Serum	15	ml

Scintillation flui	d
--------------------------------------	---

PPO	1	g
POPOP	0.1	9
Toluene	1	litre

10. Wash buffer

```
PBS with 0.5% BSA and 0.1% \mathrm{NaN_3}
```

11. 1% paraformaldehyde (PFA) in PBS 500 ml

Paraformaldehyde	5	ml
PBS	495	ml

12. NBT 2 mg/ml 10 ml

NBT	20	mg
Ultrapure water	10	ml

13. Zymosan A 4 mg/ml	10 ml		
Zymosan A		40	mg
0.9% NaCI		10	ml

14. NBT – Zymosan A mixure (NBT 600 μg/ml + Zymosan A 800 μg/ml)

PBS	1440	μί
NBT 2 mg/ml	1440	μΙ
DMEM	960	μΙ
Zymosan A 4 mg/ml	960	μΙ

15. 2M KOH

КОН	56.11	g
Add ddH ₂ O to 1 liter		

BIOGRAPHY

NAME

DATE OF BIRTH PLACE OF BIRTH

INSTITUTIONS ATTENDED

Miss Piyarat Sridaranop 3 March 1981 Bangkok, Thailand Thamasat University, 1999 – 2002 Bachelor of Science Chulalongkorn University, 2003 – 2005 Master of Science (Inter-department of Pharmacology)

HOME ADDRESSES

60 Soi Chareonnakorn 25, Chareonakorn Rd., Banglumpoolang, Klongsan, Bangkok 10600 Tel. 02 – 438 -7627

