การหาลักษณะเฉพาะทางโครงสร้างและไตรโบโลยีของฟิล์มบางโครเมียมในไทรค์เตรียม โดยเทคนิครีแอกทีฟดีซีแมกนีตรอนสปัตเทอร์ริง

นางสาวภัททิรา หอมหวล

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาฟิสิกส์ ภาควิชาฟิสิกส์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2548 ISBN 974-14-2007-2 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

I 25193156

STRUCTURAL AND TRIBOLOGICAL CHARACTERIZATION OF Cr_xN THIN FILMS PREPARED BY REACTIVE DC MAGNETRON SPUTTERING TECHNIQUE

.

Miss Pattira Homhoul

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Program in Physics Department of Physics Faculty of Science Chulalongkorn University Academic Year 2005 ISBN 974-14-2007-2

481986

Thesis Title	Structural and tribological characterization of CrxN thin films
	prepared by reactive dc magnetron sputtering technique
Ву	Miss Pattira Homhoul
Field of study	Physics
Thesis Advisor	Assistant Professor Sukkaneste Tungamita, Ph.D.
Thesis Co-advisor	Assistant Professor Kajornyod Yoodee, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

7. Vitidsant Deputy Dean for Administrative Affairs,

Acting Dean, The Faculty of Science

(Associate Professor Tharapong Vitidsant, Ph.D.)

THESIS COMMITTEE

Chu Chul Chairman

(Associate Professor Prapaipan Chantikul, Ph.D.)

(Assistant Professor Sukkaneste Tungamita, Ph.D)

Kajomyod. 106 dee. Thesis Co-advisor

(Assistant Professor Kajornyod Yoodee, Ph.D.)

(Assistant Professor Boonchoat Paosawatyanyong, Ph.D.)

In Member

(Jessada Sukpitak, Ph.D.)

ภัททิรา หอมหวล: การหาลักษณะเฉพาะทางโครงสร้างและไตรโบโลยีของฟิล์มบางโครเมียมใน ไทรด์เตรียมโดยเทคนิครีแอกทีฟดีซีแมกนีตรอนสปัตเทอร์ริง. (STRUCTURAL AND TRIBOLOGICAL CHARACTERIZATION OF Cr_xN THIN FILMS PREPARED BY REACTIVE DC MAGNETRON SPUTTERING TECHNIQUE) อ. ที่ปรึกษา: ผศ.คร.สุกกเณศ ตุงกะสมิต , อ.ที่ปรึกษาร่วม : ผศ.คร.ขจรยศ อยู่ดี, 69 หน้า. ISBN 974-14-2007-2.

ฟิล์มบางโครเมียมในไตรด์เคลือบลงบนซิลิกอนระนาบ(100)โดยเทคนิครีแอกทีฟดีซีแมกนิตรอน สปัตเตอร์ริงที่ความคันย่อยของแก๊สไนโตรเจนและอุณหภูมิในการปลูกฟิล์มต่างกัน ในการหาสภาวะที่ เหมาะสมในการปลูกฟิล์มบางโครเมียมในไตรด์ที่มีองค์ประกอบทางเคมีที่เหมาะสม พบว่าความคันย่อย ของแก๊สไนโตรเจนที่ใช้เตรียมฟิล์มบางโครเมียมไนไตรด์ควรอยู่ในช่วง 40-60% ของความคันแก๊สทั้งหมด จากการเปลี่ยนอุณหภูมิในการปลูกฟิล์มตั้งแต่อุณหภูมิห้อง ถึง 250 องศาเซลเซียส พบว่าการเพิ่มขึ้นของ อุณหภูมิในการปลูกฟิล์มเป็นสาเหตุให้เกิดการพัฒนาของโครเมียมไนไตรด์ระนาบ(200) เพิ่มขึ้น ในขณะที่ โครเมียมในไตรด์ระนาบ (111) เป็นระนาบที่เด่นในทุกช่วงอุณหภูมิของการปลูกฟิล์ม ลักษณะพื้นผิวของ ฟิล์มมีแนวโน้มเรียบมากขึ้นเมื่ออุณหภูมิในการปลูกฟิล์มเพิ่มขึ้น เนื่องจากสภาพเคลื่อนที่ได้ของอะตอมที่ ตกลงบนผิวของสารรองรับเพิ่มขึ้น อุณหภูมิของการปลูกฟิล์มยังส่งผลต่อความแข็งของฟิล์มกล่าวคือ ความ แข็งของฟิล์มมีค่ามากขึ้นเมื่ออุณหภูมิในการเตรียมฟิล์มมากขึ้น และพบว่า ฟิล์มบางโครเมียมไนไตรด์ซึ่ง เกรียมที่ 250 องศาเซลเซียสมีความแข็งสูงสุด ในขณะที่มีความสึกกร่อนด่ำสุด

ภาควิชา <u>ฟิสิกส์</u> สาขาวิชา <u>ฟิสิกส์</u> ปีการศึกษา <u>2548</u>

ถายมือชื่อนิสิต....<u>จังกัฒ</u>นอมน ลายมือชื่ออาจารย์ที่ปรึกษา ลายมือชื่ออาจารย์ที่ปรึกษาร่วม.... 🕬 🕬

##4672360423: MAJOR PHYSICS KEY WORD: CHROMIUM NITRIDE / THIN FILMS / SPUTTERING / HARD COATING

PATTIRA HOMHOUL: STRUCTURAL AND TRIBOLOGICAL CHARACTERIZATION OF Cr_xN THIN FILMS PREPARED BY REACTIVE DC MAGNETRON SPUTTERING TECHNIQUE. THESIS ADVISOR: ASST.PROF. SUKKANESTE TUNGAMITA PH.D., THESIS COADVISOR: ASST. PROF. KAJORNYOD YOODEE PH.D., 69 pp. ISBN 974-14-2007 -2.

Chromium nitride thin films (Cr_xN) have been deposited on Si(100) substrates by reactive dc magnetron sputtering at various nitrogen partial pressures and growth temperatures. For optimized condition of the stoichiometric chromium nitride thin films, the nitrogen partial pressure in the process falls in between 40-60% of the total pressure. The growth temperature is varied from room temperature to 250 °C. Increasing the growth temperature causes the increasing development of CrN(200) while CrN(111) dominates at all growth temperatures. At higher growth temperature, the surface morphology tends to be smoother due to the increasing of adatoms mobility on the substrate surface. The growth temperature also influences the hardness of the films. The hardness of the films increases as the growth temperature increases. The chromium nitride thin film, which was grown at 250 °C, has the highest hardness whereas it has the lowest wear rate.

DepartmentPhysics	Student's signature. fattira Hawhool
Field of study Physics	Advisor's signature. Subaunt Tomputer.
Academic year2005	Co-advisor's signature

Acknowledgements

I would like to express my gratitude to my advisor, Assistant Professor Dr. Sukkaneste Tungamita and Assistant Professor Dr. Kajornyod Yoodee for their kind suggestion and time throughout the length of this work. I am also grateful to Associate Professor Dr. Prapaipan Chantikul, Dr. Jessada Sukpitak and Assistant Professor Dr. Boonchoat Paosawatyanyong for serving as chairman and the committee, respectively. All of who have made valuable comments and help in the production of this thesis.

I would like to thank Dr. Sakuntam Sanorpim for his advice during the period of my graduate studies. Special thank goes to Associate Professor Surasing Chaiyakun and Ajarn Chakapun Thaworntira for their help and in the growth of films at Burapa University. Thank as well go to staffs at the Scientific and Technological Research Equipment Center (STREC) in using analysis instruments, especially Sirawat Saening and Bang-on Wattanaaumpi for helps with Scanning Probe Microscopy.

Some parts of this work is supported by the grant from Ratchadapiseksompoch Program and the Thailand Research Fund (TRF) contract no. RDG4850024

Many thanks to my friends and colleagues especially Jamreonta Parinyataramas, Sinchai Boiriboonsakulsook, Sittichai Anupabudom, Norraphat Srimanobhas, Thidarat Supasai, Siripen Saundon, Apaporn Sakulkalavek, Varalak Saengsuwan and Soontorn Chanyawadee who have helped me in various way with their friendship and encouragement.

Finally, a deep affectionate gratitude is acknowledged to my family for love, understanding, supporting and encouragement throughout my entire study.

Table of Contents

- 4

A	bstra	ct (Thai)	iv
A	bstra	ct (English)	v
A	cknov	wledgements	vi
L	ist of	Tables	ix
L	ist of	Figures	x
С	HAP	TER	
I	Intro	oduction	1
II	The	eoretical Background	3
	2.1	Cr _x N Thin Films	3
	2.2	Concept of Sputtering	7
	2.3	DC Glow Discharge	8
	2.4	Ion – Surface Interactions at the Target	9
	2.5	Magnetron Sputtering Technique	10
	2.6	Reactive Sputtering Process	12
	2.7	Collision Processes of Two Particles	15
	2.8	Film Formation of Sputter Atomic Flux	16
	2.9	Substrate Bias Effects on Surface Mobility	18
	2.10	Key Parameters in Growth Process	19

CHAPTER

III C	haracterizations of Thin Film	23
3.1	X-Ray Diffraction	23
	3.1.1 Peak Broadening	25
3.2	Scanning Tunneling Microscope	26
3.3	Atomic Force Microscope	28
3.4	Scanning Electron Microscopy with Energy Dispersive X-ray Analysis	39
IV F	Results and Discussions	44
4.1	Substrate Preparation.	44
4.2	Cr _x N Thin Film Synthesis	44
4.3	Optimized Condition for Cr _x N Thin Films	45
4.4	Structural Properties of Chromium Nitride Thin Films	47
4.5	Tribological Properties of Chromium Nitride Thin Films	56
V C	onclusions	63
Refer	ences	65
Vitae.	-	69

page

List of Tables

2.1	The influence of the process parameters	19
4.1	Deposition parameters.	46
4.2	Main deposition parameters	47
4.3	The hardness scale on various growth temperatures	57

List of Figures

.

2.1	Schematic of crystal structure	3
2.2	Phase diagram of the Cr-N system with the coatings produced and their	
	corresponding microstructure as observed by XRD	4
2.3	Schematic of a basic DC sputtering deposition system	7
2.4	Relation between the current density and voltage in a DC glow discharge	
	System	8
2.5	Momentum exchange processes at the target	9
2.6	Magnetic configurations in magnetron sputtering	11
2.7	Hysteresis curve during reactive sputtering	14
2.8	Schematic depiction of the binary collision	15
2.9	Formation of a thin film	17
2.10	Effect of bombarding ions on the surface atoms	18
2.11	Characteristics of the 4 basic structural zones in cross-section	22
3.1	Diffraction of X-ray from parallel planes in the crystal followed by	
	Bragg law	24
3.2	Basic features in XRD experiment	24
3.3	Mosaic structure of real crystal	25
3.4	Schematic of the scanning tunneling microscope	26
3.5	Diagram of electron tunneling current	28
3.6	Schematic of the atomic force microscope	29
3.7	Nanoindentation process	30
3.8	AFM force plot of the diamond tip probe on the thin film for nanoindentation	31
3.9	Schematic of cantilever-sample interaction at several points along the	

	force curve	32
3.10	Nanoscratching consists of moving a diamond tip through the sample	34
3.11	AFM force plot of the diamond tip probe on the thin film for nanoscratching	.34
3.12	Diagrams of the AFM cantilever probe	36
3.13	Typical indentation cantilever with dimensions	37
3.14	Cross sectional profile of the scratch using the AFM topographic data	38
3.15	Photon and charged particle emission from an electron-bombarded surface	39
3.16	Schematic showing the excitation volume	40
3.17	Schematic of the processes leading to the emission of characteristic X-ray	41
3.18	Backscattering coefficient dependence on the atomic number	42
4.1	Schematic of reactive magnetron sputtering of chromium nitride thin film	45
4.2	Variation of nitrogen concentration vs. N ₂ partial pressure	46
4.3	Variation of Cr/N ratio for Cr_xN films with various growth temperatures	48
4.4	XRD patterns of six samples in different growth temperature	49
4.5	Variation of texture coefficient versus the growth temperature	50
4.6	Arrangement of top atoms	51
4.7	FWHM as a function of the growth temperature	52
4.8	STM image of Cr _x N film on various growth temperatures	53
4.9	AFM image of Cr _x N film on various growth temperatures	54
4.10	Roughness of the Cr _x N films on various growth temperatures	55
4.11	View of wood pencil with against the film at a 45° angle	56
4.12	Surface morphology of $Cr_x N$ thin film after indentation	58
4.13	Hardness of the Cr _x N films on various growth temperatures	59
4.14	Surface morphology of $Cr_x N$ thin film after scratch	60
4.15	Wear rate of Cr _x N thin films on various growth temperatures	61

4.16	Friction coefficient as a	function of the growth temperature	62
------	---------------------------	------------------------------------	----

а. Э