PHOTOCATALYTIC DEGRADATION OF AZO DYE CONTAMINANT IN WASTEWATER USING MESOPOROUS-ASSEMBLED In₂O₃-TiO₂ MIXED OXIDE PHOTOCATALYSTS

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University and Institut Français du Pétrole 2011

Thesis Title:	Photocatalytic Degradation of Azo Dye Contaminant in
	Wastewater Using Mesoporous-Assembled In_2O_3 -TiO ₂ Mixed
	Oxide Photocatalysts
By:	Siriluck Niyomkarn
Program:	Petrochemical Technology
Thesis Advisors:	Asst. Prof. Thammanoon Sreethawong
	Prof. Sumaeth Chavadej

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Master of Science.

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

. . .

(Asst. Prof. Thammanoon Sreethawong)

havade umaeth

(Prof. Sumaeth Chavadej)

 \sim

(Asst. Prof. Siriporn Jongpatiwut)

S. Satur

(Dr. Singto Sakulkhaemaruethai)

ABSTRACT

5271034063: Petrochemical Technology Program
Siriluck Niyomkarn: Photocatalytic Degradation of Azo Dye
Contaminant in Wastewater Using Mesoporous-Assembled
In₂O₃-TiO₂ Mixed Oxide Photocatalysts
Thesis Advisors: Asst. Prof. Thammanoon Sreethawong and
Prof. Sumaeth Chavadej 80 pp.

Keywords: Mesoporous Material/ Photocatalysis/ In₂O₃-TiO₂/ Azo Dye/ Congo Red/ Degradation

An azo compound is an important class of synthetic dyes and is characterized by the presence of one or more azo group (-N=N-) linked between aromatic rings. The release of this coloring agent causes wastewater problems. Photocatalysis is an efficient technique to remove dye pollutants because of several advantages. This work focused on the improvement of the photocatalytic activity of mesoporous-assembled In_2O_3 -TiO₂ mixed oxide photocatalysts for Congo Red (CR) azo dye degradation by varying In_2O_3 -to-TiO₂ molar ratio, calcination temperature, and silver (Ag) loading. All of the photocatalysts were synthesized by a sol-gel process with the aid of a structure-directing surfactant. The experimental results showed that the mesoporous-assembled In_2O_3 -TiO₂ mixed oxide photocatalyst with an In_2O_3 -to-TiO₂ molar ratio of 0.05:0.95 calcined at 500 °C provided the highest CR degradation rate constant of 0.86 h⁻¹. In addition, the optimum Ag content of 1.5 wt.% loaded on the mesoporous-assembled $0.05In_2O_3$ -0.95TiO₂ photocatalyst by a photochemical deposition method was found to increase the CR degradation rate constant to 1.37 h⁻¹.

บทคัดย่อ

ศริลักษณ์ นิยมการ : การสลายตัวของสีย้อมประเภทเอโซที่ปนเปื้อนในน้ำเสียโดยใช้ ตัวเร่งปฏิกิริยาแบบใช้แสงร่วมประเภทโลหะออกไซด์ผสมระหว่างอินเดียมออกไซด์และไท ทาเนียที่มีขนาดรูพรุนในระดับเมโซพอร์ (Photocatalytic Degradation of Azo Dye Contaminant in Wastewater Using Mesoporous-Assembled In₂O₃-TiO₂ Mixed Oxide Photocatalysts) อ. ที่ปรึกษา : ผศ. ดร. ธรรมนูญ ศรีทะวงศ์ และ ศ. ดร. สุเมธ ชวเดช 80 หน้า

สีข้อมประเภทเอโซเป็นสารในกลุ่มสีสังเคราะห์ซึ่งประกอบด้วยกลุ่มของเอโซ (-N=N-) ดั้งแต่หนึ่งกลุ่มหรือมากกว่าหนึ่งกลุ่มต่อกับวงสารอะโรเมติกส์ ซึ่งการปล่อยสารพิษประเภทสีข้อม เหล่านี้สู่สภาวะแวดล้อม ก่อให้เกิดปัญหามลพิษในน้ำเสียอย่างหลีกเลี่ยงไม่ได้ การใช้ปฏิกิริยา แบบใช้แสงร่วมเป็นวิธีที่มีประสิทธิภาพวิธีหนึ่งในการกำจัดสารพิษประเภทสีข้อมนี้ เนื่องจากมี ข้อดีหลายประการ งานวิจัยนี้จึงมุ่งเน้นศึกษาการปรับปรุงและพัฒนาความสามารถในการย่อย สลายสีข้อมประเภทเอโซชนิดคองโกเรค โดยใช้ตัวเร่งปฏิกิริยาแบบใช้แสงร่วมประเภทโลหะ ออกไซด์ผสมระหว่างอินเดียมออกไซด์และไททาเนียที่มีขนาครูพรุนในระดับเมโซพอร์ โดยการ เปลี่ยนแปลงตัวแปรต่างๆ ได้แก่ อัตราส่วนโดยโมลของอินเดียมออกไซด์ต่อไททาเนีย, อุณหภูมิที่ ใช้ในการเผา, และปริมาณโลหะเงินที่เดิมลงบนตัวเร่งปฏิกิริยาแบบใช้แสงร่วมดังกล่าว ในการ ทดลองนี้ตัวเร่งปฏิกิริยาแบบใช้แสงร่วมถูกสังเคราะห์ขึ้นโดยกระบวนการโซล-เจลร่วมกับการใช้ สารลดแรงดึงผิวเป็นตัวกำหนดโครงสร้าง จากผลการทดลองพบว่าตัวเร่งปฏิกิริยาแบบใช้แสงร่วม อินเดียมออกไซด์ไททาเนีย ที่ประกอบด้วยอัตราส่วนโดยโมลของอินเดียมออกไซด์ต่อไททาเนีย เท่ากับ 0.05:0.95 ซึ่งถูกเผาที่อุณหภูมิ 500 องศาเซลเซียส ให้ค่าอัตราการย่อยสลายสีข้อมดีที่สุด เท่ากับ 0.86 ต่อชั่วโมง นอกจากนี้การเติมโลหะเงินในปริมาณที่เหมาะสมร้อยละ 1.5 โดยน้ำหนัก ลงบนตัวเร่งปฏิกิริยาดังกว่าวพบว่า อัตราการย่อยสลายงองสีข้อมมีก่าเพิ่มขึ้นเป็น 1.37 ต่อชั่วโมง

ACKNOWLEDGEMENTS

This thesis work was supported by the Ratchadaphisek Somphot Endowment Fund, the Petroleum and Petrochemical College, and National Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials, Chulalongkorn Thailand.

The author would like to express her sincere gratitude to Asst. Prof. Thammanoon Sreethawong and Prof. Sumaeth Chavadej, her advisors, for their invaluable guidance, understanding, and constant encouragement throughout the course of this research.

She would like to express special thanks to Asst. Prof. Siriporn Jongpatiwut and Dr. Singto Sakulkhaemaruethai for kindly serving on her thesis committee. Their sincere suggestions are definitely imperative for accomplishing her thesis.

Her gratitude is absolutely extended to all staffs of the Petroleum and Petrochemical College, Chulalongkorn University, for all their kind assistance and cooperation.

Furthermore, she would like to take this important opportunity to thank all of her graduate friends for their unforgettable friendship.

Finally, she really would like to express her sincere gratitude to her parents and family for the love, understanding, and cheering.

TABLE OF CONTENTS

Title	e Page	i
Abs	tract (in English)	iii
Title Page Abstract (in English) Abstract (in Thai) Acknowledgements Table of Contents List of Tables List of Tables List of Figures CHAPTER 1 INTRODUCTION II LITERATURE REVIEW 2.1 Azo dyes 2.1.1 General Remarks 2.1.2 Classification and Designations 2.2 Semiconductor 2.3 Photocatalysts 2.3.1 Titanium Dioxide (TiO2) 2.3.2 Doping of TiO2 2.3.3 Indium Oxide and Silver Dopants 2.4 Nano-Photocatalysts 2.4.1 General Remarks 2.4.2 Activity of Nano-Photocatalysts 2.5 Photocatalytic Docomposition Mechanisms 2.5.1 Photocatalytic Oxidation 2.5.2 Photocatalytic Oxidation 2.5.2 Photocatalytic Docidation 2.5.1 Photocatalytic Docidation 2.5.2 Photocatalytic Docidation 2.5.1 Photocatalytic Doxidation 2.5.2 Ph	tract (in Thai)	iv
	v	
Tab	le of Contents	vi
Title Page Abstract (in English) Abstract (in Thai) Acknowledgements Table of Contents List of Tables List of Tables List of Tables List of Figures CHAPTER 1 INTRODUCTION II LITERATURE REVIEW 2.1 Azo dyes 2.1.1 General Remarks 2.1.2 Classification and Designations 2.2 Semiconductor 2.3 Photocatalysts 2.3.1 Titanium Dioxide (TiO ₂) 2.3.2 Doping of TiO ₂ 2.3.3 Indium Oxide and Silver Dopants 2.4 Nano-Photocatalysts 2.4.1 General Remarks 2.4.2 Activity of Nano-Photocatalysts 2.5 Photocatalytic Docomposition Mechanisms 2.5.1 Photocatalytic Oxidation 2.5.2 Photocatalytic Oxidation 2.5.2 Photocatalytic Dogradation of Dyes 2.6.1 Effect of Initial Dye Concentration	viii	
List	of Figures	x
CHAPIE	INTRODUCTION	1
II	LITERATURE REVIEW	4
	2.1 Azo dyes	4
	2.1.1 General Remarks	4
	2.1.2 Classification and Designations	4
	2.2 Semiconductor	5
	2.3 Photocatalysts	7
	2.3.1 Titanium Dioxide (TiO ₂)	7
	2.3.2 Doping of TiO_2	10
	2.3.3 Indium Oxide and Silver Dopants	11
	2.4 Nano-Photocatalysts	14
	2.4.1 General Remarks	14
	2.4.2 Activity of Nano-Photocatalysts	14
	2.5 Photocatalytic Docomposition Mechanisms	15
	2.5.1 Photocatalytic Oxidation	15
	2.5.2 Photosensitized Oxidation	16
	2.6 Factors Influencing Photocatalytic Degradation of Dyes	17
	2.6.1 Effect of Initial Dye Concentration	17

2.6.2 Effect of Solution pH	18
2.6.3 Effect of Light Intensity and Irradiation Time	18
2.6.4 Effect of H ₂ O ₂ Addition	19
2.6.5 Effect of Calcination Temperature of Photocataly	yst 20
2.6.6 Effect of Calcination Time of Photocatalyst	20
2.7 Porous Materials	20
2.8 Sol-Gel Process	22
EXPERIMENTAL	25
3.1 Materials	25
3.2 Equipment	25
3.3 Methodology	26
3.3.1 Synthesis of Mesoporous-Assembled In_2O_3 -Ti O_2	2
Mixed Oxide Nanocrystal Photocatalysts by a	
Sol-Gel Process with the Aid of Structure-Direction	ing
Surfactant	26
3.3.2 Photocatalyst Characterizations	29
3.3.3 Photocatalytic Experiment	31
RESULTS AND DISCUSSION	33
4.1 Photocatalyst Characterizations	33
4.1.1 TG-DTA Results	33
4.1.2 N ₂ Adsorption-Desorption Results	35
4.1.3 XRD Results	40
4.1.4 UV-Visible Spectroscopy Results	47
4.1.5 SEM-EDX Results	53
4.1.6 TEM-EDX Results	56
4.1.7 H ₂ Chemisorption Results	59

 \mathbf{V}

4.2 Photocatalytic CR Dye Degradation Results	60
4.2.1 Effect of In ₂ O ₃ -to-TiO ₂ Molar Ratio in Mixed Oxide	
Photocatalysts	61
4.2.2 Effect of Calcination Temperature	63
4.2.3 Effect of Ag Loading	65
4.2.4 Effect of Water Hardness	67
4.2.5 Effect of Initial Solution pH	69
CONCLUSIONS AND RECOMMENDATIONS	72
5.1 Conclusions	72
5.2 Recommendations	73
REFERENCES	74
CURRICULUM VITAE	80

PAGE

viii

LIST OF TABLES

TABI	ΓΑΒLΕ	
2.1	Color Index of different azo dyes	5
2.2	The band gap positions of some common semiconductor	
	photocatalysts	7
2.3	Definitions about porous solids	21
4.1	N ₂ adsorption-desorption results of the synthesized	
	mesoporous-assembled pure TiO_2 and In_2O_3 - TiO_2 mixed	
	oxide photocatalysts calcined at various temperatures	39
4.2	N ₂ adsorption-desorption results of the synthesized Ag-	
	loaded mesoporous-assembled 0.05In ₂ O ₃ -0.95TiO ₂ mixed	
	oxide photocatalysts calcined at 500 °C	40
4.3	XRD results of the synthesized mesoporous-assembled TiO_2	
	and In_2O_3 -TiO ₂ mixed oxide photocatalysts calcined at	
	various temperatures	46
4.4	XRD results of the synthesized Ag-loaded mesoporous-	
	assembled $0.05 In_2 O_3$ -0.95TiO ₂ mixed oxide photocatalysts	
	calcined 500 °C	47
4.5	Absorption onset wavelength and band gap energy results of	
	the synthesized mesoporous-assembled pure TiO_2 and $\mathrm{In_2O_3}\text{-}$	
	TiO ₂ mixed oxide photocatalysts calcined at various	
	temperatures	52
4.6	Absorption onset wavelength and band gap energy results of	
	the synthesized Ag-loaded mesoporous-assembled	
	$0.05In_2O_3$ -0.95TiO ₂ mixed oxide photocatalysts calcined at	
	500 °C	53

TABLE

4.7	EDX mapping results of the synthesized mesoporous-	
	assembled $0.05In_2O_3$ -0.95TiO ₂ mixed oxide photocatalyst	
	calcined at 500 °C	56
4.8	Ag dispersion results of the synthesized Ag-loaded	
	mesoporous-assembled 0.05In ₂ O ₃ -0.95TiO ₂ mixed oxide	
	photocatalyst calcined at 500 °C	59

LIST OF FIGURES

FIGURE

2.1	The structure of band gap energy.	6
2.2	Crsytal structures of (a) anatase, (b) rutile, (c) brookite.	8
2.3	Mechanism of photocatalysis.	10
2.4	A schematic of forming the BaTiO ₃ nanoparticles.	23
3.1	Synthesis procedure for mesoporous-assembled In_2O_3 -Ti O_2	
	photocatalysts (a) In_2O_3 -Ti O_2 and (b) Ag-loaded In_2O_3 -Ti O_2	
	by PCD method.	28
3.2	UV light irradiation system for photocatalytic activity test.	31
4.1	TG-DTA curves of the dried synthesized photocatalysts:	
	(a) pure TiO_2 and (b) $0.05In_2O_3$ - $0.95TiO_2$ mixed oxide.	34
4.2	N ₂ adsorption-desorption isotherms and pore size	
	distributions (inset) of the synthesized mesoporous-	
	assembled photocatalyst calcined at 500 °C: (a) pure TiO_2 ,	
	(b) $0.05In_2O_3$ -0.95TiO ₂ mixed oxide, and (c) 1.5 wt.%	
	Ag-loaded $0.05In_2O_3$ -0.95TiO ₂ mixed oxide.	37
4.3	XRD patterns of the synthesized mesoporous-assembled	
	In_2O_3 -TiO ₂ mixed oxide photocatalysts calcined at 500 °C	
	$(A = Anatase TiO_2).$	43
4.4	XRD patterns of the synthesized mesoporous-assembled	
	photocatalysts calcined at various temperatures: (a) pure	
	TiO_2 and (b) $0.05In_2O_3$ - $0.95TiO_2$ mixed oxide (A = Anatase	
	TiO_2 , R = Rutile TiO_2 , I = Rhombic In ₂ O ₃).	44
4.5	XRD patterns of the synthesized Ag-loaded mesoporous	
	assembled $0.05In_2O_3$ -0.95TiO ₂ mixed oxide photocatalysts	
	calcined at 500 °C (A = Anatase TiO ₂ , I = Rhombic In ₂ O ₃).	45

FIGURE

4.6	UV-visible spectra of the synthesized mesoporous-	
	assembled photocatalysts: (a) pure TiO_2 and In_2O_3 - TiO_2	
	mixed oxide calcined at 500 °C, (b) pure TiO_2 calcined at	
	500-800 °C, (c) $0.05In_2O_3$ - $0.95TiO_2$ mixed oxide calcined at	
	500-800 °C, and (d) $0.05 In_2 O_3$ -0.95TiO ₂ mixed oxide without	
	and with 1.5 wt.% Ag loading calcined at 500 °C.	50
4.7	(a) SEM image and (b) EDX area mappings of the	
	synthesized mesoporous-assembled $0.05In_2O_3$ -0.95TiO ₂	
	mixed oxide photocatalyst calcined at 500 °C.	54
4.8	(a) SEM image and (b) EDX area mappings of the	
	synthesized 1.5 wt.% Ag-loaded mesoporous-assembled	
	$0.05 In_2O_3$ -0.95TiO ₂ mixed oxide photocatalyst calcined at	
	500 °C.	55
4.9	TEM images of the synthesized mesoporous-assembled	
	photocatalysts: (a) pure TiO_2 calcined at 500 °C and, (b, c,	
	d, and e) $0.05In_2O_3$ -0.95TiO ₂ mixed oxide calcined at 500,	
	600, 700 and 800 °C, respectively.	57
4.10	TEM image and EDX point mapping of the synthesized 1.5	
	wt.% Ag-loaded mesoporous-assembled 0.05In ₂ O ₃ -	
	0.95TiO ₂ mixed oxide photocatalyst calcined at 500 °C.	58
4.11	UV-visible spectrum of CR dye solution.	60
4.12	Effect of In ₂ O ₃ -to-TiO ₂ molar ratio in terms of In ₂ O ₃ content	
	of the synthesized mesoporous-assembled In_2O_3 -TiO ₂ mixed	
	oxide photocatalysts calcined at 500 °C on the reaction rate	
	constant for CR dye degradation (Photocatalyst, 0.5 g; total	
	reaction mixture volume, 100 ml; initial CR dye	
	concentration, 200 mg/l; and irradiation time, 4 h).	63

- 4.13 Effect of calcination temperature of the synthesized mesoporous-assembled pure TiO₂ and 0.05In₂O₃-0.95TiO₂ mixed oxide photocatalysts on the reaction rate constant for CR dye degradation (Photocatalyst, 0.5 g; total reaction mixture volume, 100 ml; initial CR dye concentration, 200 mg/l; and irradiation time, 4 h).
- 4.14 Effect of Ag loading on the synthesized mesoporousassembled 0.05In₂O₃-0.95TiO₂ mixed oxide photocatalyst calcined at 500 °C on the reaction rate constant for CR dye degradation (Photocatalyst, 0.5 g; total reaction mixture volume, 100 ml; initial CR dye concentration, 200 mg/l; and irradiation time, 4 h).
- 4.15 Effect of water hardness type and concentration on reaction rate constant for CR dye degradation over the synthesized 1.5 wt.% Ag-loaded mesoporous-assembled 0.05In₂O₃-0.95TiO₂ mixed oxide photocatalyst calcined at 500 °C (Photocatalyst, 0.5 g; total reaction mixture volume, 100 ml; initial CR dye concentration, 200 mg/l; and irradiation time, 4 h).
- 4.16 Effect of initial solution pH on reaction rate constant for CR dye degradation over the synthesized 1.5 wt.% Ag-loaded mesoporous-assembled 0.05In₂O₃-0.95TiO₂ mixed oxide photocatalyst calcined at 500 °C (Photocatalyst, 0.5 g; total reaction mixture volume, 100 ml; initial CR dye concentration, 200 mg/l; and irradiation time, 4 h).

65