REFERENCES

- Eun, K.J., Dong, J.A., Jong, M.K. The Flurescent Polydiacetylene Liposome.
 J. Bull Korean Chem. Soc. 24 (2003): 5.
- Bloor, D. Polydiacetylenes: synthesis, structure, and electronic properties (NATO ASI Series) <u>Kluwer Academic Publishers</u> USA, (1985).
- Tieke, B. Polymerization of diacetylenes in multilayers <u>J. Polym. Sco. A.</u> 17 (1979): 1631-1644.
- Olmsted, J. Fluorescence of polymerized diacetylene bilayer films <u>J. Phys. Chem.</u> 87 (1983): 4790-4792.
- 5. Carpick, R. First observation of mechanochromism at the nanometer scale. <u>Langmuir</u> 16 (2000): 1270-1278.
- Chance, R.R., Baughman, R.H. Muller, H., Eckhardt, C.J. Thermochromism in a polydiacetyene crystal <u>J. Chem. Phys.</u> 67 (1977): 3616-3618.
- Wenzél, M. Chromatic properties of polydiacetylene films <u>J. Am. Chem. Soc</u>. 111 (1989): 6123-6127.
- 8. Beckham, G. On the origin of thermochromism in cross-polymerized diacetylenefunctionalized polyamides. <u>Macromolecules</u> 26 (1993): 5198-5201.
- 9. Lio, A. Molecular imaging of thermochromic carbohydrate-modified polydiacetylene thin films. Langmuir 13 (1997): 6524-6532.
- Lee, D.C. Structural aspects of thermochromic transition in urethane substituted polydiacetylene. <u>Macromolecules</u> 35 (2002): 4347-4355.
- Muller, H., Eckhardt, C.J. Stress induced change of electronic structure in a polydiacetylene crystal. <u>Mol. Cryst. Liq. Cryst</u>. 45 (1978): 313-318.
- Tomioka, Y., Tanaka, N., Imazeki, S. Surface-pressure-induced reversible color change of a polydiacetylene monolayer at a gas-water interface <u>J. Chem. Phys</u>. 91 (1989): 5694-5700.
- Nallicheri, R.A. Investigations of the mechanochromic behavior of poly(urethane-diacetylene) segmented copolymers. <u>Macromolecules</u> 24 (1991): 517-525.
- Mowery, M.D. Fabrication of monolayers containing internal molecular scaffolding: Effect of substrate preparation. <u>Langmuir 14</u> (1998): 5594-5602.

- Jonas, U. Reversible color switching and unusual solution polymerization of hydrazide-modified diacetylene lipids <u>J. Am. Chem. Soc.</u> 121 (1999): 4580-4588.
- Charych, D.H. Direct colorimetric detection of a receptor-ligand interaction by a polymerized bilayer assembly. <u>Science</u> 261 (1993): 585-588.
- Reichert, A. Polydiacetylene liposomes functionalized with sialic acid bind and colorimetrically detect influenza virus <u>J. Am. Chem. Soc.</u> 117 (1995): 829-830.
- Charych, D.H. A limus test for molecular recognition using artifical membranes. <u>Chem. Biol.</u> 3 (1996): 113-120.
- 19. Ribi, H.O. Ingestibles possessing intrinsic color change <u>US Patent 6, 866, 863</u>
 <u>B2</u>, 2005.
- Hays, D.S. Diacetylenic materials for sensing applications <u>US Patent Application</u> <u>20, 050, 101, 794 Al</u>, 2005.
- 21. Charych, D.H. Nucleic acid-coupled colorimetric analyte detectors <u>US Patent 6,</u> <u>306, 598, 2001.</u>
- 22. Jo, Y. Colorimetric sensor employing polydiacetylene membrane <u>US Patent 6</u>, <u>277, 652</u>, 2001.
- Hankin, S. Spectroscopic studies of polydiacetylene: Raman evidence for surface phases on single crystals. <u>Synth. Met.</u> 49 (1992): 281-291.
- 24. Kim, W.H. A novel, soluble poly(diacetylene) containing an aromatic substituent. Macromolecules 27 (1994): 1819-1824.
- 25. Sukwattanasinitt, M. New processable, functionalizable polydiacetylenes, <u>Macromolecules</u> 32 (1999): 7361-7369.
- 26. Spevak, W. Molecular assemblies of functionalized polydiacetylenes. <u>Adv. Mater</u> 7 (1995): 7 85-89.
- Sasaki, D.Y. High molecular orientation in mono-and trilayer polydiacetylene films imaged by atomic force microscopy <u>J. Colloid Interface Sc</u>o. 299 (2000): 490-496.
- Hub, H.H. Polymerizable phospholipids analogues-new stable biomembrane and cell models. <u>Angew. Chem. Int. Engl.</u> 19 (1980): 938-940.
- 29. Akimoto, A. Polymer model membrane. Angew. Chem. Int. Ed. Engl.

- Feng, J.M., Geurts, M., Lammers, A.L. The effect of bimodeality of the particle size distribution on film formation of lattices <u>J. Col. Int. Sc</u>o. 108 (1996): 295-303.
- Bloor, D., Chance, R.R., Polydiacetylenes <u>Synthesis</u>, structure, and electronic properties. (1985).
- 33. Spevak, W., Nagy, J.O., Charych, D.H. Adv. Mater 7 (1985).
- 34. Sasaki, D.Y., Carpick, R.W., Burns, A.R. J. Col. Int. Sco. 229 (2000).
- 35. Mowery, M.D., Menzel, H.M., Cai, C.E., Evans, Langmuir 14 (1998).
- 36. Erbil, H.Y. Vinyl acetate emulsion polymerization and copolymerization with acrylic monomers. <u>CRC Press</u> New York: (n.p.) 6 (2000).
- 37. Gilbert, R.G. Emulsion polymerization. Academic Press (1995): 1-72, 292-339.
- 38. Gardon, J.L. Part A-1 J. Polym. Sco. 11 (1968): 623-687.
- Pochlcin, G.W. Emulsion polymerization. <u>Encyclopedia of polymer science and</u> <u>Engineering</u> New York: (n.p.) (1986).
- 40. Gilbert, R.G. Emulsion polymerization. <u>Academic Press</u> (1995) 11.
- Duck, E.W. Emulsion polymerization. <u>Encyclopedia of polymer Science and</u> <u>technology</u> New York: (n.p.) 5 (1966).
- Wu, S., Soucek, M.D. Cross linking of acrylic latex coatings with cycloaliphatic diepoxide <u>J. Polym. Sc</u>o. 41 (2000): 2017-2028.
- Tigli, R.S., Evren, V. Synthesis and characterization of pure poly (acrylate) latexes. <u>J. Pro. Org. Coat</u>. 52 (2005): 144-150.
- Lio, A., Reichert, A., Ahn, D.J., Nagy, J.O. Molecular imaging of thermochromic carbohydrate-modified polydiacetylene thin film <u>J. Am. Chem. Soc</u>. 13(1997):6524-6532.
- 45. Tachibana, T., Hosaka, N., Tokura, Y. Effect of alkyl chain length on thermochromic phase transition in urethane-subtituted polydiacetylene crystals <u>J. Sci</u>. <u>Dirc</u>. 42 (2001): 8311-8314.
- 46. Carpick, R.W., Sasaki, D.Y., Burns, A.R. Nanometer-scale structural, Tribological, and optical properties of ultrathin polydiacetylene film <u>J. Eng. Phys</u>. 41 (2000).
- 47. Carpick, R.W., Sasaki, D.Y., Marcus, M.S., Erikson, M.A., Burns, A.R.Polydiacetylene films <u>J. Phys. Condens. Matt</u>. 16 (2004): 679-697.
- 48. Su, Y.L., Li, J.R., Jiang, L., Coa, J. Biosensor signal amplification of vesicles

- 47. Carpick, R.W., Sasaki, D.Y., Marcus, M.S., Erikson, M.A., Burns, A.R. Polydiacetylene films J. Phys. Condens. Matt. 16 (2004): 679-697.
- Su, Y.L., Li, J.R., Jiang, L., Coa, J. Biosensor signal amplification of vesicles functionalized with glycolipid for colorimetric detection of *Escherichia coli* J. Col. Int. Sco. 284 (2005): 114-119.
- 49. Ribi, H.O. Ingestible processing intrinsic color change <u>US Patent 6, 607, 744 B1</u>, 2003 and <u>US Patent 6, 866, 863 B2</u>, 2005.
- 50. Disalvo, G.D., Cusick, J. Composition for indicating the prevailing temperature <u>US Patent 6, 773, 637, 2004.</u>
- 51. Hays, D.S. Diacetylene materials for sensing applications <u>US Patent</u> 20050101794 A1, 2005.
- 52. Volatile organic compounds. ASTM D2369 (VOC).
- 53. Rubber latex determination of surface tension. ISO Standard 1409-1974.
- 54. Standard test methods for rheological properties of Newtonian materials by rotational (Brookfield type) viscometer. ASTM D2196-99.
- 55. Rubber lattices determination of pH. ISO Standard 976-1986.
- 56. Product quality test method. Hexion Specialty Chemicals Samutsakorn Thailand.

APPENDICES

Appendix A : Latex formula

Formula	Kind	of Monor	ner	Rhodapex	Ammonia	Texanol
	EA	MAA	СМ	CO-436	solution	
EA21/MAA14/E0.5	21	14	-	0.5	-	-
EA23/MMA15/E0.5	23	15	-	0.5	-	-
EA25/MAA14/E0.5	25	14	-	0.5	-	-
EA27/MAA18/E0.5	27	18	-	0.5	-	-
EA35/E0.5	35	-	-	0.5	-	-
EA29/MAA20/E0.5	29	20	-	0.5	-	-
EA30/MAA5/E0.5	30	5	-	0.5	-	-
EA25/MAA10/E0.5	25	10	-	0.5	-	-
EA21/MAA14/E0.5	21	14	-	0.5	-	-
EA15/MAA20/E0.5	15	20	-	0.5	-	-
EA13/MAA22/E0.5	13	22	-	0.5	-	-
EA21/MAA14/E0.5/CM	21	14	2.76	0.5	-	-
EA25/MMA10/E0.5/CM	25	10	2.76	0.5	-	-
EA21/MMA14/E0.3/CM	21	14	2.76	0.3	-	-
EA21/MMA14/E0.4/CM	21	14	2.76	0.4	-	-
EA21/MMA14/E0.75/CM	21	14	2.76	0.75	-	-
EA21/MMA14/E1.5/CM	21	14	2.76	1.5	-	-
EA21/MMA14/E0.5/CM/	21	14	2.76	0.5	5	-
Am5						
EA21/MMA14/E0.5/CM/	21	14	2.76	0.5	10	-
Am10						
EA21/MMA14/E0.5/CM/	21	14	2.76	0.5	15	-
Am15						
EA21/MMA14/E0.5/CM/	21	14	2.76	0.5	20	-
Am20						
EA21/MMA14/E0.5/CM/	21	14	2.76	0.5	25	4
Am25						

Table A1: Formula of latex

EA21/MMA14/E0.5/CM/	21	14	2.76	0.5	-	5
Tx5						
EA21/MMA14/E0.5/CM/	21	14	2.76	0.5	-	10
Tx10						
EA21/MMA14/E0.5/CM/	21	14	2.76	0.5	-	15
Tx15						
EA21/MMA14/E0.5/CM/	21	14	2.76	0.5	-	20
Tx20						
EA21/MMA14/E0.5/CM/	21	14	2.76	0.5	-	25
Tx25						
EA31/MAA4/E0.5/CM	31	4	2.76	0.5	-	-
EA20/MAA15/E0.5	20	15	-	0.5	-	-
EA20/MAA15/E0.5/CM	20	15	2.76	0.5	-	-

EA = Ethyl acrylate MAA = Methacrylic acid

CM = Crosslinking monomers, nMA monomer : GMA monomer : EDGMA

.

monomer 0.48 : 0.21 : 2.07 w/w ratio

Ammonia solution = 2.5% w/w (of solid)

Appendix B : Latexes specification

Latexes	%NV	Viscosity	pН
EA21/MAA14/E0.5	35	8	2.6
EA23/MMA14/E0.5	38	14	2.7
EA25/MAA17/E0.5	42	18	2.5
EA27/MAA18/E0.5	45	25	2.5
EA35/E0.5	35	8	2.5
A29/MAA20/E0.5	49	8	2.6
A30/MAA5/E0.5	35	9	2.6
A25/MAA10/E0.5	35	12	2.6
A21/MAA14/E0.5	35	9	2.6
A15/MAA20/E0.5	35	9	2.6
A13/MAA22/E0.5	35	9	2.7
A21/MAA14/E0.5/CM	35	8	2.6
A25/MMA10/E0.5/CM	35	11	2.6
A21/MMA14/E0.3/CM	35	9	2.5
A21/MMA14/E0.4/CM	35	9	2.5
21/MMA14/E0.75/CM	35	8	2.6
21/MMA14/E1.5/CM	35	8	2.5
A21/MMA14/E0.5/CM/Am5	32.5	24.7	3.3
A21/MMA14/E0.5/CM/Am10	30	53.9	3.7
A21/MMA14/E0.5/CM/Am15	27.5	1,247	4.8
A21/MMA14/E0.5/CM/Am20	25	7,800	5.6
A21/MMA14/E0.5/CM/Am25	22.5	80,200	6.4
A21/MMA14/E0.5/CM/Tx5	32.5	18.5	2.6
A21/MMA14/E0.5/CM/Tx10	30	125.6	2.5
21/MMA14/E0.5/CM/Tx15	27.5	195	2.5
A21/MMA14/E0.5/CM/Tx20	25	485	2.5
A21/MMA14/E0.5/CM/Tx25	22.5	1,350	2.5
A31/MAA4/E0.5/CM	35	9	2.6
A20/MAA15/E0.5	35	8	2.6

 Table B1 : Specification of latexes

EA = Ethyl acrylate MAA = Methacrylic acid

CM = Crosslinking monomers, nMA monomer : GMA monomer : EDGMA

monomer 0.48 : 0.21 : 2.07 w/w ratio

Ammonia solution = 2.5% w/w (of solid)

Appendix C: Glass transition temperature (Tg)

Latexes	On set	Mid point
EA35/E0.5	-29.99	-22.61
EA30/MAA5/E0.5	-1.1	4.04
EA25/MAA10/E0.5	14.38	21.30
EA21/MAA14/E0.5	35.58	47.30
EA18/MAA17/E0.5	49.67	64.61
EA13/MAA22/E0.5	124.78	135.92
EA21/MAA14/E0.5/CM2.76	42.15	47.30
EA25/MAA10/E0.5/CM2.76	21.26	28.78
EA21/MAA14/E0.5/CM2.76/Tx5	23.77	30.32
EA21/MAA14/E0.5/CM2.76/Tx10	2.10	11.16
EA21/MAA14/E0.5/CM2.76/Tx15	-8.59	-4.35
EA21/MAA14/E0.5/CM2.76/Tx20	-22.99	-22.61
EA21/MAA14/E0.5/CM2.76/Tx25	-42.06	-31.82

Table C1 : Glass transition temperature (T_g) of latexes by DSC technique

On set	Mid point
-29.99	-22.61

. .

On set	Mid point
14.38	21.30

. .

On set	Mid point
35.58	47.30

÷

On set	Mid point	
49.67	64.61	-

On set	Mid point	
124.78	135.92	

Figure C6 : Glass transition temperature (Tg) of EA13/MAA22/E0.5

On set	Mid point
42.15	47.30

Figure C7 : Glass transition temperature (Tg) of EA21/MAA14/E0.5/CM2.76

On set	Mid point
21.26	28.78

Figure C8 : Glass transition temperature (Tg) of EA25/MAA10/E0.5/CM2.76

On set	Mid point
23.77	30.32

Figure C9 : Glass transition temperature (Tg) of EA21/MAA14/E0.5/CM2.76/Tx5

Mid point
11.16

Figure C10 : Glass transition temperature (Tg) of EA21/MAA14/E0.5/CM2.76/Tx10

68

On set	Mid point
-8.59	-4.35

Figure C11 : Glass transition temperature (Tg) of EA21/MAA14/E0.5/CM2.76/Tx15

69

On set	Mid point
-22.99	-22.61

Figure C12 : Glass transition temperature (Tg) of EA21/MAA14/E0.5/CM2.76/Tx20

On set	Mid point
-42.06	-31.82

Figure C13 : Glass transition temperature (Tg) of EA21/MAA14/E0.5/CM2.76/Tx25

On set	Mid point	
-8.59	-4.35	

Figure C14 : Glass transition temperature (Tg) of EA35/E0.5/CM2.76

ŝ,

Appendix D: Particle size

Table D1: latex particle size

Latexes	Particle size (nm)				
	1	2	3	Mean	SD
Variation of monomer					
concentration					
EA21/MAA14/E0.5	95.5	95.6	95.5	95.5	0.06
EA23/MAA14/E0.5	96.8	96.9	96.9	96.9	0.06
EA25/MAA17/E0.5	98.0	98.2	98.4	98.2	0.20
EA27/MAA18/E0.5	105.6	107.2	103.1	105.3	2.07
Variation of emulsifier					
EA21/MAA14/E0.3/CM2.76	116.9	118.2	118.9	118.0	1.01
EA21/MAA14/E0.4/CM2.76	103.7	104.9	106.4	105.0	1.35
EA21/MAA14/E0.5/CM2.76	90.4	91.3	90.7	90.8	0.46
EA21/MAA14/E0.75/CM2.76	90.6	90.7	91.1	90.8	0.26
EA21/MAA14/E1.5/CM2.76	88.1	88.2	88.0	88.1	0.10
Addition of texanol					
EA21/MAA14/E0.5/CM2.76/Tx5	93.7	94.0	94.6	94.1	0.46
EA21/MAA14/E0.5/CM2.76/Tx10	95.9	95.9	95.7	95.8	0.12
EA21/MAA14/E0.5/CM2.76/Tx15	97.2	97.1	97.2	97.2	0.06
EA21/MAA14/E0.5/CM2.76/Tx20	98.6	98.9	98.9	98.8	0.17
EA21/MAA14/E0.5/CM2.76/Tx25	103.8	104.9	106.6	105.1	0.14

.

÷

	Particle size (nm)
1 st	95.5
2 nd	95.6
3 rd	95.5
Mean	95.5

Figure D1 : Particle size distribution of EA21/MAA14/E0.5 latex

	Particle size (nm)
1 st	96.8
2 nd	96.9
,3 rd	96.9
Mean	96.9

Figure D2 : Particle size distribution of EA23/MAA14/E0.5 latex

Particle size (nm)
98.0
98.2
98.4
98.2

Figure D3 : Particle size distribution of EA25/MAA14/E0.5 latex

	Particle size (nm)
1 st	105.6
2 nd	107.2
3 rd	103.1
Mean	105.3

Figure D4 : Particle size distribution of EA27/MAA18/E0.5 latex

Particle size (nm)
116.9
118.2
118.9
118.0

Figure D5 : Particle size distribution of EA21/MAA14/E0.3/CM2.76 latex

	Particle size (nm)
l st	103.7
2 nd	104.9
3 rd	106.4
Mean	105.0

Figure D6 : Particle size distribution of EA21/MAA14/E0.4/CM2.76 latex

	Particle size (nm)
1 st	90.4
2 nd	91.3
3 rd	90.7
Mean	90.8

Figure D7 : Particle size distribution of EA21/MAA14/E0.5/CM2.76 latex

	Particle size (nm)
1 st	90.6
2 nd	90.7
3 rd	91.1
Mean	90.8

Figure D8 : Particle size distribution of EA21/MAA14/E0.75/CM2.76 latex

	Particle size (nm)
1 st	88.1
2 nd	88.2
3 rd	88.0
Mean	88.1

Figure D9 : Particle size distribution of EA21/MAA14/E1.5/CM2.76 latex

	Particle size (nm)
1 st	93.7
2 nd	94.0
3 rd	94.6
Mean	94.1

Figure D10 : Particle size distribution of EA21/MAA14/E0.5/CM2.76/Tx5 latex

14 H H

	Particle size (nm)
1 st	95.9
2 nd	95.9
3 rd	95.7
Mean	95.8

Figure D11 : Particle size distribution of EA21/MAA14/E0.5/CM2.76/Tx10 latex

	Particle size (nm)
1 st	97.2
2 nd	97.1
3 rd	97.2
Mean	97.2

Figure D12 : Particle size distribution of EA21/MAA14/E0.5/CM2.76/Tx15 latex

85

	Particle size (nm)
1 st	98.6
2 nd	98.9
3 rd	98.9
Mean	98.8

Figure D13 : Particle size distribution of EA21/MAA14/E0.5/CM2.76/Tx20 latex

	Particle size (nm)
1 st	103.8
2 nd	104.9
3 rd	106.6
Mean	105.1

Figure D14 : Particle size distribution of EA21/MAA14/E0.5/CM2.76/Tx25 latex

VITA

Patcharin Kiyapat was born on August 10, 1971, in Samutsakorn, Thailand. She received her Bachelor's Degree of Science in Chemistry, Bansomdejoapraya University 1996. She continued the Master Program of Multidisplinary of Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University and completed the program in 2006.

