REFERENCES

- Arunsingkarat, K. (2012) Catalytic Partial Oxidation of Methane over NiO-MgO/Ce_{0.75}Zr_{0.25}O₂ Catalysts: Effects of Low Mg Conten and Incorporated Sequences. M.S. Thesis, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand.
- Bampenrat, A., Meeyoo, V., Kitiyanan, B., Rangsunvigit, P., and Rirksomboon, T. (2010) Naphthalene steam reforming over Mn-doped CeO₂-ZrO₂ supported nickel catalysts. <u>Applied Catalysis A: General</u>, 373, 154-159.
- Bematollahi, B., Rezaei, M., and Khajenoori, M. (2011) Combined dry reforming and partial oxidation of methane to synthesis gas on noble metal catalysts. <u>International Journal of Hydrogen energy</u>, 36, 2969-2978.
- Bartholomew, C.H. (2001) Mechanisms of catalyst deactivation. <u>Applied Catalysis A:</u> <u>General</u>, 212, 17-60.
- Bradford, M.C.J. and Vannice, M.A. (1996) Catalytic reforming methane with carbon dioxide over nickel catalysts, I. Catalyst Characterization and activity. <u>Applied</u> <u>Catalysis A: General</u>, 142, 73-96.
- Chen, J., Wu, Q., Zhang, J., and Zhang, J. (2008) Effect of preparation methods on structure and performance of Ni/Ce_{0.75}Zr_{0.25}O₂ catalysts for CH₄-CO₂ reforming. <u>Fuel</u>, 87, 2901-2907
- Choque, V., Homs, N., Cicha-Szot, R., and Ramirez, P. (2009) Study of ruthenium supported no Ta₂O₅-ZrO₂ and Nb₂-ZrO₂ as catalysts for the partial oxidation of methane. <u>Catalysis Today</u>, 142, 308-313.
- Choque, V., Ramirez, P., Molyneux, D., and Homs, Narcis. (2010) Ruthenium supported on new TiO₂-ZrO₂ systems as catalysts for the partial oxidation of methane. Catalysis Today, 149, 248-253.
- Dong, W., Roh, H., Jun, K., Park, S., and Oh, Y. (2002) Methane reforming over Ni/Ce-ZrO₂ catalysts: effect of nickel content. <u>Applied Catalysis A: General</u>, 226, 63-72.
- Enger, B.C., Lodeng, R., and Holmen, A. (2008) A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts. <u>Applied Catalysis A: General</u>, 346, 1-27.

- Khan, A., Sukonket, T., Saha, B., and Idem, R. (2012) Catalytic Activity of Various 5wt% Ni/Ce_{0.5}Zr_{0.33}M_{0.17}O_{2-δ} Catalysts for the CO₂ Reforming of CH₄ in the Presence and Absence of Steam. <u>Energy & Fuels</u>, 26, 365-379.
- Li, Y., Guo, Y., and Xue, B. (2009) Catalytic combustion of methane over M (Ni, Co, Cu) supported on ceria-magnesia. <u>Fuel Processing Technology</u>, 90, 652-656.
- Mateos-Pedrero, C., GonZalez-Carranzan, S.R., Soria, M.A., and Ruiz, P. (2007) Effect of the nature of TiO₂ support over the performances of Rh/TiO₂ catalyst in the partial oxidation of methane. <u>Catalysis Today</u>, 128, 216-222.
- Miao, Q., Xiong, G., Sheng, S., Cui, W., Xu, L., and Guo, X. (1997) Partial oxidation of methane to syngas over nickel-based catalysts modified by alkali metal oxide and rare earth metal oxide. <u>Applied Catalysis A</u>, 154, 17-21.
- Oemar, U., Hidajat, K., and Kawi, S. (2011) Role of catalyst support over PdO-NiO catalyst activity and stability for oxy-co₂ reforming of methane. <u>Applied Catalysis A</u>, 402, 176-187.
- Otsuka, K., Wang, Y., and Nakamura, M. (1999) Direct conversion of methane to synthesis gas through gas-solid reaction using CeO₂-ZrO₂ solid solution at moderate temperature. <u>Applied Catalysis A:General</u>, 183, 317-324.
- Pengpanich, S., Meeyoo, V., Rirksomboon, T., and Bunyakiat, K. (2002) Catalytic oxidation of methane over CeO₂-ZrO₂ mixed oxide solid solution catalysts prepared via urea hydrolysis. <u>Applied Catalysis A: General</u>, 234, 221-233.
- Pengpanich, S., Meeyoo, V., and Rirksomboon, T. (2004) Methane partial oxidation over Ni/CeO₂-ZrO₂ mixed oxide solid solution catalysts. <u>Catalysis Today</u>, 93-95, 95-105.
- Pengpanich, S., Meeyoo, V., Rirksomboon, T., and Schwank, J. (2007) The Effect of Nb Loading on Catalytic Properties of Ni/Ce_{0.75}Zr_{0.25}O₂ Catalyst for Methane Partial Oxidation. Journal of Natural Gas Chemistry, 16, 227-234.
- Prieto, P.J.S., Ferreira, A.P., Haddad, P.S., Zanchet, D., and Bueno, J.M.C. (2009) Designing Pt nanoparticles supported on CeO₂-Al₂O₃: Synthesis characterization and catalytic properties in the steam reforming and partial oxidation of methane. Journal of Catalysis, 276, 351-359.

- Pue-on, P. (2011) Methane Partial Oxidation over NiO-MgO/Ce_{0.75}Zr_{0.25}O₂ Mixed Oxide Catalysts. M.S. Thesis, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand.
- Qiu, M., Li, Y., Wang, T., Zhang, Q., Wang, C., and Zhang, X. (2012) Upgrading biomass fuel gas by reforming over Ni-MgO/γ-Al₂O₃ cordierite monolithic catalysts in the lab-scale reactor and pilot-scale multi-tube reformer. <u>Applied</u> <u>Energy</u>, 90, 3-10.
- Rathod, S., Arbad, B., and Lande, M. (2010) Preparation, characterization, and catalytic application of a nanosized Ce₁Mg_xZr_{1-x}O₂ solid heterogeneous catalyst for the synthesis of tetrahydrobenzo[b]pyran derivatives. <u>Chinese Journal of Catalysis</u>, 31, 631-636.
- Rogatis, L.D., Montini, T., Cognigni, A., Olivi, L., and Fornasireo, P. (2009) Methane partial oxidation on NiCu-based catalysts. <u>Catalysis Today</u>, 145, 176-185.
- Roh, H., Jun, K., Dong, W., Chang, J., Park, S., and Joe, Y. (2002) Highly active and stable Ni/Ce-ZrO₂ catalyst for H₂ production from methane. <u>Journal of</u> <u>Molecular Catalysis A: Chemical</u>, 181, 137-142.
- Ruckenstein, E., and Hu, Y.H. (1999) Methane partial oxidation over NiO/MgO solid solution catalysts. <u>Applied Catalysis A</u>, 183, 85-92.
- Ryu, J.H., Lee, K.Y., Kim, H.J., Yang, J., and Jung, H. (2008) Promotion of palladiumbased catalysts on metal monolith for partial oxidation of methane to syngas. <u>Applied Catalysis B</u>, 80, 306-312.
- Salazar-Villalpando, M.D., Berry, D.A., and Cugini, A. (2010) Role of lattice oxygen in the partial oxidation of methane over Rh/zirconia-doped ceria. Isotopic studies. <u>International Journal of Hydrogen Energy</u>, 35, 1998-2003.
- Salazar-Villalpando, M.D., and Miller, A.C. (2011) Hydrogen production by methane decomposition and catalytic partial oxidation of methane over Pt/Ce_xGd_{1-x}O₂ and Pt/Ce_xZr_{1-x}O₂. <u>Chemical Enginerring Journal</u>, 166, 738-743.
- Sengupta, P., Khan, A., Zahid, Md. A., Ibrahim, H., and Idem, R. (2012) Evaluation of the Catalytic Activity of Various 5Ni/Ce_{0.75}Zr_{0.33}M_{0.17}O₂₋₅ Catalysts for Hydrogen Production by the Steam Reforming of a Mixture of Oxygenated Hydrocarbons. <u>Energy Fuels</u>, 26, 816-828.

- Silva, F.A., Resende, K.A., Silva, A.M., Souza, K.R., Mattos, L.V., Montes, M., Souza-Aguiar, E.F., Noronha, F.B., and Hori, C.E. (2012) Syngas production by partial oxidation of methane over Pt/CeZrO₂/Al₂O₃ catalysts. <u>Catalysis Today</u>, 180, 111-116.
- Slagtern, A., Swaan, H.M., Olsbye, U., Dahl, I.M., and Mirodatos, C. (1988) Catalytic partial oxidation of methane over Ni-, Co- and Fe-based catalysts. <u>Catalysis</u> <u>Today</u>, 46, 107-115.
- Takeguchi, T., Furukawa, S., and Inoue, M. (2001) Hydrogen Spillover from NiO to the Large Surface Area CeO₂-ZrO₂ Solid Solutions and Activity of the NiO/CeO₂-ZrO₂ Catalysts for Partial Oxidation of Methane. <u>Journal of</u> Catalysis, 201, 14-24.
- Tanaka, H., Kaino, R., Okumura, T., and Tomishige, K. (2009) Catalytic performance and characterization of Rh-CeO₂/MgO catalysts for the catalytic partial oxidation of methane at short contact time. <u>Journal of Catalysis</u>, 268, 1-8.
- Tang, S., Lin, J., and Tan, K.L. (1998) Partial oxidation of methane to syngas over Ni/MgO, Ni/CaO and Ni/CeO₂. <u>Catalysis Letters</u>, 51, 169-175.
- Tsang, S.C., Claridge, J.B., and Green, M.L.H. (1995) Recent advances in the conversion of methane to synthesis gas. <u>Catalysis Today</u>, 23, 3-15.
- Tsipouriari, V.A., Zhang, Z., and Verykios, X.E. (1997) Catalytic Partial Oxidation of Methane to Synthesis Gas over Ni-Based Catalysts: I. Catalyst Performance Characteristics. Journal of Catalysis, 179, 283-291.
- Wu, T., Yan, Q., and Wan, H. (2005) Partial oxidation of methane to hydrogen and carbon monoxide over a Ni/TiO₂ catalyst. <u>Journal of Molecular Catalysis</u> <u>A:Chemical</u>, 226, 41-48.
- Xu, S. and Wang, X. (2005) Highly active and coking resistant Ni/CeO₂-ZrO₂ catalyst for partial oxidation of methane. <u>Fuel</u>, 84, 563-567.
- Yejun, Q., Jixiang, C., and Jiyan, Z. (2007) Effects of MgO promoter on properties of Ni/Al₂O₃ catalysts for partial oxidation of methane to syngas. <u>Frontiers of</u> <u>Chemical Engineering in China</u>, 1, 167-171.
- York, A.P.E., Xiao, T., and Green, M.L.H. (2003) Brief overview of the partial oxidation of methane to synthesis gas. <u>Topics in Catalysis</u>, 22, 345-358.

- Yu, C., Weng, W., Shu, Q., Meng, X., Zhang, B., Chen, X., and Zhou, X. (2011) Additive effects of alkaline-earth metals and nickel on the performance of Co/γ-Al₂O₃ in methane catalytic partial oxidation. <u>Journal of Natural Gas</u> <u>Chemistry</u>, 20, 135-139.
- Zanganeh, R., Rezaei, M., and Zamaniyan, A. (2013) Dry reforming of methane to synthesis gas on NiO-MgO nanocrystalline solid solution catalysts. <u>International Journal of Hydrogen Energy</u>, 38, 3012-3018.
- Zhu, T., and Flytzani-Stephanopoulos, M. (2001) Catalytic partial oxidation of methane to synthesis gas over Ni-CeO₂. <u>Applied Catalysis A:General</u>, 208, 403-417.

APPENDICES

Appendix A Experimental Data of Gas Calibration of GC-8A

1. Methane

Figure A1 Relationship between area and concentration of methane.

2. Oxygen

Figure A2 Relationship between area and concentration of oxygen.

3. Hydrogen

Figure A3 Relationship between area and concentration of hydrogen.

4. Carbon monoxide

Figure A4 Relationship between area and concentration of carbon monoxide.

5. Carbon dioxide

Figure A5 Relationship between area and concentration of carbon dioxide.

6. Nitrogen

Figure A6 Relationship between area and concentration of nitrogen.

Appendix B Experimental Data of Flow Meter Gas Calibration of Brooks 5850E Mass Flow Controllers

1. Methane

Figure B1 Relationship between SP and flow rate of methane.

2. Air Zero

Figure B2 Relationship between SP and flow rate of air zero.

3. Helium

Figure B3 Relationship between SP and flow rate of helium.

Temperature	X _{CH4}	X _{O2}	S _{H2} O	S _{CO}	Y _{H2} O	Y _{CO2}
(°C)	(%)	(%)	(%)	(%)	(%)	(%)
400	0.05	0.00	100.00	100.00	0.32	0.32
450	0.07	0.88	100.00	100.00	0.70	0.70
500	1.67	6.67	100.00	100.00	1.91	1.91
550	3.81	19.56	100.00	100.00	4.41	4.41
600	7.36	39.07	100.00	100.00	8.18	8.18
650	13.00	64.26	100.00	100.00	13.03	13.03
700	18.60	93.70	100.00	100.00	18.65	18.65
750	20.25	100.00	100.00	100.00	19.73	19.73
800	19.74	100.00	100.00	100.00	18.91	18.91

Appendix C Experimental Data of Catalytic Activity Tests for MPO

 Table C1
 Catalytic activity test of CZO catalyst

 Table C2
 Catalytic activity test of CZM1O catalyst

Temperature	X _{CH4}	X _{O2}	S _{H2} O	S _{co}	Y _{H2} O	Y _{CO2}
(°C)	(%)	(%)	(%)	(%)	(%)	(%)
400	0.05	0.12	100.00	100.00	0.23	0.23
450	0.07	1.34	100.00	100.00	0.74	0.74
500	0.39	7.88	100.00	100.00	2.19	2.19
550	2.85	22.81	100.00	100.00	5.31	5.31
600	8.55	47.06	100.00	100.00	10.31	10.31
650	11.36	64.33	100.00	100.00	13.34	13.34
700	16.31	88.77	100.00	100.00	18.02	18.02
750	17.86	100.00	100.00	100.00	19.78	19.78
800	17.92	100.00	100.00	100.00	19.35	19.35

Temperature	X _{CH4}	X ₀₂	S _{H2} O	S _{CO}	Y _{H2} O	Y _{CO2}
(°C)	(%)	(%)	(%)	(%)	(%)	(%)
400	0.05	0.13	100.00	100.00	0.36	0.36
450	0.07	2.16	100.00	100.00	0.77	0.77
500	1.78	9.67	100.00	100.00	2.50	2.50
550	5.27	28.66	100.00	100.00	6.46	6.46
600	12.98	60.60	100.00	100.00	12.82	12.82
650	17.42	82.19	100.00	100.00	16.78	16.78
700	19.62	96.01	100.00	100.00	19.12	19.12
750	21.44	100.00	100.00	100.00	19.94	19.94
800	21.73	100.00	100.00	100.00	19.31	19.31

 Table C3
 Catalytic activity test of CZM3O catalyst

 Table C4 Catalytic activity test of 15Ni/CZO catalyst

Temperature	X _{CH4}	X _{O2}	S _{H2}	S _{CO}	Y _{H2}	Y _{CO}
(°C)	(%)	(%)	(%)	(%)	(%)	(%)
400	1.08	5.29	0.00	0.00	0.00	0.00
450	2.92	16.41	0.00	0.00	0.00	0.00
500	8.47	44.76	0.00	0.00	0.00	0.00
550	70.76	100.00	85.02	86.32	52.66	58.53
600	77.71	100.00	92.17	93.27	59.12	69.58
650	81.81	100.00	96.11	96.71	64.26	76.42
700	83.75	100.00	98.12	98.43	66.78	80.09
750	84.44	100.00	99.06	99.23	67.60	82.10
800	84.11	100.00	99.36	99.48	67.70	83.27

Temperature	X _{CH4}	X _{O2}	S _{H2}	S _{CO}	Y _{H2}	Y _{CO}
(°C)	(%)	(%)	(%)	(%)	(%)	(%)
400	0.05	3.88	0.00	0.00	0.00	0.00
450	1.12	14.77	0.00	0.00	0.00	0.00
500	6.20	41.59	0.00	0.00	0.00	0.00
550	14.55	80.76	0.00	0.00	0.00	0.00
600	77.48	100.00	91.68	92.68	61.03	70.16
650	78.29	100.00	94.50	95.53	61.40	76.36
700	82.24	100.00	97.76	98.17	66.51	81.77
750	83.93	100.00	99.02	99.20	68.87	85.46
800	84.13	100.00	99.39	99.51	69.99	87.12

 Table C5
 Catalytic activity test of 15Ni/CZM10 catalyst

 Table C6
 Catalytic activity test of 15Ni/CZM3O catalyst

Temperature	X CH4	X _{O2}	S _{H2}	S _{CO}	Y _{H2}	Y _{co}
(°C)	(%)	(%)	(%)	(%)	(%)	(%)
400	0.31	5.90	0.00	0.00	0.00	0.00
450	3.38	22.90	0.00	0.00	0.00	0.00
500	9.71	55.79	0.00	0.00	0.00	0.00
550	12.99	91.28	0.00	0.00	0.00	0.00
600	83.59	100.00	93.51	94.02	66.01	72.05
650	87.96	100.00	96.90	97.20	70.80	78.64
700	88.56	100.00	98.61	98.78	72.32	82.95
750	88.68	100.00	99.31	99.43	70.61	85.57
800	85.17	100.00	99.42	99.52	70.44	86.16

Time	X _{CH4}	X _{O2}	S _{H2}	S _{CO}	Y _{H2}	Y _{co}
(hr)	(%)	(%)	(%)	(%)	(%)	(%)
5	69.09	100.00	98.26	98.52	65.97	78.05
10	69.31	100.00	97.38	97.78	62.94	74.62
15	69.96	100.00	97.10	97.58	61.26	73.89
20	69.51	100.00	96.87	97.24	62.15	70.73
25	67.64	100.00	96.84	96.99	62.17	75.79
30	63.84	100.00	96.08	96.65	61.57	72.64
35	63.34	100.00	95.12	95.65	60.89	68.73
40	66.62	100.00	94.63	95.25	59.3	67.50
45	65.04	100.00	93.99	94.75	57.22	66.04
50	63.84	100.00	94.39	95.11	59.69	68.95

Appendix D Experimental Data of Stability Tests for MPO

 Table D1
 Stability test of Ni/CZO catalyst

 Table D2
 Stability test of Ni/CZM1O catalyst

Time	X CH4	X _{O2}	S _{H2}	S _{CO}	Y _{H2}	Y _{co}
(hr)	(%)	(%)	(%)	(%)	(%)	(%)
5	73.20	100.00	97.90	98.23	62.09	73.92
10	72.63	100.00	97.54	97.86	61.93	71.48
15	72.54	100.00	97.32	97.69	61.92	72.20
20	72.26	100.00	97.03	97.48	60.33	71.46
25	72.51	100.00	96.70	97.21	59.89	71.21
30	72.15	100.00	96.65	97.10	61.80	71.69
35	73.14	100.00	97.61	97.93	63.29	73.42
40	71.42	100.00	96.08	96.64	60.06	70.46
45	70.72	100.00	95.58	96.00	61.27	68.02
50	70.11	100.00	95.32	95.94	58.80	68.26

Time	X CH4	X _{O2}	S _{H2}	S _{CO}	Y _{H2}	Y _{CO}
(hr)	(%)	(%)	(%)	(%)	(%)	(%)
5	74.92	100.00	99.19	99.30	66.86	77.12
10	74.14	100.00	99.15	99.28	64.72	76.88
15	74.38	100.00	99.16	99.28	66.31	77.36
20	75.28	100.00	99.09	99.18	67.38	75.44
25	74.09	100.00	98.98	99.14	64.17	76.16
30	73.35	100.00	99.10	99.23	65.48	76.40
35	73.02	100.00	98.98	99.14	64.69	76.63
40	73.75	100.00	98.99	99.12	66.03	75.68
45	73.59	100.00	98.95	99.09	65.23	75.44
50	74.14	100.00	99.05	99.20	65.36	77.83

 Table D3
 Stability test of Ni/CZM3O catalyst

 Table D4
 Stability test of Ni/CZO catalyst cycle 1

Time	X _{CH4}	X _{O2}	S _{H2}	S _{co}	Y _{H2}	Y _{CO}
(hr)	(%)	(%)	(%)	(%)	(%)	(%)
1	73.69	100.00	98.90	99.05	66.92	77.11
2	71.12	100.00	98.49	98.69	66.9	77.57
3	69.77	100.00	97.98	98.06	66.36	77.07
4	69.35	100.00	98.01	98.27	67.44	77.79
5	69.09	100.00	98.26	98.52	65.97	78.05
6	68.25	100.00	97.83	98.10	66.32	75.85
7	69.22	100.00	97.64	97.88	67.70	75.84
8	68.53	100.00	97.98	98.20	66.11	74.40
9	69.22	100.00	97.53	97.83	64.83	74.14
10	69.31	100.00	97.38	97.78	62.94	74.62

Time	X CH4	X _{O2}	S _{H2}	S _{CO}	Y _{H2}	Y _{co}
(hr)	(%)	(%)	(%)	(%)	(%)	(%)
1	72.34	100.00	96.70	97.00	64.86	71.44
2	72.47	100.00	96.54	96.98	63.37	72.89
3	72.26	100.00	96.66	97.00	62.98	70.48
4	70.34	100.00	95.77	96.28	60.73	69.48
5	69.82	100.00	95.27	95.68	60.55	66.56
6	70.47	100.00	94.55	94.87	61.05	65.08
7	70.85	100.00	94.77	95.43	57.77	66.55
8	69.23	100.00	94.15	94.76	57.87	65.07
9	71.00	100.00	95.49	96.00	58.99	66.81
10	70.14	100.00	94.57	95.19	57.73	65.57

 Table D5
 Stability test of Ni/CZO catalyst cycle 2

 Table D6
 Stability test of Ni/CZM1O catalyst cycle 1

Time	X CH4	X _{O2}	S _{H2}	S _{CO}	Y _{H2}	Y _{co}
(hr)	(%)	(%)	(%)	(%)	(%)	(%)
1	75.59	100.00	98.25	98.47	63.43	72.72
2	74.70	100.00	98.19	98.48	63.15	75.38
3	74.22	100.00	98.21	98.45	64.64	74.66
4	74.18	100.00	98.02	98.30	64.38	74.89
5	73.20	100.00	97.90	98.23	62.09	73.92
6	72.67	100.00	98.03	98.23	64.72	72.47
7	73.52	100.00	97.89	98.21	63.45	74.89
8	73.05	100.00	97.73	97.98	64.71	72.94
9	73.22	100.00	97.70	97.98	64.06	73.18
10	72.63	100.00	97.54	97.86	61.93	71.48

Time	X CH4	X _{O2}	S _{H2}	S _{CO}	Y _{H2}	Y _{CO}
(hr)	(%)	(%)	(%)	(%)	(%)	(%)
1	72.73	100.00	97.28	97.63	63.40	72.92
2	71.68	100.00	97.26	97.58	64.51	73.16
3	72.13	100.00	97.19	97.54	63.86	73.16
4	71.91	100.00	97.05	97.44	63.17	73.16
5	72.35	100.00	97.04	97.42	63.17	72.67
6	72.23	100.00	96.85	97.26	63.17	72.91
7	71.95	100.00	96.80	97.20	62.89	72.18
8	71.49	100.00	96.66	97.09	61.77	71.21
9	71.18	100.00	96.59	97.02	61.86	71.20
10	71.58	100.00	96.60	97.06	62.26	72.41

 Table D7
 Stability test of Ni/CZM1O catalyst cycle 2

 Table D8
 Stability test of Ni/CZM3O catalyst cycle 1

Time	X CH4	X _{O2}	S _{H2}	S _{CO}	Y _{H2}	Y _{CO}
(hr)	(%)	(%)	(%)	(%)	(%)	(%)
1	82.10	100.00	99.32	99.36	71.79	76.89
2	80.40	100.00	99.26	99.31	71.39	77.12
3	77.89	100.00	99.24	99.32	69.37	77.36
4	75.42	100.00	99.23	99.33	66.99	76.40
5	74.92	100.00	99.19	99.30	66.86	77.12
6	74.52	100.00	99.16	99.28	66.22	77.36
7	73.72	100.00	99.14	99.26	66.16	77.36
8	73.76	100.00	99.12	99.23	67.13	77.12
9	73.53	100.00	99.15	99.27	66.37	76.88
10	74.14	100.00	99.15	99.28	64.72	76.88

Time	X CH4	X _{O2}	S _{H2}	S _{CO}	Y _{H2}	Y _{CO}
(hr)	(%)	(%)	(%)	(%)	(%)	(%)
1	72.34	100.00	96.70	97.00	64.86	71.44
2	72.47	100.00	96.54	96.98	63.37	72.89
3	72.26	100.00	96.66	97.00	62.98	70.48
4	70.34	100.00	95.77	96.28	60.73	69.48
5	69.82	100.00	95.27	95.68	60.55	66.56
6	70.47	100.00	94.55	94.87	61.05	65.08
7	70.85	100.00	94.77	95.43	57.77	66.55
8	69.23	100.00	94.15	94.76	57.87	65.07
9	71.00	100.00	95.49	96.00	58.99	66.81
10	70.14	100.00	94.57	95.19	57.73	65.57

 Table D9
 Stability test of Ni/CZM3O catalyst cycle 2

Appendix E Temperature programmed oxidation of spent Ni-doped catalyst

Figure E1 The TPO profiles of spent Ni-doped catalysts.

CURRICULUM VITAE

Name: Mr.Ratchaphon Sukkaeo

Date of Birth: August 6, 1988

Nationality: Thai

University Education:

2007-2011 Bachelor Degree of Engineering in major of Petrochemicals and Polymeric materials, Faculty of Engineering and Industrial technology, Silpakorn University, Nakorn Pathom, Thaland.

2011-2012 Master Degree of Science in Petrochemical technology, The Petroleum and Petrochemical College, Chulalongkorn University, Thailand.

Working Experience:

2010	Position:	Trainee (1 month)
	Company name:	TOC Glycol Co., Ltd.

Proceedings:

1. Sukkaeo, R.; Rirksomboon, T.; and Meeyoo, V. (2013, April 23) Catalytic Partial Oxidation of Methane Over NiO/Ce_{0.75}Zr_{0.25-x}Mg_{2x}O₂-Based Catalysts. Proceedings of The 19th PPC Symposium on Petroleum, Petrochemicals, and Polymers, Bangkok, Thailand.