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A P P E N D IX  A

CALCULATION FOR CATALYST PREPARATION

Calculation for the preparation of cobalt loading catalyst

Preparation of C0 /AI2O3 with different Co loadings (5, 10, 15, and 20 wt%) by 
the incipient wetness impregnation method are shown as follows:

Reagent: - Cobalt (II) nitrate hexahydrate (Co(N0 3 ) 2  - 6 H2O)
Molecular weight = 290.93 g/mol

- Support: - Solvothermal synthesized-alumina support

Calculation:
5% C0 /AI2O3

Based on 100 g of catalyst used, the composition of the catalyst will be as follows: 
Cobalt = 5 g
Alumina = 100-5 = 95 g

For 2 g of alumina
Cobalt required = 2x(5/95) = 0.11 g
Cobalt 0.11 g was prepared from Co(NC>3)2 - 6 H2O and molecular weight of 

Co is 58.93
Co(NC>3)2 - 6 H2O required = MW of Co(NC>3)2 - 6H20  X cobalt required

MW of Co
= (290.93/58.93)x0.11 = 0.54 g

Since the pore volume of the alumina support is 2.0 ml/g, 1.8 ml/g, 1.6 ml/g, 
and 1.3 ml/g for alumina support prepared with AIP 10 g, 15 g, 25 g, and 35 g, 
respectively. Thus, the total volume of impregnation solution which must be used is 4 
ml for alumina support prepared with AIP 10 g, 3.6 ml for alumina support prepared 
with AIP 15 g, 3.2 ml for alumina support prepared with AIP 25 g, and 2.6 ml for 
alumina support prepared with AIP 35 g by the requirement of incipient wetness
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The others cobalt loading (10, 15, and 20 wt%) are calculated in the same 
method with calculation for 5% C0 /AI2O3.

impregnation method, the de-ionized water is added until equal pore volume for
dissolve Cobalt (II) nitrate hexahydrate.

Calculation for the preparation of iron loading catalyst (Based catalyst)

Preparation of l%Cu/2 0 %Fe/Al2O3 by the sequential incipient wetness 
impregnation method is shown as follows:

Reagent: - Iron (III) nitrate nonahydrate (Fe(N03)3 . 9H20)
Molecular weight = 403.99 g/mol

- Copper (II) nitrate trihydrate (Cu(N03)2. 3 H2O)
Molecular weight = 241.60 g/mol

- Support: - Commercial y-alumina support

Calculation:
l%Cu/20%Fe/Al2O3

Based on 100 g of catalyst used, the composition of the catalyst will be as follows: 
Iron = 20 g
Copper = 1 g
Alumina = 100-20-1 = 79 g

For 5 g of alumina
Iron required = 5x(20/79) = 1.27 g
Iron 1.27 g was prepared from Fe(N03)3 . 9 H2O and molecular weight of Fe is

55.847
Fe(N03)3 . 9H20  required = MW of Fe(N03)3 . 9 H2O X  iron required

MW of Fe
= (403.99/55.847)x 1.27 9.19 g
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Copper required = 5x(l/79) = 0.063 g
Copper 0.063 g was prepared from Cu(NC>3)2 . 3 H2O and molecular weight of 

Cu is 63.546
Cu(NC>3)2 . 3H20  required = MW of Cu(N0 3 )2 . 3H20  X  iron required

MW of Cu
= (241.60/63.546)x0.063 = 0.24 g

Since the pore volume of the alumina support is 1.0 ml/g for commercial y- 
alumina support. Thus, the total volume of impregnation solution which must be used 
is 5 ml for commercial y-alumina support by the requirement of incipient wetness 
impregnation method, the de-ionized water is added until equal pore volume for 
dissolve Iron (III) nitrate nonahydrate and Copper (II) nitrate trihydrate.

Calculation for the preparation of Cu-modified alumina iron loading catalyst

Preparation of Cu-modified alumina having 10 wt% of Cu by the incipient 
wetness impregnation method is shown as follows:

Reagent: - Copper (II) nitrate trihydrate (Cu(NÛ3)2 . 3 H2O)
Molecular weight = 241.60 g/mol

- Support: - Commercial y-alumina support

Calculation:
1 0 % C11/AI2O3

Based on 100 g of catalyst used, the composition of the catalyst will be as follows: 
Copper = 10 g
Alumina = 100-10 = 90 g

For 5 g of alumina
Copper required = 5x( 10/90) = 0.55 g
Copper 0.55 g was prepared from Cu(NC>3)2 . 3 H2O and molecular weight of

Cu is 63.546
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MW of Cu
= (241.60/63.546)x0.55 = 2.09 g

Since the pore volume of the alumina support is 1.0 ml/g for commercial y- 
alumina support. Thus, the total volume of impregnation solution which must be used 
is 5 ml for commercial y-alumina support by the requirement of incipient wetness 
impregnation method, the de-ionized water is added until equal pore volume for 
dissolve Copper (II) nitrate trihydrate.

Preparation of Cu-modified alumina iron loading catalysts by the incipient 
wetness impregnation method is shown as follows:

- 1 %Cu-promoted 20%Fe/10%Cu/Al20s

Reagent: - Iron (III) nitrate nonahydrate (Fe(NÛ3)3 . 9H20)
Molecular weight = 403.99 g/mol

- Copper (II) nitrate trihydrate (Cu(NC>3)2 . 3H20)
Molecular weight = 241.60 g/mol

- Support: - 10% Cu/Al2C>3

Cu(N0 3 )2 . 3H20  required =  MW of Cu(NC>3)2 . 3H20  X copper required

Calculation:
1 %Cu/20%Fe/l 0%Cu/A12O3

Based on 100 g of catalyst used, the composition of the catalyst will be as follows: 
Iron = 20 g
Copper = 1 g
10%Cu/A12O3 = 1 0 0 -2 0 - 1  = 79 g

For 5 g of 10%Cu/A12O3
Iron required = 5x(20/79) = 1.27 g
Iron 1.27 g was prepared from Fe(NC>3)3 . 9H20  and molecular weight of Fe is

55.847
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Fe(NC>3)3 . 9 H2O required = MW of Fe(NC>3)3 . 9 H2O X  iron required
MW ofFe

= (403.99/55.847)x 1.27 = 9.19 g

Copper required = 5x(l/79) = 0.063 g
Copper 0.063 g was prepared from Cu(N03)2. 3H20  and molecular weight of 

Cu is 63.546
Cu(N03)2. 3 H2O required = MW of Cu(N03)2. 3 H2O X  iron required

MW of Cu
= (241.60/63.546)x0.063 = 0.24 g

The de-ionized water is added until equal pore volume of 10%Cu/Al2O3 for 
dissolve Iron (III) nitrate nonahydrate and Copper (II) nitrate trihydrate.

-  20%Fe/10%Cu/Al203 (without l%Cu-promoted)

Reagent: - Iron (III) nitrate nonahydrate (Fe(N03)3. 9 H2O)
Molecular weight = 403.99 g/mol

- Support: - 10% CU/AI2O3

Calculation:
20%Fe/10%Cu/Al20 3

Based on 100 g of catalyst used, the composition of the catalyst will be as follows:
Iron = 20 g
10%Cu/A12O3 = 1 0 0 - 2 0  = 80 g

For5goflO%Cu/Al20 3

Iron required = 5x(20/80) = 1.25 g
Iron 1.25 g was prepared from Fe(N03)3 . 9H20  and molecular weight of Fe is

55.847
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Fe(NC>3)3 • 9 H2O required = MW of Fe(N0 3 ) 3 . 9 H2O X  iron required
MW ofFe

= (403.99/55.847)xl.25 = 9.04 g

The de-ionized water is added until equal pore volume of 10%Cu/Al2O3 for 
dissolve Iron (III) nitrate nonahydrate.
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CALCULATION OF BET SURFACE AREA BY THE SINGLE POINT
METHOD

From Brunauer-Emmett-Teller (BET) equation:

APPENDIX B

Where: X = relative partial pressure of N2, P/P0
P0 = saturated vapor pressure of N2 (or adsorbed gas) at the experimental 

temperature
p = equilibrium vapor pressure of N2
V = volume of gas adsorbed at a pressure P; ml at the NTP/ g of sample 
vm = volume of gas adsorbed at monolayer, ml. at the NTP / g of sample 
c = constant

Assume c —» 00, then

X 1 + (C-1)X
VmC

(B.l)
V(l-X) VmC

(B.2)
V(l-X)

Vm V(l-P/Po)

From the gas law,

PbV (B.3)
273

Where: V = constant volume
Pb = pressure at 0 °c 
pt = pressure at t °c 
T = 273.15 + t,K
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Pt = 1 atm and thus, Pb = (273.15 / T)

Partial pressure of Nitrogen:

p [Flow of (He+N2) - Flow of He ] (B.4)
Flow of (He+N2)

= 0.3 atm

N2 saturated vapor pressure, P0 = 1.1 atm

p = p / Po = p / 1.1 = 0.3/1.1 = 0.2727 

How to measure V

V _ ร2 X  1 X 273.15 ml. / g of catalyst (B.5)
ร, พ  T

Where, ร,
ร  2 
พ  
T

= Nitrogen 1 ml/1 atm of room temperature area 
= Desorption of nitrogen area 
= Weight of the sample (g)
= Room temperature (K)

Therefore,

Vm = ร 2 X 1 X  27 3 .1 5 X (1-P )
ร . พ T

Vm = ร2 X 1 X 27 3 .1 5 X 0 .7 2 7 3
ร , พ T

(B.6)
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Surface area of catalyst:

ร -

Where, N 
a

M

= Avogadro number = 6.02x1 o23
= area occupied by one molecule of adsorbed nitrogen = 16.2xlO"20 
= volume of one mole nitrogen = 22410 cm3/mol

Then,

ร — 4.352 Vm

ร ร  2 X 1 x 273.15 X 0.7273 X 4.352
ร 1 พ T

ร ร  2 X 1 X 273.15 X 3.1582 (B.7)
ร . พ T
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CALCULATION FOR TOTAL H2 CHEMISORPTION AND
DISPERSION

Calculation of the total แ 2 chemisorption and metal dispersion of the catalyst, a 
stoichiometry of H/Co = 1, measured by แ 2 chemisorption is as follows:

APPENDIX c

Let the weight of catalyst used = พ g
Integral area of แ 2 peak after adsorption A unit
Integral area of 45 pi of standard แ 2 peak = B unit
Amounts of แ 2 adsorbed on catalyst = B-A unit
Concentration of Co (by AAS) c % wt
Volume ofH 2 adsorbed on catalyst 45x[(B-A)/B] pi
Volume of 1 mole of H2 at 100°c = 28.038 pi
Mole of แ 2 adsorbed on catalyst = [(B-A)/B]x[45/28.038] pmole
Total hydrogen chemisorption = [(B-A)/B]x[45/28.038]x[l/W] pmole /g of catalyst

= N pmole /g of catalyst
Molecular weight of cobalt = 58.93
Metal dispersion (%) = 2 xH2 to t/g  of catalystxioo

No pinole C o to t/g  of catalyst 
= 2xNxl00

No pmole Cotot 
= 2xNx58.93x100

CxlO6 

1.179x N
c
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CALCULATION FOR TOTAL CO CHEMISORPTION

Calculation of the total CO chemisorption of the catalyst, a stoichiometry of CO/Fe = 
1, measured by CO chemisorption is as follows:

APPENDIX D

Let the weight of catalyst used พ g
Integral area of CO peak after adsorption A unit
Integral area of 50 pi of standard แ 2 peak B unit
Amounts of CO adsorbed on catalyst B-A unit
Concentration of Fe (by AAS) c % wt
Volume of CO adsorbed on catalyst 50x[(B-A)/B] pi
Volume of 1 mole of CO at 50°c 24.86 pi
Mole of CO adsorbed on catalyst = [(B-A)/B]x[50/24.86] pmole
Total CO chemisorption = [(B-A)/B]x[50/24.86]x[l/W] pmole /g of catalyst

= N pmole /g of catalyst
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CALIBRATION CURVES 

CO hydrogenation reaction

This appendix showed the calibration curves for calculation of composition of 
reactant and products in CO hydrogenation reaction. The reactant is CO and the main 
product is methane. The other products are linear hydrocarbons of heavier molecular 
weight that are C 2 -C 4  such as ethane, ethylene, propane, propylene and butane.

The thermal conductivity detector, gas chromatography Shimadzu model 8A 
was used to analyze the concentration of CO by using Molecular sieve 5A column. 
The chromatograms of catalyst sample are shown in Figure E.l.

The VZ10 column are used with a gas chromatography equipped with a flame 
ionization detector, Shimadzu modal 14B, to analyze the concentration of products 
including of methane, ethane, ethylene, propane, propylene and butane. The 
chromatograms of catalyst sample are shown in Figure E.2. Conditions uses in both 
GC are illustrated in Table E.l.

Mole of reagent in y-axis and area reported by gas chromatography in x-axis 
are exhibited in the curves. The calibration curves of CO, methane, ethane, ethylene, 
propane, propylene and butane are illustrated in the following figures.

APPENDIX E
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Figure E.l The chromatograms of catalyst sample from thermal conductivity 
detector, gas chromatography Shimadzu model 8A (Molecular sieve 5A column).
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C2H 6

c 2h 4 

c 3h 8

c 3h 6

Figure E.2 The chromatograms of catalyst sample from flame ionization detector, gas 
chromatography Shimadzu modal 14B (VZ10 column).
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Table E.l Conditions use in Shimadzu modal GC-8A and GC-14B.

Parameters Condition
Shimadzu GC-8A Shimadzu GC-14B

Width 5 5
Slope 50 50
Drift 0 0

Min. area 10 10
T.DBL 0 0

Stop time 50 60
Atten 0 0
Speed 2 2

Method 41 41
Format 1 1

SPL.WT 100 100
IS.WT 1 1
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Figure E.3 The calibration curve of CO.
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Figure E.4 T he calibration curve o f  m ethane.
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Figure E.5 The calibration curve of ethane.

Figure E.6 T he calibration curve o f  ethylene.
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Figure E.7 The calibration curve of propane.

Figure E.8 T he C alibration curve o f  propylene.
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Figure E.9 The calibration curve of butane.
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Fischer-Tropsch Synthesis reaction

This appendix showed the calibration curves for calculation of composition of 
reactant and products in FTS reaction. The reactant is CO. The products are 
hydrocarbons of Ci-C7+ (such as methane, ethane, ethylene, propane, propylene, 
butane, butene, pentane, pentene, hexane, hexene, heptane, and heptene) and CO2 .

Analysis of CO and CO2 were performed in a Carbosphere 80/100 6 '  X 1/8" X 

0.085" ss packed column using a thermal conductivity detector. Analysis of 
hydrocarbon was carried out in a AT-Q 30m X 0.53 mm Heliflex capillary column 
using a flame ionization detector.

Mole of reagent in y-axis and area reported by gas chromatography in x-axis 
are exhibited in the curves. The calibration curves of CO, methane, ethane, ethylene, 
propane, propylene and butane are illustrated in the following figures.

A r e a  ( a .u .)

Figure E.10 T he calibration curve o f  CO.
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Figure E .ll The calibration curve of CO2 .
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Figure E.12 The calibration curve of methane.
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Figure E.13 The calibration curve of ethane.
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Figure E.14 The calibration curve of ethylene.
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Figure E.15 The calibration curve of propane.

Figure E.16 The Calibration curve of propylene.
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Figure E.17 The calibration curve of butane.
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Figure E.18 The calibration curve of butene.
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Figure E.19 The calibration curve of pentane.
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Figure E.20 The calibration curve of pentene.
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Figure E.21 The calibration curve of hexane.
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Figure E.22 The calibration curve of hexene.
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Figure E.23 The calibration curve of heptane.
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Figure E.24 The calibration curve of heptene.
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APPENDIX F

CALCULATION OF CO CONVERSION, REACTION RATE, TOF,
AND SELECTIVITY

The catalyst performance for the CO hydrogenation and FTS were evaluated 
in terms of activity for CO conversion, reaction rate, TOF, and selectivity.

CO conversion

Activity of the catalyst performed in term of carbon monoxide conversion and 
reaction rate. Carbon monoxide conversion is defined as moles of CO converted with 
respect to CO in feed:

CO conversion (%) = 100 X  [mole of CO in feed -  mole of CO in product] (i)
mole of CO in feed

where mole of CO can be measured employing the calibration curve of CO in Figure 
E.3 (for CO hydrogenation) and E.10 (for FTS reaction), Appendix E., i.e.,

For CO hydrogenation:

mole of CO = (area of CO peak from integrator plot on GC-8 A)x3x 1 O'11 (ii)

Reaction rate

Reaction rate was calculated from CO conversion that is as follows:

For example, the reaction rate from CO hydrogenation can be calculated as:

Let the weight of catalyst used = พ g
Flow rate of CO = 8 cc/min
Reaction time = 60 min
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Weight of CH2 = 14 g
Volume of 1 mole of gas at 1 atm = 22400 cc
Reaction rate (g CH2/g of catalyst/h) = [% conversion of C0/100]x60xl4x8 (iii)

Wx22400

TOF

TOF was calculated from reaction rate and H2 chemisorption (Or CO 
chemisorption) that is as follows:

TOF (ร'1) = [reaction rate] (in case of H2 chemisorption) (iv)
[H2 chemisorption/2]

= [reaction rate] (in case of CO chemisorption) (v)
[CO chemisorption]

Selectivity

Selectivity of product is defined as mole of product (B) formed with respect to 
mole of CO converted:

Selectivity of B (%) = 100 X  [mole of B formed/mole of total products] (vi)

Where B is product, mole of B can be measured employing the calibration 
curve of products such as methane, ethane, ethylene, propane, propylene, butane, 
butene, pentane, pentene, hexane, hexene, heptane, and heptene in Figure E.4-E.9 (for 
CO hydrogenation) and E.12-E.24 (for FTS reaction), Appendix E., i.e.,

For CO hydrogenation:

moleofCFLt = ( area of CH4 peak from integrator plot on GC-14B)x 6x1 O'13 (vii)
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