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CHAPTER 1

INTRODUCTION

Over a long period of time, physicists had started to discover the laws of
Nature by observing facts about Nature. The patterns of Nature behaviors have
been seen and the equations were written down. In this way, the electromagnetic
(EM) theory was formulated. The EM theory, however, was seen in a deeper
view. In the 19th century, physicists knew that the Maxwell’s equations have
the Lorentz symmetry. Einstein put this fact to use in developing his theory of
Special Relativity. Today, physicists extract symmetries from the assumptions
and formulate a law of Nature with regarding to the symmetries. Symmetries in
modern physics have taken an even stronger role to such an extent that the laws
of modern physics cannot even be formulated without the concept of symmetry
[1]. In particle physics, the Standard Model (SM) describes elementary particles
and their fundamental interactions based on symmetries. The SM action has the
Lorentz symmetry and the symmetry under translations in spacetime. All fields
in the SM therefore belong to some representations of the Poincaré group. The
interactions in the SM are described by the gauge bosons which mediate strong,
weak and electromagnetic-interactions. The laws of interactions are constructed
from a gauge principle which states that the Lagrangian is invariant under the
local symmetry transformations. The electromagnetic and weak interactions can
be unified into the electroweak (EW) interactions through the process of spon-
taneous symmetry breaking. The spontaneous symmetry breaking implies the
existence of the scalar field called the Higgs field. The interactions of the Higgs
field with any particle cause the particle to acquire mass after the symmetry
breaking.

The results from decades of theoretical and experimental research have

confirmed that the SM is extremely successful in that its predictions have agreed



very well with the experimental results of high precision. The SM, however, is
not the best theory for understanding the fundamental laws of Nature. There
have been many unsolved problems in the SM. We now give a brief overview of

some important problems:

1. The SM cannot explain a number of arbitrary parameters:

Parameter Amount
Quark masses 6
Leptons masses 3
Mixing angles 6; 3
QCD 4 1
Phase ¢ 1
Coupling constants 3
Higgs sector 2
Total 19

These parameters appear in the equations, and they just have to be put in
to make the theory fit observations. For example, if one asks “Why is the
top quark, which is the heaviest known elementary particle, something like

300,000 times heavier than the electron?” The answer is “We don’t know.”

2. People believe that the SM is just an effective low energy theory. So one
needs more fundamental theory which has a larger domain of validity ex-
tending to smaller distances, or equivalently, to higher energies that have
not yet been explored by particle accelerators. A possible theory, so-called
the Grand Unified Theory (GUT), has been proposed. The GUT unifies
the strong, weak and electromagnetic interactions in the sense that they
become a part of a larger gauge group with a single coupling constant. One
motivation for the unification comes from renormalization group calcula-
tions which show that the strengths of three effective (running) coupling
constants tend to the same value at the grand unification scale of about

Megyr ~ 1016 GeV. This motivated some people to construct a GUT model
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Figure 1.1: The plot of the inverse of the coupling constants of electromagnetic
(cv1), weak nuclear (a3), and strong nuclear («3) forces as functions of the energy
scale according to the renormalization group calculations in the Standard Model.
with one gauge group with only one coupling constant above the Mgyt
scale. Below this scale, the GUT gauge group should be broken to the Stan-
dard Model gauge group in the same way that the electroweak gauge group
SU(2),xU(1)y is broken to the electromagnetic gauge group U (1) gy below
the weak scale My, ~ 100 GeV. However, using the data of high precision
for the coupling constants at the weak scale, the SM calculation indicated
that the coupling constants do not really tend to a single value at any high
energy scale. the standard model miss each other. This is shown in Fig.

1.1.



3. The hierarchy problem cannot be solved by the SM itself. The problem
arises from the fact that the difference between the EW scale and the GUT
scale is extremely large. In the calculation of the Higgs mass in the SM,

one obtains the result
My = Mg e + O(A?), (1.1)

where my is the observed Higgs mass (physical Higgs mass), mpy pare 18
the bare Higgs mass which is the mass parameter that appears in the SM
Lagrangian, and O(A?) represents the quantum corrections from the effect
of interactions between Higgs and other particles with “A” being the cutoff
energy. One can view A as the energy scale above which the SM is not
valid and the new physics occurs. One expects that A is the GUT scale
(~ 10' GeV). There are, however, bounds on the Higgs mass. By imposing
the condition to preserve the unitarity of the WTW~ — WTW ™ scattering
amplitude [2], the physical Higgs mass needs to have an upper bound, mg <
1 TeV. Thus in order to get the acceptable value of Higgs mass, the bare
mass must be fine-tuned to a very high precision in order to cancel the very
large quantum correction terms. This has annoyed physicists so much that

they called it a hierarchy problem.

4. The gravity cannot fundamentally be unified with the other interactions of
the Standard Model. Although it is possible to study quantum field theories
on a curved spacetime (in which gravity is treated as a classical background
field, and particles and other fundamental forces are described by quan-
tum fields), it is far from how to unify or connect a quantization of gravity
with the SM. In this context, a second related problem is the cosmological
constant, the energy of the vacuum. The energy density calculated by in-

voking spontaneous symmetry breaking in the SM is 50 orders of magnitude



higher than the observational limit. This necessitates excessive fine tuning
between bare pieces, which have, a priori, no reason to be related to each

other at all.

There are many theories proposed to solve these problems. Once again, physi-
cists also expect the symmetry to play the central role in all of them. Which
symmetries are available? Looking at the SM, it has both the spacetime sym-
metry via the Poincaré group and the internal symmetry in the field space via
the gauge group separately. Are there any more general kinds of symmetry than
these? In 1974, Haag, Lopuszanski and Sohnius showed that the supersymmetry
constitutes the only possible non-trivial generalization involving the Poincaré and
internal symmetries [3]. Thus supersymmetry is one of the candidates to extend
the SM.

Supersymmetry (SUSY) is, by definition, a symmetry between fermions
and bosons [4]. Hence SUSY implies that there are equal numbers of fermionic
and bosonic degrees of freedom in Nature. SUSY assigns to each fermion a bosonic
partner, and vice versa. They are called the superpartner of each other.

The problems of the SM above can be solved by supersymmetry. For ex-
ample, because every fermion has a bosonic superpartner, the hierarchy problem
can be solved in supersymmetry by reducing the quadratic divergences (O(A?))
to logarithmic divergences (O(log A?)) with a cancellation of Feynman diagrams
which separately correspond to fermions and bosons. However, in a truly super-
symmetric theory the masses of a fermion and its superpartner have to be the
same, but the superpartner of each SM particle has not yet been observed in
Nature. Thus in a viable theory, supersymmetry has to be broken by introducing
the mass difference between each fermion and its superpartner without causing
the quadratic divergences to reappear.

One of the simplest model of the supersymmetric extension of the Stan-

dard Model is the Minimal Supersymmetric Standard Model (MSSM). In the



MSSM, all particles of SM are doubled with their superpartner except the Higgs
particle. There are five Higgs bosons in the MSSM. The lightest supersymmet-
ric Higgs which is denoted by h° and has the tree-level mass less than that of
the Z boson, yet it has not been observed experimentally. Unfortunately (for
experimentalists at least!) myo can receive the radiative corrections which possi-
bly cause it to become heavier than mz. Thus it is interesting to compute the
radiative corrections to mjpo.

The organization of this thesis is as follows. In Chapter 2, we review
the construction of the Standard Model from the postulate that it obeys some
practical symmetries. In detail, we briefly review some necessary Lie group the-
ory which is the mathematical language of continuous symmetry, and use the
formalism to construct the dynamics of the SM. In Chapter 3, the general su-
persymmetric field theory and the MSSM are constructed analogously, excepted
that they are based the graded Lie groups instead of the ordinary Lie groups. In
Chapter 4, the Higgs phenomenology will be reviewed. The one-loop effective po-
tential for the supersymmetric Higgs fields is calculated to analyze the bound on
the mass of the lightest supersymmetric Higgs particle. Finally the conclusions

are made in Chapter 5.



CHAPTER 11

THE STANDARD MODEL

In order to comprehend the extension of the Standard Model with super-
symmetry, the construction of the Standard Model (SM) with symmetries should
be understood before. To describe the symmetries of the physical theories, physi-
cists use the idea of group theory. In this chapter, we start with a brief review
of group theory paying a particular attention to the Poincaré group, and then go
on to discuss particles in quantum field theory, as representations of the Poincaré
group. To describe the interactions in the SM, we next discuss gauge symmetries
which, together with the Poincaré symmetry, dictate the possible form of the dy-
namics of the theory. After that, the symmetry group SU (3), xSU (2); xU (1),
of the SM is presented. We end this chapter with a discussion of the breaking
of SU (2), x U (1), (weak isospin x hypercharge electroweak symmetry) via the

Higgs mechanism which gives masses to the particles.

2.1 Mathematical Descriptions of Symmetries

2.1.1 Some Group Theory

By studying the composition of symmetry transformations; one can conclude that
they form a group. In this section, we briefly discuss basic ideas of group theory,
paying a particular attention to Lie groups and Lie algebras. We begin with the

definition of group.

Definition 1. A group (G, o) consists of a set G together with a composition
law denoted by o which associates an element x oy € G to each pair of elements

(x,y) € G X G such that the following properties are satisfied:

1. Associativity: xo (yoz)=(xoy)oz forall z,y,z €G.



2. There exists an identity element, e € G, such that eox =xoe =x for

allr € GG.

3. For each © € G, there exists an inverse element, x=1 € G, such that x o

rl=zxlox=e.

The group is said to be abelian if the commutative law x oy = yox holds
forallz,y € G.
If the elements of G only satisfy the first two properties, then (G, o) is

called a semigroup.

The kind of groups that, plays most important roles in particle physics is
Lie group [5]. A Lie group is the group whose elements are parametrized by a
set of continuous parameters, which are normally treated as the coordinates of
a manifold, called a group manifold, whose dimension is called the dimension of
the Lie group. By convention, these parameters are set to zero for an identity
element; this means that the identity element is associated with the origin of the
coordinate system on the group manifold. A small deviation from the identity
element (that is, the group element “nearby” the identity) is thus specified by a
direction (or vector) from the origin, which is expressed as a linear combination
of the basis vectors (with either real or complex coefficients which play the role
of the continuous parameters) on the tangent space of the identity element. Such
the basis vectors are called the generators of the Lie group.

Let A be a linear combination of the generators. Then it can be proved
that any element g of a Lie group, which is connected to an identity element by a

continuous curve on the group manifold, takes the form of the exponential map,
g = exp(A).

Moreover, the group generators are required to form the basis of a Lie algebra [6]

defined formally as follows.



Definition 2. A Lie algebra consists of a vector space L over a field F (here R

or C) with a composition rule called product, written o, defined as follows:
o : LXLr— L
If vy, v9,v3 € L, then the following properties define the Lie algebra:

1. Closure : viovy € L.
2. Linearity : vy o (vg + v3) = v1 0wy + ¥3 O 3.
3. antisymmelry : vy © Uy = —Vy O V7.

4. Jacobi identity : vy o (vy+v3) + vg 0 (v3 +v1) + w30 (v1 +v3) =0.

For a Lie group of which the generators are basis vectors, the product o
is just a Lie bracket of two vectors.

It can be shown that most Lie groups are matrix groups, in which the
elements are square matrices and the product of two group elements is just an
ordinary matrix multiplication. In such cases, the generators are simply the
square matrices; the exponential map is just an ordinary exponential of a matrix,
defined as a Taylor series exp A = > > A" /nl; and the Lie algebra product o is
a commutator of two matrices.

A familiar example of matrix Lie groups is a group of 2 x 2 unitary
matrices with' unit' determinant, known-as the ‘special unitary group SU(2,C)
with complex parameters. Its generators are complex, traceless, antihermitian

2 x 2 matrices with the Lie product
aob=la,b] =ab— ba. (2.1)

The associated Lie algebra L is called su(2,C). The most popular basis consists
of three matrices

1
T — =05
2

where the o; are the three Pauli matrices.
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2.1.2 Lorentz and Poincaré Groups

In the special theory of relativity, one demands that physics be invariant un-
der Lorentz transformations. The group of Lorentz transformations, called the
Lorentz group, is a Lie group. In detail, the Lorentz group is the group which

0

leaves an interval (x —y)? = (2° —y°)? = |# — 7]? in the Minkowski space invariant,

i.e., all linear coordinate transformations
z— 1 = Aw

such that (z —y)? = (@' —¢/)?. Thus it is a special orthogonal group SO(1, 3),

and its element A € SO(1,3) can be written in the exponential form
A= [exp(—%wp"]\/[pa)] (2.2)

where the generators M,, and the parameters w?? are antisymmetric in p and o,
and the factor i appears so as to make (M,,) hermitian. M, are related to the

rotation generators M, My, M5 and the Lorentz boost generators Ny, Ny, N3 by

0 —K; —-K, —K;
e . A
M) =\g, =3 0 7 |
Ky J, —Ji 0

where J; = iMj, K; =iN;. The 4 x4 matrices (M,,) constitute a basis of the Lie

algebra o(1, 3), with the commutation relations

(M3 Mps] &= =i Myd=nps Myy —0,p Mot 105 M) (2.3)

where 7, = diag(1,—1,—1,—1) is the metric tensor.
Besides the Lorentz transformations, one can see that a translation 7, (a)

which changes the coordinates = by

r—1 =T(a)r=x+a
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with a a constant four-vector, also leaves the Minkowski interval invariant. Cer-

tainly, one can write T, (a) in the exponential form
T,(a) = exp[—ia*Py] (2.4)

where P, are the translation generators.
By combining Lorentz transformations and translations, one obtains the

Poincaré group which transforms the spacetime coordinates as
v — 2 =Ar+a. (2.5)

It is the largest group that leaves the Minkowski interval invariant. Thus the
Poincaré group has the generators of Lorentz transformations M, and the gen-

erators of translations P, satisfying the Lie algebra

[Pua Pz/] =0 (2.6)
[M/W? P)\] = _i(nu)\Pu — nu)\Pu> (27)
(M, Mol = —i(Mu Mo — Tuo Myp = oMo + Nve M) (2.8)

In quantum field theory, an elementary particle may be viewed as the
“quantum” of a classical relativistic field A;(x) which may be labeled by some set
of indices, denoted. collectively by ¢. -To form a relativistically invariant action,
the field A;(z) must be a representation of the Poincaré group (that is, it must
have the consistent transformation properties with respect to the Poincaré trans-
formations) otherwise one cannot construct a Poincaré invariant action using the
field together with some other objects, such as spacetime derivatives [7]. Thus
the collective index ¢ may consist of some indices responsible for the Poincaré
transformations together with some other indices which make the field transform

as some representations of other symmetry groups of the theory.
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2.1.3 Representations of Lorentz and Poincaré Groups

So far, we have considered a group element as being an abstract mathematical
object, defined by its composition rules with other group members. To incorpo-
rate the symmetries into the theory, we have to construct a concrete form of the
group elements in terms of the objects that we already knew (such as matrices
or differential operators) together with a space on which the group elements act.
Such a space may be a finite dimensional vector space or a space of functions,
and is called a “representation space.”

Starting with the Lorentz group, we are interested in the representations
in the form of functions of spacetime possibly with indices. More specifically,
a set of objects ¢, with i = 1,...,n, is said to transform as an n dimensional

representation of the Lorentz group if it transforms as
i i 4 Lo .,
¢ = [exp(—éwp Mpa)} @’ (2.9)
J

where [exp(— 2w M,,)] : ; is a matrix representation of dimension n of the Lorentz
group. If ¢, are also spacetime functions ¢;(z), then the Lorentz transformation
generally affects x.

The simplest example of this is the case of a scalar field ¢(x), which is

invariant under the Lorentz transformation in the sense that

o) = ¢'(a") = 0/(Ax) < 4(a), (2.10)

A more complicated example is given by a vector field V#(z) with one spacetime

index, which under z* — " = A x", transforms as
Vi(x) — V(') = A* VY (2). (2.11)

Here the matrix representation in (2.9) is just a transformation matrix for the

spacetime coordinates.
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In general, a tensor field of arbitrary rank 7+t-#m, () can be built
out of a vector by adding more indices, and transforms multilinearly with the
transformation matrices A:

/

Jeeny _ v
Tﬁ‘l umul,...,yn(l‘) — A#l'u/l e A#mu Al/1 1

/
m

AT () (2.12)

190

These are tensor representations which yield a large class of relativistic fields.
Besides the tensor representation, however, there are also spinor representations
of the Lorentz group, which are less obvious. Such representations can be found
by a trick due to Dirac.

We start with defining the 4 x 4 matrices 4* which satisfy

{7 7Y = v = 2 T (2.13)

Then we can construct a representation of Lorentz generators as

1 i
Y= L (gAY — AV 2.14
5 4(77 ) (2.14)

which satisfy the Lorentz algebra (2.8). The representation space on which ¥#”
acts is 4-dimensional complex representation space, called the Dirac spinor ¥p.
In quantum field theory, this representation describes a spin-1/2 particle.

A particularly useful representation of the gamma matrices is the Weyl

representation defined by

0. ot
'u': ——
s G L S A (215)
where
o' = (Iyxa, T) (2.16)
7 = (Lhxy,—0) =0, (2.17)

That this representation is useful is due to the fact that the “chirality” operator

~® defined by

. —1I 0
75 = 2’70’71’72’}/3 — ( 5><2 I ) (218)
2x2
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is block diagonal. Moreover, by substituting the representation (2.15) into (2.14),

the Lorentz generators in this representation read

1 ¢ - i (o8 0
_201 _ 0 i 7 ) 21
2 105 2(0 —o—l)’ (2.19)

and

eIhyk (2.20)

| BEPPR - VEL A O 1
ol gLV IR B Ll —
= =g ] =5 (0 a’f) 2
which are also block diagonal. This means that the 4 x 4 representation above

is reducible. To decompose it into irreducible parts, we express the Dirac spinor

U p in the Weyl representation as

Uy = (\I\Ij;) (2.21)

where

U, = <:ﬁ;> — (A=1,2) (2.22)
Uy = @:) = () @=f) (2.23)

The two component objects W, and Wg, called the left-handed and the right-
handed Weyl spinors respectively, are irreducible representations of the Lorentz
group. The reason behind the names left-handed and right-handed is as follows.
In field theory, these spinors satisfy the Dirac equations. If the masses of these
spinors are zero, then it can be shown that the particle’s spin is always parallel
(anti-parallel) to its momentum for the right-handed (left-handed) spinor. Thus
the operators P, = (1 —+°)/2 and Pr = (1+~°)/2 are projection operators that
project out the left-handed and right-handed parts of the Dirac spinor respec-
tively, hence the name chirality operator for v°.

It is easily seen that, under an infinitesimal rotation with parameters ¢’

(and X% as generators) and an infinitesimal boost with parameters 3' (and 3%
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as generators), these spinors change by

. g g

U, o (1—@9-5—5-5) W, = AL (2.24)
. g g

Uy — (1 —i0- 2+ 8- 5) U = Aplp. (2.25)

From (2.24) and (2.25), we obtain the properties
A AR = KM~ L, (2.26)

where A;, and Ag are Lorentz transformation operators for left-handed Weyl and
right-handed Weyl spinors respectively.
We now discuss some algebras of Weyl spinors. The indices of ¢4 are

raised and the indices of XA are lowered using the matrices

e = (ean) = ((1) _01) = (et2)7 (2.27)

and

€= (eAB) = <_01 é) — (ea)” (2.28)

according to the rule

o=y and Y, = eipx’. (2:29)

Short-hand notations for summations over indices are defined differently for dot-
ted and undotted indices. For undotted indices, sum over indices is defined ac-
cording to the nerthwest-southeast rule, while the southwest-northeast rule is

applied for the summation over dotted indices:

(¥x) = ¥*xa = €*PUpxa = Yox1 — U1xe (2.30)

(¥%) = X" = EABEBYA = Eif - @Qii- (2.31)

For ¢ matrices, they have mixed indices as

ot = (). o= (on) (2.32)
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since they provide a mixing of left-handed and right-handed Weyl spinors accord-

ing to (2.15). It can be checked that o and " are related as follows:

o = eape i o PP (2.33)
orAd = EABEABUZB . (2.34)

One can also show that o2?1* transforms like % under the Lorentz transformation
and that o*y* transforms like 9. Left-handed and right-handed Weyl spinors

thus can transform into one another by complex conjugation:

—A

(Wa) =1 . (2.35)

As a Dirac spinor is a direct sum of two irreducible representations of
the Lorentz group, there is a standard way of reducing the number of degrees
of freedom of the Dirac spinor so that the resulting spinor contains only one
irreducible representation. One defines a Majorana spinor W,; as a Dirac spinor

in which ¢4 and XA are not independent, but are related by 74 = i52¢)%. Thus

v (zaz%) = (gﬁ) . (2.36)

Thus, it has the same number of degrees of freedom as that of a Weyl spinor,
although it is written in the form of a Dirac spinor. From this definition, it follows

that a Majorana spinor is invariant under the charge conjugation defined by
4 —T
where
: 2
C = (Zg 02) (2.38)

and

U= Uly0 (2.39)
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We see that the Majorana spinor is invariant under “complex conjugation,” and
so it is sometimes called a real spinor. Note that the process of reducing the
degrees of freedom above is equivalent to imposing the constraint ¥ = W¢ on the
Dirac spinor.

So far, all necessary field representations of the Lorentz group have been
considered, but the representations of the Poincaré group have not been discussed
yet. As mentioned earlier, the Poincaré group is the largest group that leaves the
metric in the Minkowski space invariant. Thus, to have a theory whose physics
does not depend on both the Lorentz frame and the origin of the coordinate
system, all fields must be the representations of the Poincaré group. In particular,
after the theory is quantized, the basis of the Hilbert space of a free particle is
considered the representation of the Ponicaré group.

To label the physical states, we need the operators whose eigenvalues
are invariant under the action of all elements of the Ponicaré group. Thus these
operators must commute with all generators of the Ponicaré algebra, and they are
called the Casimir operators. As the Casimir operators are normally constructed
from the generators, they commute among themselves and so have simultaneous
eigenvectors and eigenvalues. As a result, all eigenvectors with the same set of
eigenvalues of the Casimir operators form an‘irreducible representation of the
group.

There are two Casimir operators for the Poincaré group.. The first one is
quite obvious; we first observe that P? = m?, or the mass squared, commutes with
all generators and is therefore a Casimir operator. Under the Lorentz transfor-
mations, it transforms as a scalar and hence is invariant. Certainly, it is invariant
under translations because all translations commute.

To find the other Casimir operator, one introduces

1
W = Se™ P, My (2.40)
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which is called the Pauli-Lubanski tensor. Using the commutation relations of
the Poincaré group, one can verify that the square of this tensor W? is a Casimir
operator. Thus all physical states in quantum field theory can be labeled with the
eigenvalues of these two Casimir operators. However, the physical significance of
W? operator is not easy to understand.

To find the physical significance of 772, let us consider the rest frame of

—.

a massive particle: P, = (m,0). Inserting this into (2.40), we find that

W = —Emﬁijk()]\/[jk (241)
WP =0 (2.43)

where J; is just the usual rotation matrix in three dimensions. Thus, in the rest
frame of a massive particle, the Pauli-Lubanski tensor is just the spin generators.
Its square is therefore the Casimir of SO(3) (rotation group), which we know

yields the spin of the particle:
W2 =—=mZs(s=1) (2.44)

where s is the spin of the particle.
However, we have not discussed massless particles. Since the massless

particle has m? = 0, then P? = 0. If moreover W? = 0, or
W Wlp) =0, P Plpy=0 (2.45)

where [p) is a particle state of momentum p which belongs to the subspace P? =

W2 = 0. From (2.40), it is clear that W* and P* are orthogonal:
W.P=0=W"-Plp)=0. (2.46)
From (2.45) and (2.46), we conclude that they must be proportional to each other,

(WH = AP") |p) = 0 (2.47)
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with A being a proportionate constant. Thus the massless states in this subspace
can be characterized by one number A, which is the ratio of W# and P* and
so has the dimension of the angular momentum. It is called the helicity. If the
parity is included, the helicity can have both plus and minus signs, +|A|. To
see what A actually is, we use the frame in which P* = (P,0,0,P). In this
frame, P’ = P = |P| and W9 = €'/ ;M /2 = P - S where S is the spin of the
particle. This implies A = P- S - |]3| is a projection of the particle’s spin along its
3-momentum direction, hence the name helicity.

Now, we can label all one-particle states with the eigenvalues of these

Casimir operators. A complete list of states is give in terms of the mass (m), spin

(s) and helicity (A):

P?>0: Im,s),s=0,1/2,1,3/2. .. (2.48)

P*=0: [ (2.49)

2.2 Dynamics of Fields from Symmetries

In the previous section, we considered the fields as the representations of, but not
limited to, the Poincaré group. In this section, we study the dynamics of fields

using only the symmetry principles.

2.2.1 The Actions with Lorentz Symmetry

When you believe that the law of physics does not change upon some transfor-
mations, it is the law of symmetry. From the modern point of view, the laws of
physics are described by the actions. Thus to say that a law of physics has a
symmetry is equivalent to saying that the action is invariant under the transfor-
mations associated with that symmetry. Thus the symmetries dictate the possible

forms of the action one would like to construct.
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For a real scalar field, an action describing the non-trivial dynamics must
contain 0,¢. In order to be a Lorentz invariant action, the index p must be con-
tracted with another factor 0*¢. Therefore the kinetic term must be proportional
to two time derivatives 0,¢0"¢ (because we don’t know how to quantize actions
with more than two time derivatives). The other terms involve the polynomials
of ¢. If we moreover demand that the action of the scalar field be invariant under
the transformation ¢ — —¢ so as to exclude terms of odd power in ¢ (which
may render the potential unstable) form the action, we end up with the Lorentz

invariant action of the form
a1 2 1 55 1 4
S(0) = [l [S@0) —smi¢ = e+ | (250)

where various numerical factors have been put in for convenience. The terms
without the spacetime derivatives form the negative of the potential V' (¢), so we

generally write

s@) = [ de() 2.51)
[z 3007 -via). (2:52)

where L£(¢) is the Lagrangian of the scalar field. The quadratic term of the poten-
tial is the mass term; while higher powers; like ¢*, ¢% etc. give non-linear contri-
butions to the equation of motion, and therefore correspond to self-interactions.

For spinor fields, each term in the Lagrangian is non-trivial. To construct
the scalar terms from spinors, one notices that \IJTL\IJR and \I/%\IJL are Lorentz

scalars:

Uiwp — UIATART, =0, (2.53)

Ui, — UhALA U, = uho, (2.54)

where the properties ATLAR = ATRAL = 1 have been used.
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To construct vector quantities from spinors, more properties of v matrices

are needed. Using the antisymmetry of w,, and (2.14), we find

EwWZ“”, vk} = —iww [V 7] (2.55)
= —iww (Y = ) (2.56)
< iw/w (2 + vy — 294g™) (2.57)
- %w,w (P g™) (2.58)
= (2.59)

or equivalently,

(1 + %WWEW> A (1 = %WWZW> = (1 — %wkﬂ) 7. (2.60)

This equation is just the infinitesimal form of

where

ATy AL = ALY, (2.61)
2

Ay = exp (—%WWZ’“’> . (2.62)

By using (2.61) and the properties ATL = Ag' and AE = A;', it is clear that

the quantities \IITLE“\I! 1, and ‘IILJ“\II r transform as four-vectors. Therefore it is

possible to write the Lorentz invariant kinetic terms which are of first order in

the derivatives,

and

L(Wy) = W0, 0 (2.63)

L(Vg) = iWLotd, Vg (2.64)
Now, the spinor action is defined as
S = / d'z Lo (2.65)

= / d*x [qf}aﬂa“\h + iU, Up + m(V Vg + ULU, )| (2.66)
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where Lp denotes the Dirac Lagrangian. In terms of the Dirac spinor, the above

action reads

S() = l/ d'xWp(iv"d, — m)¥p (2.67)

which is a compact form.
Finally, we consider the Lorentz invariant action of the vector fields.
An electromagnetic field is a good example of the vector fields. It is described by

a four-vector A,, the gauge potential. The ficld strength tensor is defined as

Fl, = 0,4, — 9,A (2.68)

VAR

which is related to the electric and magnetic fields by

FY¥ . =.04"= 3A = —F' (2.69)

Fi = _¢kBk, (2.70)

The Maxwell equations in the absence of sources can be derived from the action:

Spn = / d'z {—%FWF‘“’} = / d'z B(E2 - BQ)} : (2.71)

So far, we have considered the construction of the actions based on only
the requirement of Lorentz invariance. The actions considered up to now only
describe free fields and some self-interactions, and therefore do not give the real
descriptions of Nature. In thereal world, different fields interact with one another,
such as the interactions of charged particles with the electromagnetic fields. We
therefore need to consider more general forms of the action, possibly with some

new invariance principles; this will be done in the following subsection.

2.2.2 Interactions from Gauge Symmetries

The Lorentz symmetry considered in the previous subsection is not enough for

modeling all the particle interactions. As is well known nowadays, fundamental
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interactions among elementary particles are based on the existence of another
kind of symmetry, known as gauge symmetry.
To discuss this kind of symmetry in detail, consider a set of N scalar

fields forming a vector in an “internal space,”

#1
A (2.72)

YN

subject to the internal symmetry transformations
U =exp|[—iT"", (2.73)

where a = 1,2,....n (n is the number of generators of the transformation), the
generators T are N X N matrices and a® € R. If o are constant at every
spacetime point, an internal symmetry transformation is called a global phase
transformation. On the other hand, if a® are spacetime dependent, the internal
symmetry transformation is called a local phase transformation or gauge trans-
formation. We will see that the latter case is responsible for most interactions in
the SM as the theory is required to be invariant under the local gauge transfor-
mations. The Neether’s theorem to be discussed later says that the invariance of
the equations of motion under a continuous symmetry implies the existence of a
conserved charge.. Thus there are conserved quantities in the SM associated with
the local gauge symmetries.

The theory invariant under the local phase transformations is called gauge
theory. The first version of such theory is the electromagnetic theory of Maxwell
with the local phase transformations forming an Abelian group. Thus it is an
Abelian gauge theory, in contrast to the non-Abelian Yang-Mills theories which
are based on non-Abelian groups. Since the SU(2) symmetry of the Standard
Model is a non-Abelian gauge symmetry, we will first take a look at the gauge

principle before continuing to the full Standard Model gauge group.
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2.2.3 Gauge Principle

We start with the simplest gauge theory in the SM based on an Abelian Lie group
of complex numbers of modulus one, called U(1). As we shall see, the requirement
that the theory be invariant under the Abelian U(1) gauge symmetry implies the
existence of a massless vector boson (photon) which mediates the electromagnetic
interactions. By local U(1) symmetry, we mean that the field actions are invariant

under the following transformations:

Up(x) — Wh(x) = exp|—ia(x)]¥p(x) (2.74)

_i — e

Up(z) — V,(z) = explia(z)|Wp(z). (2.75)

Because the derivatives in the Dirac equation act on a(z) as well as on the field

Up(x), one can show that the free Dirac Lagrangian is not invariant under this

transformation,
Ly = Up(z)(inhd, — m)¥p(z)
(2.76)
changes to
Ly = Up(x)(iv"dy —m)Vp(x)
FWp ()" U p(2)00(x): (2.77)

To make the Dirac Lagrangian invariantunder the U(1) transformations,
one introduces the gauge field A, through the minimal coupling with coupling

constant e,
D, =0, +ieA,, (2.78)

where D, is called a covariant deriwative, and demands that D,V transforms in

the same way as the spinor field does,

D,V p — exp[—ia(z)](D,¥p). (2.79)
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This can be accomplished if A, transforms as
, 1

Ay — A=A+ E(?Ma. (2.80)

The gauge field A, is identified with the electromagnetic 4-dimensional potential
in the previous subsection.

From the covariant property of D,, one can construct new covariant ob-
jects from the products of covariant derivatives. For example, consider the anti-
symmetric product of two covariant derivatives acting on a spinor, it transforms

covariantly, i.e.,

[Dy, D) ¥p — D, (D;) ¥V, = D), (D;,) ¥, (2.81)
= D, (e®®D, W) — D, (e7*") D,T) (2.82)
— ¢ @) (D,D,V) - e (D,D,T) (2.83)
= ¢ @ [D,, D, V. (2.84)

If one write [D,, D,] ¥p in terms of A, one finds

[D,,D,] = ie[0,A, — 0,A,] (2.85)
= ek, (2.86)

or
Fo= %Z 1D, D] = 0uA, —0,A,. (2.87)

Thus F),, is gauge invariant and is the field strength in (2.68).
It is now straightforward to couple a Dirac field of charge e to the elec-

tromagnetic field by replacing 9, by D, in the Dirac Lagrangian as

Lp = Yp(z)(iy"D, — m)¥p(x). (2.88)
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Then the Dirac Lagrangian is invariant under the U(1) transformation:

Lp— Ly = Up(a)(in"D,, — m)¥p(x)
= Up(z)exp[+ia(z)] {wau —ec (WAM + émuaﬂ) - m}
x exp|—ia(x)|¥p(z)
= Up(x)(ir Dy — m)Up ()

- 'CD-

From (2.88), one can conclude that “the requirement that the theory be
invariant under gauge transformations imposes the specific form of the interac-
tions with the gauge fields.” In other words, the symmetries imply dynamics.

Instead of an Abelian Lie group U(1), one may consider a non-Abelian
Lie group. This idea was implemented by Utiyama in 1956 for any Abelian group

G with generators t, satisfying the Lie algebra
ey 1] = 4G 2, (2.89)

with Cyp. being the structure constants of the group. Let the multiplet of (scalar

or spinor) fields

¥1

D9 ¢

YN

transform according to

®(z) > D'(z) = exp[—iT-a(z)] ®(x) (2.90)
= U(a)®(x), (2.91)
where T, (a = 1,...,n) are N x N matrices representing the generator ¢, and
aq(z) (a =1,...,n) are arbitrary function of space-time. To make the Lagrangian

of ® invariant under the non-Abelian transformations, one gauge field for each
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generator is introduced. The covariant derivative is defined using the gauge field

as
D, = 8, +igT" A% (2.92)

To ensure that the Lagrangian is invariant under the local non-Abelian gauge
transformation, the covariant derivative acting on the field must transform like

the field itself, i.e., D, ® — U(D,®). To achieve this, one requires that
a a a a Z —
TAS = U (T A+ ;f’%) U (2.93)

Finally, we obtain the field strength tensor for a non-Abelian Lie group

in the same way as we did in the case of an Abelian symmetry. Thus

—1

T, £ ; [Dy, D] (2.94)
= 0, PeAs— G A" —ig [T A%, T° A7 (2.95)

or
Fo = ,AL—0,A% — gC™ AL AC. (2.96)

Thus £}, is a gauge covariant quantity and transforms as
gy, T — U(a)igh,TU " (a). (2.97)

Similar to the electromagnetic case, the gauge-invariant kinetic term of the non-

Abelian gauge bosons takes the form

1 a apuv

2.2.4 Conservation Laws from Symmetries

In the last two subsections, we saw that the local symmetries of the action demand

the existence of the gauge fields and also put the restrictions on the possible
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forms of the terms in the Lagrangian. There is another important property of
the theory with local symmetries discovered by Emmy Ncether. The theorem of
Neether states that for every continuous symmetry of the action there results a
conserved quantity. From this theorem, the symmetries and conservation laws
are connected. To appreciate the theorem, we review its derivation.

Consider a field ¢, which transforms as

&(r) = ¢ (z) = ¢(z) + aA¢(x), (2.99)

where « is an infinitesimal continuous parameter and A¢(x) is some deformation
of the field configuration. The changed Lagrangian which is the result of the field

change is

oL oL
aAL = %(QAQS) A <m> Ou(aAo)
oL oL oL

- g s TRl (2 V] s am

The second term vanishes by the Euler-Lagrange equations.
If this transformation is a symmetry transformation, the Lagrangian does

not change or changes by a 4-divergence term:*

L(z) =L(x) + ad,JMx), (2.101)

for some JH(x).
To compare (2.100) with (2.101), one finds that

ad, (%A¢> = ad,J"(x)

oL
a“<8(8ﬂ¢>A¢_ﬂ> -

84" (x) = 0, (2.102)

!Under this condition, the action is invariant or changes by a surface term respectively, and
the Euler-Lagrange equations of motion are not affected.
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where jH(z) = (a(g—‘%)Agb — J“) and is called a current. (2.102) says that the

current j*(x) is conserved. By integrating (2.102) over the spacelike hypersur-
face in the Minkowski space and demanding that the current vanishes at spatial

infinity, one finds that the charge

= / PPz (2.103)

is constant in time, and hence conserved. An important property of this conserved
charge is that, using the methods of either classical or quantum field theory, one
can show that it generates the infinitesimal transformation associated with it.

What this really means is that:

e In classical field theory, the infinitesimal change of the field (divided by the
transformation parameter) is obtained by calculating the Poisson bracket

of the conserved charge and the field.

e In quantum field theory, the charge is the generator of the unitary trans-

formations on the field operator, and on the Hilbert space of the states.

In the case of rotations, for example, the infinitesimal transformation of the field

under a rotation about the x5 axis is
¢ = ¢ = (1 —iel3)g, (2.104)

where L3 is the third component of the quantum-mechanical orbital angular mo-
mentum operator. In quantum field theory in which the field is an operator, then

the field must transform according to the rule
¢ — ¢ =UpU™, (2.105)
under such rotation, where infinitesimally

U= (1—ieM?) (2.106)
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where M? is a rotation generator about xz axis. Thus (2.104) and (2.105) agree

only if

[M?,¢] = —Ls¢ (2.107)
or

[ieM?, ] = 8¢. (2.108)

If the action is invariant under this rotational symmetry, then the above consid-
eration leads to the expression of the corresponding charge @) in terms of the field
¢. Once ¢ becomes an operator with the usual commutation relations, one can
check that [Q, ¢] = — L3¢ so that the charge @ is indeed the rotation generator
M3.

2.2.5 Gauge Groups of the Standard Model

The gauge group of the Standard Model is the direct product group SU (3), X
SU (2); x U (1)y, which means that the three factors separated by the x sign
commute. This gauge group is composed of the symmetry group of the strong in-
teractions, SU (3),, and the symmetry group of the electroweak interactions,
SU (2); x U(1)y. The symmetry group of the electromagnetic interactions,
U (1) gy, 1s just a subgroup of SU(2); x U (1)y. In this sense, the weak and
electromagnetic interactions are said to be unified. The SU (3). is believed to
be an exactly symmetry while the SU (2), x U(1), is spontaneous symmetry
broken. The SU (2), x U (1), symmetry is broken through the Higgs mecha-
nism. This mechanism gives the masses of the W* and Z bosons as well as the
mass splitting among the leptons through their interactions with the Higgs field.
Because the Higgs field is the main topic of this thesis, we put emphasis on the

electroweak theory and Higgs mechanism in the remain part of this chapter.
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2.3 The Electroweak Theory without Sponta-
neous Symmetry Breaking

In the first step of constructing the electroweak theory, one identifies the appro-
priate representations of SU(2) x U(1). We begin with the lepton sector. For the
SU(2) part, the left-handed parts of the charged leptons and neutrinos form dou-
blets of SU(2) with a charged lepton on the top and the corresponding neutrino

at the bottom:

/= (’;)L (2.109)

where the family index has been suppressed. The right-handed charged leptons,

on the contrary, are SU(2) singlets:
s (2.110)

Thus this SU(2) is normally referred to as SU(2), where L stands for “left-
handed.”
L transforms under the weak isospin transformation (a specific name for
the 2-dimensional representation of the SU(2) group) as
L(z) — e 2" L(z), (2.111)

L(x) — e T(x), (2.112)

where 7 are the 2 x 2 Pauli matrices and « is spacetime independent, while R(z)

is invariant,
R(z) — R(z), (2.113)
R(z) — R(z). (2.114)

For the transformation under a global U(1) group, each component of L(z) are

multiplied by the same phase factor, e=*,

eioz/? 0
L — (0 eia/z) L (2.115)
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while
R — ¢“R. (2.116)
The kinetic terms of the lepton Lagrangian take the form
Lyin = Lin*9,L + Rin"0,R. (2.117)

and thus is invariant under both weak isospin and global U(1) transformations.

Because one requires that the gauge group U(1)q of electromagnetic in-
teractions is a subgroup of SU(2) x U(1), then L(z) and R(x) should transform
under the U(1)q group. The U(1)g is generated by the electric charge Q). From
the fact that each charged lepton has charge —1 and the neutrino has no charge
(all charges are given in units of the elementary charge ¢), () acts on L(z) and

R(z) by

QLEx) — (8 Ol) L(z) (2.118)
QR(z) = —R(x). (2.119)

Thus U(1)¢q transforms L as

/
(?) —>(’l/,> — Qe (?) (2.120)
L L L
e—i(O)aV
(6_2-(_1)%) (2.121)
L

— <efal)L . (2.122)

Note that U(1)q affects only the Iz, component of L.
To see how U(1)g is embedded in SU(2) x U(1), we observe that its
generator (), when action on L, can be expressed as

1 1
Q= 578~ 51- (2.123)

Let the weak SU(2) generators be denoted by T;, ¢ = 1, 2, 3, and satisfy

[T, T;] = i€y Tk, (2.124)
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and the generator of the U(1) group be Y. Y is called the weak hypercharge, so
this U(1) is referred to as U(1)y. The explicit form of 7% acting on the weak
isospin doublet L is T* = %i, while its representation acting on the singlet R is
T = 0. The values of the weak hypercharge for leptons are assigned as follows:
Y = —% for SU(2) doublets and Yz = —1 for singlets, as implied by (2.115) and
(2.116). With the above assignments, the generator () in (2.123) takes the form

of a linear sum of two generators, one for each group in the direct product,
Q=13+Y. (2.125)

Thus the eigenvalue of ) for each lepton is really its electric charge.
To construct the electroweak interactions, the global symmetry of Ly,
has to be implemented to a local symmetry, and so the appropriate gauge fields

have to be introduced:
SU@Y, =W, Wi, W3 (2.126)

U(lly = B, (2.127)

With these gauge fields, the covariant derivatives for the lepton fields are

D,L(z) = (5’#+igTiWi—|—ig§YiB#> L(z) (2.128)
D,R(z) = (aﬁ%yz‘BH) R(z), (2.129)

where ¢g and ¢’ are the coupling constants associated with the groups SU(2).

and U(1)y respectively. The field strengths are defined according to (2.87) and
(2.96):

Wi, = 0W.—0,W,+ ge*WIW}) (2.130)

B, = 0,B,—0,B,. (2.131)

With the above gauge fields, the kinetic terms for the lepton sector in

(2.117) can now be modified to yield the local gauge invariant terms as

Liepton(r) = Liy" Dy L + Riv' D, R. (2.132)
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Name Notations Spin | SU(3)¢, SU(2)p, U(1)y
quarks, @ | (ug,dr) (cL,sL) (tr,br) | 1/2 (3,2, é)
(3 families) uUg Cr tp 1/2 (3,1,%)

dR SR bR 1/2 (3717_%)

leptons, L | (ve,er) (Vp,pir) (-, 7) | 1/2 (1,2,-3)
(3 families) er LR TR 12 (1,1,-1)
Higgsa ¢ (¢17¢2) 0 (17271)

gluons g 1 (8,1,0)

W bosons W= Wwo 1 (1,3,0)
B boson B 1 (1,1,0)
The kinetic terms of the gauge fields are
1 i 1ald 1 nv
Loange(T) = _ZWWW - ZBWB .

With the above results, we are now done with the lepton sector.

(2.133)

For the quark sector, things are almost the same. Left-handed quarks

form SU(2) doublets, while the right-handed ones are singlets. The hypercharge

assignments for the first generation of fermions are given in Table 2.1. Covariant

derivatives are defined in almost the same way, except that, since quarks are

SU(3)¢ triplets, the SU(3)¢ generators together with the gauge fields describing

the gluons have to be included in the covariant derivatives.

Thus one can write down the kinetic terms for any fermion field similar
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to (2.132) as
Lp =YD,V + Vgiv"D,Vp, (2.134)

where W, = L, Qr, and Y = er, ug, dg.

Note that the Lagrangian L,(z) in (2.134) does not contain the mass
terms, mUVU = m(Vr¥; + W Ug), because the left-handed and right-handed
fermions transform differently under SU(2)y and U(1)y and so one cannot con-

struct the gauge invariant mass terms in the usual way. Similarly, Lgauge cannot

I

have the mass term 5

m*A#A,, because A* A, is not gauge invariant. Thus in the
unbroken electroweak theory, all fields have no masses.
To give the masses to some fields, the so-called Higgs mechanism will have

to be employed. This will be considered in the next section.

2.4 Spontaneous Symmetry Breaking of the Elec-
troweak Theory

According to many phenomenological and experimental results, the gauge bosons
of weak interactions have masses while the photon of the electromagnetic inter-
actions does not. Thus the electroweak theory needs some mechanism for giving
masses to weak gauge bosons. The solution to this problem is the spontaneous
breaking of SU(2)x U(1) down to U(1)e through the Brout-Englert-Higgs mech-
anism, which is popularly abbreviated as the Higgs mechanism. In order to ex-
plain the Higgs mechanism; the spontaneous breaking of an abelian U(1) gauge
symmetry is usually taken as an example before the full understanding of the

non-Abelian cases.

2.4.1 Higgs Mechanism in an Abelian Theory

In this subsection, the Higgs mechanism is used to yield the “photon mass.” Even
though such a situation does not occur in the real world, it is the simplest way

to study the Higgs mechanism.
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The Higgs mechanism occurs via the process of spontaneous symmetry
breaking. So before learning what it means by Higgs mechanism, we need to know
what the spontaneous symmetry breaking is. Indeed, it is the situation in which
the Lagrangian is invariant under some continuous symmetries but the vacuum
is not. To see how one can actually achieve such a goal, consider a Lagrangian
describing the interactions between a U(1) gauge field and a complex scalar field

which is also subject to self-interactions,
1
L == 3Fu " + |D0P = V(9), (2.135)
where
D, = 0,+ieA,

V(o) = 2o +A (e’ (2.136)

This Lagrangian is invariant under U(1) gauge transformations:

b(a) =5 (0) = RO (a) (2137
Afz) — Al(r)= A (z)+ é@ua(x) (2.138)

for arbitrary a(z).
To find the vacuum state (the state of lowest energy), the kinetic term is
set to zero and the potential term V (¢) is minimized,

_av
dlgl

A must be positive for the potential to have a lower bound, but there are two

0 = 21°|p| + AN|o)*. (2.139)

possible choices for p2. If 4? > 0, then the scalar field has the vacuum expectation
value (VEV) (¢) = 0. Such a theory is quantum electrodynamics with massless
photon and a charged scalar field of mass p. If u? < 0, then the scalar field has

non-trivial VEVs with the modulus

2

(1ol =/ 55 ==

=7 (2.140)
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In this case, u cannot be interpreted as the mass of the scalar field ¢. As the
Lagrangian is invariant under the global U(1) symmetry, it doesn’t matter which
VEV is chosen. Nevertheless, once a specific VEV is chosen, this VEV is not
invariant under U(1) and the symmetry is spontaneously broken.

It is convenient to choose a real VEV (¢) = v/v/2, so one may express

the scalar field as

X

= —e'v (r+¢), (2.141)
\/—
where y and ¢ are real fields of zero VEVs. If one substitutes the field ¢ in (2.141)

into the Lagrangian in (2.135), one obtains

2.2

& - —ZFWF‘“’ +evA aﬂx+ A

5 (0" £ 20€%) + 500"
+(&, x interaction terms). (2.142)
This Lagrangian presents a theory with a photon of mass M4 = ev, a scalar
field ¢ of mass \/Tp? > 0, and a massless scalar field x called the Goldstone
boson. Because this Lagrangian is equivalent to the Lagrangian in (2.135), it is
still gauge invariant.

Let us count the degrees of freedom (d.o.f) in this Lagrangian. There are
five degrees of freedom of massive fields: three for A, (since the longitudinal mode
is now allowed) and two for real scalar fields, € and y. At first, this result seems
to disagree with the number of d.o.f of (2.135) in which there are two d.o.f of
a massless gauge field (corresponding to the two independent transverse modes)
and two for a complex scalar field (corresponding two real components); hence
one less d.o.f. than that of the previous counting.

This seeming appearance of an extra d.o.f can be eradicated if one notices
that the above Lagrangian is still gauge invariant (even though such an invariance

is “hidden”) and therefore the gauge degree of freedom can be used to get rid of
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this extra degree of freedom. This can be done by choosing a particular gauge.
A convenient way is that one chooses the gauge such that the function a(z) in

(2.137) at each spacetime point equals to the phase of ¢,

1 x 1
iy + e
N
1

¢ — o = iF (v +&) (2.143)

This gauge is called a unitary gauge. Once the gauge choice is fixed, the Goldstone

boson disappears and the Lagrangian becomes

e?v?

1 g / v ]‘
L = —EF;WF“ +—2—~A#A +§a”§a“§

1 1 / v A
—5(—2u2)€2 + 5(62)(5 + 20)EA AY — 153(5 +4v).  (2.145)

This Lagrangian describes the interactions between a massive vector boson A,
and the massive real scalar field &, called the Higgs boson. The Higgs boson has

the mass square
iy £~ 2S00 (2.146)

Now all massless fields disappear after choosing a particular gauge choice, and
one can say that the massless field has been eaten to give a mass to the photon.
This is called the Higgs mechanism.

It is instructive to check the consistency of the theory regarding to the
number of degrees of freedom (d.o.f.) before and after the spontaneous symme-
try breaking. Before the spontaneous symmetry breaking, there was a massless
photon (which contributed two d.o.f. corresponding to the two independent trans-
verse modes) and a complex scalar field (with two real d.o.f.), hence four total
degrees of freedom. Since the massless fields disappeared after the spontaneous
symmetry breaking, and the massive photon has three d.o.f. (two for transverse
modes and one for a longitudinal mode), the total number of d.o.f. after sponta-

neous symmetry breaking is still four, just like the original Lagrangian (2.135).
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In general, for N gauge vector fields to become massive via the Higgs
mechanism, there must be at least N 4 1 real scalar fields: N of them become

unphysical and disappear, and the other one becomes the Higgs boson.

2.4.2 Electroweak Theory

Just as the Abelian case, the Higgs Mechanism can be applied to a theory with
non-Abelian symmetry such as the electroweak theory.

In the electroweak symmetry breaking, one needs three massive gauge
vector bosons of weak interactions and a massless photon of electromagnetic in-
teractions. This implies that at least four real scalars are needed. As it is the
SU(2), xU(1)y symmetry that we want to break, these scalar degrees of freedom
must be arranged such that they form a representation of this group. A conve-

nient choice is that they form two complex components of an SU(2) doublet:

o = (z;) . (2.147)

The Lagrangian for this doublet is

Ly = (D, @) (D"®) -V (®), (2.148)
where
D, = <aﬂ + %#WZL + z’%IBHY) (2.149)
and
V(®) = p%|®'®| + A (|2 ®))*, A > 0. (2.150)

Like the Abelian model, the vacuum state for y? < 0 is not at ® = 0.
Since the potential depends on |®7®|, then it can be checked that any @ that

satisfies |®T®| = 1?/2 can be a VEV. For convenience, one chooses

(@) = L (O> : (2.151)
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For this vacuum state to be invariant under the U(1)g group of electro-
magnetic interactions, the above (®) has to be annihilated by the charge operator,

Q(®) = 0. According to (2.123), one gets the condition
Q(®)=(13+Y)(P)=0. (2.152)

Because ® is a doublet and Y is a U(1)y generator, one can write Y as

Y = (g 2) (2.153)

and so

0 = Q(®) (2.154)

LN e

Thus the hypercharge of the doublet is Y& = Thus Q¢ = (+1)¢; and

Qoo = 0, so it is convenient for ® to be written as

& - ((ZZ) . (2.156)

To consider the Higgs mechanism in this model, one expresses ®(z) as

.

®(z) — %eié-f (V +0 H) (2.157)

where the real scalar fields x* (i = 1, 2, 3) and H have zero VEVs. The above
expression is obtained from the vacuum state by first changing its magnitude
along the same direction in the SU(2) space (by adding H(z) to v) and then
rotating it using-an element of SU(2) (this process preserves. its magnitude).

Choosing the unitary gauge,

(1) =TV P = % ( 0 > , (2.158)

the scalar field Lagrangian in (2.148) reads

L = ‘(8 +id WZJrZ—BY)( v+ H) (0)

2
_MQ(J/—f—H) _)\(l/-i—H) |

2 4

(2.159)
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The gauge boson mass terms comes from

¢ R — .g’ 1% 0
(8“+Z§T Wu‘i_ZEBuI) E <1>
V2

= {2+ w2 + (Wi - 9B’} (2.160)

2

If one introduces the linear combinations
(W, =1W3) (2.161)

and

Wa=(wi) = E(Wj + iz, (2.162)
the first term of (2.160) becomes
2, 2 2,2
gv gv -
2 (W2 + (Wh2] = TW;W " (2.163)

Since WJ is a complex field, its mass squared is
979
(Mw)? = L= : : (2.164)

Thus W/j and W are identified as the charged bosons.

For the second term in (2.160), we can rewrite it as

2 2 2 / 3
v 2 v T w
T @it omy i my (L) (). )

In order to diagonalize the mass matrix in (2.165), one uses the following orthog-

onal transformation:

AL cosfy  sinfy B,
(Zu) - <—sin«9w cos@w> <VV;3 ’ (2.166)

where 6y is called the Weinberg angle defined by

/

sinfy = ——o (2.167)
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and
cosby = ——. (2.168)

Then

—~

2.165) becomes

(Z, A <i”2(920+ g°) 8) (iﬂ) = % Hzﬂ(g? —|—g’2)] Z, 7" (2.169)

N —

n

It can be seen immediately that A, is massless and thus identified as a photon,

while Z,, is massive boson of mass squared

(Mz)? = }lzﬂ(g? +g"). (2.170)

It is instructive to count the degrees of freedom both before and after
the spontaneous symmetry breaking. Before the symmetry breaking, one had a
complex scalar SU(2);, doublet ® together with some gauge fields. The total
number of degrees of freedom of the theory is 12: 4 d.o.f. for ®, 6 d.o.f. for a
massless SU(2), gauge field, W;, and 2 d.o.f. for a massless U(1)y gauge field,
B,,. After the symmetry breaking, one was left with a physical real scalar field H
(1 d.o.f.), three massive vector bosons, W and Z (9 d.o.f.), and a massless photon
(2 d.o.f.). One cansay that the three d.o.f. of the scalar doublet have been eaten
by W* and Z to give the longitudinal components of W* and Z.

To find the values of coupling constants in the theory, one writes the

kinetic terms for the lepton fieldsin (2.132) in terms of the physical gauge fields:

'Clepton FYSY sin HWZ’YMZAM

g 7 -
_m[VL’YMZLW: + ZL'YMVLWH ] + ... (2171)
The electromagnetic coupling constant or electric charge is identified as

e = gsinfy = g cos Oy . (2.172)

From the low-energy phenomenology, the weak interactions are described by

M2 1/2 _
Lyeak = ( V\;gF) T LW+ Ly v W, (2.173)
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where G is the Fermi coupling constant. By comparing (2.171) with the second

term on the left hand side of (2.173), one identifies

235 - (MV%GF)W. (2.174)

Note that (2.164) gives
v = (V2Gp) 12 =246 GeV. (2.175)

Even though the explicit fermion mass terms m¥¥ = m (V¥ + ¥, Ug)
were prohibited by gauge symmetry as discussed before, the Higgs boson, H, can
be used to give the fermion masses via the gauge invariant Yukawa interactions

of the form
N\, PV g, (2.176)

where A\@ q = e, d, u are Yukawa, couplings.

The Yukawa coupling of the Higgs boson to the up and down quarks is

~XDQ, ®dp + h.c., (2.177)
or more explicitly
A - 0
-7 (u, dr) (V L H) dr + h.c.. (2.178)

This yields a mass term for the down quark if one identifies

2
A D= mav'2 (2.179)

v
with my being the down quark mass. For the up quark mass term, one defines

®° = & = —inp®* and write the SU(2);, invariant coupling as
~\WQ, ®Up + h.c., (2.180)

which generates an up quark mass term. Similar couplings can be used to generate
mass terms for the charged leptons. Since the neutrinos have no right-handed

components, they remain massless.
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2.4.3 The Electroweak Action

To write the general action of the electroweak theory, all particle families have
to be included. All the results obtained so far have been for the first generation
of fermions only. For other generations, we merely use the previous results with

the following substitutions:

e NSO 'S )
V. Ve a=— (VBJV,LL7VT)
i pal = () (2151
deo—="mnu = (d;s,b)

where the particles y, 1, ¢, and s belong to the second generation particles, and
T, Uy, t, and b belong to the third generation, and so all the SU(2) doublets are

of the generic form:

e (”A>L (2.182)

Qar = <pA)L. (2.183)

Once the Lagrangian for each fermion generation has been obtained, one merely

sums over all generations to obtain the electroweak action:
S = / dz*L (2.184)
e /da:4 (Lo Lr ¥ Lg 1 Ly ) (2.185)
It consists of four parts:

1. L¢ is the kinetic terms for the vector gauge fields:

1 7 1l 1 v
Lo = —ZWWW o ZBWB“ . (2.186)

2. L is fermionic kinetic terms:

,CF = WLZ.’)/MDM\IJL + ERZ"}/’U'DM\I/R7 (2187)



45

where U, and Wy represents all left-handed and right-handed fermionic

fields respectively, and the sum over the femionic species is understood.?

3. Lg is the Higgs boson Lagrangian:

Ly = (D, @) (D"®) -V (®), (2.188)
where
= 'S iy (v+H) (0
and
2 4
yle) <L, +2H) iy +4H) . (2.190)

4. Ly is the general Yukawa interactions between scalars and fermions:
£y = /\EE)BZAL(I)QBR o - )\%)B@AL&)pBR + )‘EL;%GAL(pnBR + h.C., (2191)
which contains family indices, A and B.

The fields a7, epr, Qar, PR, NBR are gauge eigenfields, i.e., they transform as
singlets or doublets under SU(2) gauge transformations. After the spontaneous

symmetry breaking,

)

Ly takes the form

H T n) —
P~ 7 %[AS]);EALGBR + )\(ﬂ;ﬁALPBR + )\(Aj)gnALq)nBR]

I/ €e) — — n) —
+E[>\541)96AL6BR + Aff)BpALpBR + A;%”AL(I)WBR]

+h.c. (2.192)

which gives the fermion mass terms with the mass matrix

V2

2Note that the kinetic terms of the vector gauge fields and fermions remain unaltered after
the symmetry breaking.

M,E&); = )\S% , a=e,p,n. (2.193)
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whose eigenvectors are called the mass eigenfields, which represent the particles
that one observes in Nature.

Since the mass matrix in (2.193) is not diagonal, some of the gauge eigen-
fields may not represent particles that one observes in the experiments. To ob-
tain the particle spectrum observed in experiments, the mass matrix has to be
diagonalized with the result that all the fields in the Lagrangian are now the
mass eigenfields, some of which are the linear combinations of the original gauge
eigenfields. For the theory with only two fermion generations, one has the mass

eigenfields

dy = cosb.d—+ sinf.s (2.194)

sg = cosb.s —sinf.d (2.195)

where the mixing angle 6. is called the Cabibbo angle.

Let us finally note that such a difference between gauge and mass eigen-
fields has already been encountered before in the cases of the vector fields in
(2.169), where the physical gauge bosons 7, and A, are linear combinations of

the gauge eigenfields W and B, in (2.166).



CHAPTER III

SUPERSYMMETRIC FIELD THEORY

For decades, theoretical and experimental research has confirmed that
the Standard Model is very successful in explaining and predicting lots of ex-
perimental results, yet there have been many unsolved problems. As discussed
in Chapter 1, supersymmetry (SUSY) is one of important candidates for solving
such problems. In this chapter, we review the construction of supersymmetry
algebra (SUSY algebra) and supersymmetric field theories using the superspace

technique.

3.1 Construction of the Supersymmetry Alge-
bra

According to the first chapter, the hierarchy problem in the Standard Model can
be solved if the theory has a symmetry which relates bosons and fermions. Such
a kind of symmetry indeed exists and is known as supersymmetry or SUSY. Thus
a SUSY transformation on a field changes its spin by one-half unit and turns a
boson into a fermion and vice-versa:

Q) |boson).. .= |fermion).,
Q) |fermion) = |boson) |

(3.1)
where @ is.a generator of SUSY. Thus the operator ) should transforms under
the Lorentz transformations as a spinor.

It is natural to ask how one can extend the Standard Model using super-
symmetry. The answer of this question is non-trivial because the Standard Model
already has Lorentz and gauge symmetries. So if one wants to add supersym-
metry (whose generators are spinors) to the theory, then supersymmetry should

combine with the Lorentz symmetry (whose generators have effects on spinors)

in a non-trivial way.
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Consider first the generators of gauge and Poincaré groups:

1. The internal symmetry generators: they do not affect the spacetime coor-

dinates.

2. The 4-momentum operators P,: they are the vector quantities which affect

the spacetime coordinates by translations.

3. The generator of the Lorentz group M,,: they affect the spacetime coordi-

nates by “rotations.”

These generators form the Lie algebras via the commutation relations. As none
of these generators changes the spin of the field they act on, they are said to be
the “bosonic generators.”

On the other hand, as the supersymmetry generator () is a spinor quantity
(and so it is called a “fermionic generator”), it must have non-trivial commutation
relations with the rotation generators M. Also in field theory, the spinors
have anti-commutation relations among themselves, then so should the SUSY
generators.

This above argument implies that the whole algebra should involve both
commutators and anti-commutators. Such a kind of algebra is not a new idea in
mathematics; it belongs to a class of algebra, known as the graded Lie algebras
which have been investigated by mathematicians. The supersymmetry algebra

we are interested in is actually known-as the Z, graded Lie algebra.

3.1.1 Z, Graded Lie Algebras

Definition 3. A Zy Graded Lie algebra consists of the direct sum of two vector

spaces Lo and Ly:

L=Lyd L (3.2)
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together with a product
o:LXL—L (3.3)
IfVx; € L;,i = 0,1, then the following properties define the Zo Lie algebra:

1. Grading:
T QT ; o,
2. Supersymmetrization.:
ziox;=—(=1)9z;0x;
3. Generalized Jacobi identities:
;0 (x50 x) (= 1) +ay 0 (2 0m;) (1) + 21 0 (2 0 25) (=1) =0

It is important to note that £ is not a Lie algebra, since, as defined in
supersymmetrization, the product is in general not antisymmetric.

Example: Let £ =Span{X,} be the direct sum of £, and £;, where

EO = Span{Ez} 1= 1, ce 7dim£0

L1 =Span{Q,} i=1,...,dimL;. (3.4)
Let g(E;) = 0 and ¢(Q,) = 1. The product o is defined by
3l (XEWN S X0 KA X X0 (1P B X Ry, (3.5)

Consider this product separately on the subspaces Lg and L;:

i)o:LyxLy— L,

Let E;, E; € Ly. Then

EioE; = BiE; — (-1)Y9 BB, = [E;, E}) (3.6)



20

i) o: Lo x L1 — L4

Let E; € Ly and @, € L1. Then
E; 0 Qu=EiQ.— (-1)"" Q.E; = [E;, Q] (3.7)

iii)02£1X£1—>£0

Let Q., Qp € L1. Then

Qa 0Qy = QuQp — (—1)PVQQ, = {Q., @b} (3.8)

The above construction is easily seen to satisfy the grading and supersymmetriza-
tion properties of Zy graded Lie algebra. It is not hard to verify that (3.5) obeys

the generalized Jacobi identities.

3.1.2 Supersymmetry Algebra

In order to construct a supersymmetric version of the Standard Model, one starts
with the construction the supersymmetric extension of the Poincaré algebra.
The supersymmetric extension of Poincaré algebra is a Z, graded Lie
algebra consisting of the direct sum of the Poincaré algebra as the subspace L
and a vector space £, = Span{@,}, a = 1,2,3,4. The super Poincaré algebra

consistent with the generalized Jacobi identities is given by

PHP)I=J0 (3.9)
My DAL = =i(gon B — man ) (3.10)
(M, Mps] = =i Mo — Nuo Myp — My +nue M) (3.11)

[P Qa] = 0 (3.12)
(M, Qa] = —%(Ew)abe (3.13)
{Qu, Q) = —20v")abPy (3.14)
{Qa, v} = —2(v"C)w (3.15)

{Qu. @} = —2(C7") b, (3.16)
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where the generators are
1. P, — the generators of translations;
2. M,, — the generators of Lorentz transformations and spatial rotations;

3. @), and @a, a = 1,2,3,4 — the spinor generators of supersymmetry trans-

formations.

Above, ) is a Majorana spinor and Q is its Dirac conjugate, so they contain
totally two independent complex spinor components. Also %EW = % [v*, "] and
C is the charge conjugation matrix defined in Chapter 2.

In the above set of (anti)commutation relations, the first three lines are
the Poincaré algebra. For the rest of them, (3.12)-(3.16), they are derived from the

general Jacobi identities of the graded Lie algebra. One can note, in particular,

that
1. (3.12) implies that @ transforms trivially under translations;
2. (3.13) implies that @ transforms as a spinor under Lorentz transformations.

Also since the anticommutator of two (s gives a momentum P, then people
sometimes refer to () as a“square root” of P.

As the supersymmetry generator () is a Majorana spinor, it is more con-
venient to express the super Poincaré algebra in terms of its Weyl spinor compo-

nents. Thus the anti-commutator part of the super Poincaré algebra

Qa@b + @b@a = 275bpu (317)

can be expressed in terms of 2-component Weyl spinors as

{QA?QB} =0, {QA;@B} ZZUZBP;M

{@A,QB} = 2545 P, {@A,@B} _0. (3.18)
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For the commutator (3.13), it reads

[M,UJMQA] = _(UMV)ABQB (319)
[MW,@A} = (W) 0", (3.20)
where

1. NGNSl s 0
5 S = ( /s Vi ) : (3.21)

0 (T uw

This 2-component spinor formulation will be used throughout this chapter.

3.2 Superspace and Superfields

3.2.1 What are Superspace and Superfields?

To formulate a field theory having some continuous symmetries, one first con-
structs the Lie group of that symmetries, whose elements are obtained by expo-
nentiating the Lie algebra elements. The fields then belong to some representa-
tions of this group.

How about a supersymmetric field theory, whose symmetries are described
by a graded Lie group? Certainly, one cannot express the graded Lie group
elements as the exponential of the fermionic generators with complex number
coefficients. The reason_for this is that, once this exponential factor is Taylor
expanded, half of the terms in the expansion are bosonic while the other half
contains fermionic terms; such a summation cannot be defined consistently. The
way out of this problem is to use the anti-commuting or Grassmann numbers as
the coefficients of the fermionic generators. In the super Poincaré algebra, the
supersymmetry generators () are Weyl spinors. So to make a product of () and its
Grassmann number coefficient Lorentz invariant, this Grassmann number must
also be a Weyl spinor. Thus the Grassmann variables in the Weyl representation

are written as

{QA}A:Lz and {Q_B }B:i,j
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and have properties:
{04,085} = {04,605} = {64,605} = 0. (3.22)

With the multiplication of Grassmann numbers on the left of the supersymmetry

generators, all the anti-commutators become the commutators as

04Q4,0,Q"| = 20%" 4”P, (3.23)
t&AQA.ﬂBQB_} =0 (3.24)
0,0%0:0% = o (3.25)
_ [P#,eAQAj % \0 (3.26)

[P“,éBQB_ — 0. (3.27)

Note that the Grassmann variables are assumed constant, so they commute with
the momentum generators. As the above subalgebra is closed, yet nontrivial, it

motivates one to write the corresponding group elements as the exponentials
G (:E“, 6,5) = exp [z’(@Q Nign. x“Pu)] (3.28)

which form a subgroup of the super Poincaré group. This transformation opera-
tor, G (a:“, 9,5), is called a finite “supertranslation” [§].

The reason behind the name “supertranslation” can be understood as
follows. One expands a spacetime with coordinates z* by including 6 and @ as
additional Grassmann coordinates. The resulting “superspace” thus has a set of
coordinates (z#,6,0) on it, and the group element in (3.28) has the superspace
as its group “supermanifold.” Thus there is a one-to-one map between group
elements and points on the supermanifold.

The action of the group element G(a*, €, €) on the superspace coordi-

nates (z#,0,0) is defined by the right-action of G(a*,&,€) on the group element
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G(z*,0,0) which corresponds to coordinates (z*,6,0):
G (m“,Q,@) G (a‘i7 g,f)
= exp i((%) +60Q — 2"P ) exp |i [ (SQ +£Q — a"P, )}
=exp i ((0+&Q+ (¢9+§ Q — (x“+a“—z§a“«9+@90“§)P )]
=G (2" + a" —iot0 + 00", 0+ £,0 + §)

where the Baker-Campbell-Hausdorff formula has been used to evaluate the prod-
uct of exponentials. The parameters of the group element on the right-hand side

are the transformed superspace coordinates, or mathematically speaking:
G (a",&,€) : (2,0,0) — (a# + a* —i€a"0 + i00"E, 0+ €,0+E).  (3.29)

It is clear that the above result corresponds to a tramslation of superspace coor-
dinates; hence the name supertranslation. Note that if one includes M, terms
in the exponents of the group elements and repeats the calculations, then it is
not hard to verify that the superspace coordinates will get rotated in addition to
the translations.

A function (x“,@,@) on the superspace is called a “superfield.” Un-
der the above super Poincaré group action on the superspace coordinates, the

superfield transforms as
® (z+ + a* — i€a"0 + i05"E, 0 + &, §+@
= ® (z#,0,0) + (a” — i€a"0 + i0o1E) 22 + ¢4 0L + gA o
[1 + (a# —i€o"0 + if0"€) 32z + £ 50x + ISATA +. T (x ,6,0)

and infinitesimally,
0 (a*,6,6) @ (2#,0,0) = |(a" = igo"0 +ifo"€) %
0 i 0 _
+€AW +€A§] ® (2#,0,0)  (3.30)

from which it follows that the action of supertranslation on the superfield is

generated by

P, = id,, (3.31)
. o Lz

iQa = 504 ZUZAQAaM, (3.32)
= g .

Qi = ——5 +if'd 9, (3.33)
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so that dc (a*,€,€) @ (a*,0,0) = (—m“PM +iEAQ +iE AGA) o (z#.0,0). One
can verify that the above representation of the supertranslation operators satisfy
the super Poincaré algebra.

Observe that this representation treats # and 6 on equal footing. There
are, however, other representations that treat # and @ slightly differently. Such
representations are known as the chiral representations. They are defined in
precisely the same way as above, but using different forms of the group elements

(i.e., different from (3.28)). There are two of them defined as follows:
1. L-representation: The group elements take the form
Gy, (m“, 9, é) = exp (—iz" P, + 10Q) - exp (ZH_Q) (3.34)

which is equivalent to (3.28) if #* in (3.28) is changed to 2# — i0c"6. Re-
peating the steps in the original case leads to the supertranslation rule on

the superfield,

_ S = 5 _ _
A A :

dyc(&, )Py (24,6,0) = (f 204 =L 4 + 2290%@) &y, (z+,6,0)

(3.35)
so that the generators in this representation read

P, = 10, (3.36)
O = e (3.37)

WA = 89’4 .
iQ = —% +2i0%", | (3.38)

00

which satisfy the super Poincaré algebra as they should. If one defines the
new bosonic coordinates

y* = z" +ifo™, (3.39)
then the above representation takes the form (3.31)-(3.33) with z* being
replaced by y*. Thus this L-representation is completely equivalent to the
original representation, and so the superfield in this representation is con-

veniently written in the form &, (x“ + 1056, 6, 9_).
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2. R-representation: The group elements take the form
Gr (a:”, 0, 5) = exp (—ix“Pu + zé@) - exp (10Q)) (3.40)

which is equivalent to (3.28) if #* in (3.28) is changed to z* + ifc"@. This

leads to the transformation rule

- = ) ~i 0 e A =
5(R)G(€a g)(I)R (xuv 07 0) =5 (gAW S5 514@ - 2Z€0-'ugau) CI)R (xﬂ’ 07 0)
(3.41)
which implies the representation
= 15 (3.42)
0 —A
iQa = 594 2i0’, 100, (3.43)
s 0
00

satisfying the super Poincaré algebra as one can check. Similar to the L-

representation case, one can check that with the new bosonic coordinates
2* = z* — ifo*0, (3.45)

the above representation takes the form (3.31)-(3.33) with #* being changed
to 2. So the superfield in the R-representation is normally written in the

form o (x“ — 00", 0, é).

It will be seen later on that the - and R-representations play an important role

in the representations of the super Poincaré group.

3.2.2 Component Fields and their Supersymmetry Trans-
formations

To find a connection between a superfield, ® (x“, 0, é), and the ordinary fields

(functions of spacetime coordinates only), one expands the superfields as a Taylor
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series with respect to # and 6. The coefficients obtained in this way are the
ordinary component fields.
Consider a general (Lorentz scalar or pseudoscalar) superfield ®(z,6,0).

Its Taylor expansion in # and @ terminates as

®(2",0,0) = f(x)+ 0%, (x)+ 0% (z)
+ (60) m (z) 4+ (06) n (z) + (05"0) V,, (2)
+(00) 8,07 () + (80) 644 ()
+(60) (90) d (), (3.46)
where (00) = 040, and (66) = 0,0, This is due to the fact that the powers of

0 (and hence ) higher than two vanishes identically due to the anti-commuting

nature of # and #. For example,
(00) 6 = 65050

— (9192 > 9201) ‘91

_— (6201 i 9192) 91

= —(60)0% (3.47)
which holds if both sides of the equation vanish.

The quantities. f(z); x*(x); m (z),n (@), Vi) AA(2), Y4 (z) and d (z)

are called component fields. With the requirement that & (x“, 0, 5) is a Lorentz

scalar or pseudoscalar, these fields can be classified according to their Lorentz

transformation properties as follows:
e f(x), m(x) and n (z) are complex scalar or pseudoscalar fields;
e ¢, (x) and 14 (x) are left-handed Weyl spinor fields;
e A (z) and M (z) are right-handed Weyl spinor fields;

e V, (x) is a Lorentz four-vector field;
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e d(z) is a scalar field.

To calculate the infinitesimal supersymmetry transformations of these

component fields, one equates

(55@ (:E“, 9, g) = (ng ($) + HA(SSQOA (IL’) + gAég)zA (33)
+(60) 0gmn () +(68) dsn (z) + (65%0) 05V, (2)
== ((9(9) Q—A(SS;\A (l‘) == (9_9_) (9A(531DA (:IZ')

+(66) (69) 05d (x) (3.48)
with

ba (6,€) ® (¢,0,0) = | (~i€0 0+ i09"8) 0,404 + £, |
x® (z",6,0)
— (i€t i001€) 0,605 + E10,
<[ f (@) +0%0, (@) + 0,5 ()
+ (60) m (z) + (00) n (z) + (65+6) V, (2)
+(00) 00" () + (00) 044 (<)

1 (69) (90) d (x)] (3.49)

where 0, = %, 04 = 0= %A. Once the explicit form of the right-hand

0
00A
side of the above equation is obtained, one is able to compare the coefficients of
the same power of § and 6 of the above two equations to give the supersymmetry

transformations of the component fields as:

Ssf () = ap(z)+ax (),
Ssa () = 2aam(x) + (0"@) 4 [0, (x) + V,, (2)],
s (@) = 20 (2) + (a0te) [0, f () — Vi, (2)],

Som (z) = A(2) = 5040 (2) 0" Oyp () — 50K (2) @,
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Ssn () = v (2) + S0 9, (2),

65V, (x) = ac® X (z) + ¢ (z) 0,0 + %a@ugo — %8,»‘( (x) @,
SsM (z) = 2ad (z) + ~aoV, (z) + i (acte) Om (2) |

[\)

(3.50)

~.

dsa () = 2a4d () — 504,48“‘/“ (x) +i(c"a), 0,m (),
dsd () = % LY (z) at'a + %aa“@l;\ (x)
= %8,@ () ot — %‘@}\ (z) act.
One sees immediately that supersymmetry transformations transform bosons into
fermions, and vice versa. Notice that dgd (z) is a total derivative. This is very
important, because this implies that the coeflicient of 620” of some (composite)

superfield can play the role of the Lagrangian in a supersymmetric invariant

action. This point will be discussed later on in this chapter.

3.2.3 Covariant Derivatives

As in the case of gauge symmetries, one can define a covariant derivative D
as an operator acting on superfields that commutes with the supersymmetry

transformations gy gy :
D® — D (dsysy®) = dsusy (DP) (3.51)
or
[D, dsusy]=0: (3.52)

For the representations introduced in the previous subsection, the corresponding

covariant derivatives are:

1. For the ordinary representation:

Dy = 0a+id" 050, (3.53)

Dy = —0;—if%0"% 0, (3.54)
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2. For the L-representation:

Diya = 0a+2i0" 059, (3.55)

3. For the R-representation:

Drya = 0Oay (3.57)

Dgya = —04—2i0%6" 9, (3.58)

One can verify that these covariant derivatives commute with all supertransla-

tional operators { P, @, A} as in (3.51), and satisfy the following algebra:

{D, Dp}y={D,;,Dy} =0
D3 =D?=0 (3.59)
{DA;DB} — _2iaZ38“'

3.3 Constrained Superfields

In the last section, it has been shown that a supersymmetry transformation trans-
forms one component field of a superfield into other components fields with the
opposite statistics. Thus the component fields of a superfield form a representa-
tion of the super Poincaré group (or supersymmietry). For a general superfield,
the associated representation is normally reducible, that is, the superfield con-
tains more independent. component fields than it is necessary.. To reduce the
number of component fields so as to make the superfield contain only one irre-
ducible representation of supersymmetry, the trick is to impose some appropriate
constraint on the superfield, and this constraint has to commute with the super-
symmetry transformations in order to retain the supersymmetry transformation

rule of the component fields. Once the superfield satisfies this constraint, some
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component fields are no longer independent: they are expressed in terms of the
others (normally nonlinear combinations of them).!

Note that the trick just described is independent of the dynamics of the
theory, that is, one does not have to consider the Lagrangian of the theory.
However, sometimes merely imposing a constraint is not sufficient, and one has to
use some gauge transformations (allowed by the Lagrangian, hence the dynamics
of the theory) to get rid of some more component fields so as to reduce the
number of component fields down to that of an irreducible representation of
supersymmetry.

There are two types of constrained superfields used in particle physics
phenomenology (some other types do exist, but will not be considered here),

chiral superfields and vector superfields.

3.3.1 Chiral Superfields

A chiral superfield (also called a left-chiral superfield) ®(z*,6,0) is defined to
satisfy the constraint

D®=0 (3.60)

with D ; being a superspace covariant derivative defined in (3.54). This constraint
clearly commutes with the supersymmetry transformation, since if D ;® = 0 then
D ;65® = 0 too, as the covariant derivatives-.commute with all the supertransla-
tion operators:

To see explicitly how the above constraint reduces the number of inde-

pendent component fields, observe that

Dj=—— (3.61)

!'Mathematically speaking, what this constraint does is to reduce the number of dimensions
of the functional space of superfields so that the constrained superfields now lives in a subspace
(of the functional space) invariant under the supersymmetry transformations.
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where y* = 2#4i0c"f is the bosonic coordinates defined in the L-representation of
supersymmetry. This implies that the coordinates (y*, #, 6) in the L-representation
are appropriate for describing a chiral superfield. Thus the chiral superfield sat-

isfying (3.60) is simply a function of (y*, ) and takes the form
® (y,0) = ¢ (y) + V20 (y) + 6705 eanF (y) (3.62)

without the explicit appearance of (compare this with the general superfield
in (3.46)). The factor of v/2 as been chosen by convention. Compare the above
equation with (3.46), one notices that the only spinor contained in the chiral
superfield is a left-handed Weyl spinor #(x); this leads to the prefix “chiral” in
the name of this superfield. Thus a chiral superfield contains three independent
component fields: two complex scalars ¢ and F', and a spinor ¢ of left-chirality.
These three fields form an irreducible representation of the super Poincaré group.
If one were to expand all the component fields as the Taylor series with respect to
the fermionic coordinates (for example, one expands ¢(y) = ¢(x)+i00"00,¢(x)+

..), one would obtain the original form of the superfield (as in (3.46)) whose

component fields are no longer independent. Explicitly, the result is

O(y,0) = ¢ (y)+ V200 (y) + (00) F ()
= ¢ (x+i00f) + V200 (2 + i000) -+ (00) F (z + i000)
= 6(x) + 1005055 (x) + 5 (0546) (60"6) 9,050 ()

V204 () +V2i04(000) 9,14 () + (00) F(2)

— 6 (2) + i00"80,0 (x) — i (00) (60) 99,6 (z)
VB (1) + 2 (00) 0,00 (1) o e
L+ (00) F (). (3.63)

This is how the chiral constraint reduced the number of independent component

fields.
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The supersymmetry transformations of the component fields of a chiral
superfield is obtained by first identifying the component fields in (3.63) with those

in (3.46), and then using the general formulae in (3.50). One finds

556 (z) = V2a1) (z) (boson — fermion)  (3.64)
o5t (x) = V204 F (z) + \/iij@Aau (z) (fermion — boson)  (3.65)
OsF () = —V/2i0,1 (x) '@ (F — total derivative). (3.66)

Notice that the supersymmetry transformation of the component field F', which
is a coefficient of 62, is a total spacetime derivative. As the other coefficient of
6? in (3.63) is already a total derivative which gives zero after integrating over a
spacetime, the whole set of coefficients of 62 in a chiral superfield can serve as a
Lagrangian in a supersymmetric invariant action. This fact will be of great use
in constructing a supersymmetric Lagrangian.

An important property of chiral superfields is that a product of two chiral
superfield is also a chiral superfield. This can be verified by observing that if
D ;®; =0=D;®,, then D ,;(®;®;) = 0, or the product ®;®; is a chiral superfield

if ®; and ®; are. More explicitly,
0, = | (y) + V200, (y) + (66) B
%63 () V2005 (y) +-(06) F;
= 61 (90, () + 200 ) (00 (v)
V200 (y) ¥; (y) +(00) dily) F
V200 (y) &5 (y) + (66) Fi05 (y)

= ¢i(y) d; (y)
V20 [¢: () Y5 (y) + ¥ (y) &5 ()]
+(00) (¢ (y) F; + Fipj (v) — i (v) ¥5 (v)] - (3.67)

This result implies that an arbitrary function of chiral superfields is also a chiral

superfield.
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Observe that a chiral superfield is a complex superfield. It is not hard
to see that the hermitian conjugate of a chiral superfield depends only on the

coordinates (2, ) in the R-representation,
of = ¢ (2) — V204 (2) + (00) F* (2), (3.68)

and satisfies the constraint

D, = % =Y (3.69)

The superfield ®' satisfying the constraint D,®" = 0 is called an “antichiral” or
“right-chiral” superfield (since it contains only a right-handed spinor). In terms
of the original superspace coordinates (z*, 0, 5), the antichiral superfield takes the

form

D (2,0) = & (2)+ V200 (2) + (90) F* (2)

= ¢* (v) = i00"00,0" (z) (69) (60) 6*0,9" ()

1
: 4
— —(#0) 000,70 () + (66) F* (z).  (3.70)

V2

The supersymmetry transformations of the above component fields can be ob-

+V/204) ()

tained by performing hermitian conjugation on the previous result for a chiral
superfield. Similar to the case-of chiral superfields, any function of antichiral
superfields is also-an antichiral superfield, and the coefficients of 8 in the expan-
sion of an antichiral superfield can serve as a Lagrangian in a supersymmetric
invariant action.

Chiral and antichiral superfields represent supersymmetric multiplets of
matter fields, such as quarks and leptons. Thus for a known spin—% particle, one
can construct a supersymmetry multiplet separately for its left-handed and right-
handed components by associating with them a chiral and an antichiral superfield
respectively. This is of great advantages in constructing the supersymmetric ex-

tension of the Standard Model in which left-handed and right-handed components
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of a matter spinor field transform differently under the Standard Model gauge

group.

3.3.2 Vector Superfields

The aim of this chapter is to describe the Standard Model particles and their

superpartners by the component fields of superfields. In the previous subsection,

it is clear that a chiral superfield, which contains only spin-0 bosons and a spin-

1/2 fermion, cannot describe all particles in the SM, because it does not contain

any spin-1 gauge boson as its component field. Thus one has to introduce another

type of constrained superfields, called a vector superfield V', as follows. First of

all, a vector superfield has to satisfy a ‘reality” condition:
\% (33,0,9) Sl (x,@,é) 1

Just like (3.46), one can expand the vector superfield as

V(2,0,0) = Cla)+0p(z)+0x (x)
1 (66) M (z) + (6) N (00“9)1/()
1 (99) O (2) + (90) B 0) (86) D (z).

Its hermitian conjugate is

Vi(z,0,0) = C*(2)+0p(z)+0x (z)

+ (A0) M* (x) +(00) N*(x) + (65%8) Vi (2)

+(80) 0 (z) + (00) 03 (x) + (60) (00) D* ().

(3.71)

(3.72)

(3.73)
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The reality condition is satisfied if and only if
C(x) =C"(x) = C(x)is a real scalar field;

¢ () =x(2)

M (x) = N* (x)
(3.74)
Vi (r) =V (z) = V), (¥)is areal vector field;

Ax) =4 (x)
D (xz) = D*(x) = D (z)is a real scalar field.

Thus the expansion of a vector superfield satisfying the reality condition is

V (z,6,0) = CAz)+0¢ ()

)
60) 6\ () + (69) (80) D (z),  (3.75)
where
e (' (z) and D (z) are real scalar fields;
e M (x) is a complex scalar field;
e )\ (z) and ¢ (x) are spinor fields;
o V, (x) is-a real-vector field:

Note that the above superfield contains equal numbers of bosonic and fermionic
degrees of freedom as it should. = Despite the simple form in (3.75), it proves

convenient to rewrite the vector superfield as
_ 1 . 1 _
V(z,0,0) = (1 + Z@@@@@,ﬁ“) C(x)+ <29 + 5990“9@) v ()
. 1 -
+%99M (x) + (—i9 + 5090“0@) o (z) — %09]\/[*
—00"0V,, (z) + 000X (x) — 000X (z)

1 __
+50000D (x) (3.76)
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which still satisfies the reality condition (3.71). One sees that the vector field
V,, (), which is needed to describe a gauge field, is contained in the vector super-
field. This is a good sign that one is on the right track to construct a superfield
which plays the role of a gauge field.

However, the above vector superfield still contains too many component
fields to form just one irreducible representation of supersymmetry (which, of
course, must contain a vector field). Thus for a vector superfield to contain just
one irreducible representation, an equal number of bosonic and fermionic degrees
of freedom have to be eliminated. To do this, the trick is to subtract a vector
superfield V' using the other “real” superfield K which contains fewer independent
component fields. The component fields of K have to be chosen just right that
they can eliminate precisely the unwanted component fields of V. Of course, K
cannot contain a vector field as its component field as it would eliminate the
desired gauge field from V.

It turns out that the superfield K that does a great job takes the form
K = &+ &', where @ is a chiral superfield defined in the previous subsection, and

®T is its hermitian conjugate. To verify our assertion, consider the transformation

V(2.0.0) — V'(2,0,0)

V (2,0,0)+ ® (,6,0) + ¢ (2,0,0)
1%

(2:6,0) + i\ (2,0,0) —iAT (2,0,0) . (3.77)

where @ = iA is a chiral superfield whose explicit form was given in (3.63). Using
(3.63), (3.70) and (3.76), the component fields transform under this transforma-

tion as
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C(r) = ' (x) = C(z) + ¢ (x) + 9" (x)

o () = ¢ (z) = ¢ (2) + V2 ()

M (z) — M () = M (2) + F ()

Vi (@) = V. (@) = V@) + i, (6 (2) — " ()

A(z) = N(z) = \(z)

(3.78)

D (z)= D' (z) =D ().

Thus if the component fields of ® are chosen as

V2y (@) = =y (a) (3.79)
F@) = —M() (3.80)

2Re (¢()) = o(a) + & (@) =—C(a), (3.81)

then the component fields ¢ (z), M (z) and C'(z) are completely eliminated, and
one is left with the fields V,,; X and D which form an irreducible representation of
supersymmetry. Note that under this transformation, A\ and D are invariant while
the vector field Vj, transforms as V,, (z) — Vi(z) =V, (x) +i0, (¢ (z) — ¢" (v)),
which is precisely an Abelian gauge transformation. This implies that the above
transformation is a superfield version of an Abelian gauge transformation, and
V,, really plays the role of a gauge field. One sees immediately that such a
process of component field elimination will-work only 'if ‘the theory has some
gauge invariance; this has been remarked at the beginning of this section.

Once the unwanted component fields have been eliminated, the vector
superfield is said to be in the Wess-Zumino (WZ) gauge, and takes the form

Vivz (2,60,0) = (65%0) [V, (z) +i0, (¢ (z) — ¢* (z))]

+(00) 07 (x) + (80) OX () + (00) (00) D (z).  (3.82)

Thus an irreducible representation of supersymmetry containing an Abelian gauge

field contains a gauge field V,,(z), its fermionic superpartner A(x) called a gaugino,
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and an auxiliary field D(x).

The derivation of supersymmetry transformations for a vector superfield
is rather tricky. Suppose one starts with a vector superfield in the Wess-Zumino
gauge and then performs a supersymmetry transformation using the method in
the previous section, it is not hard to check that the transformed superfield is no
longer in the Wess-Zumino gauge, that is, its C (x), ¢ (z), and M (z) components
no longer vanish. The way out of this trouble is to include a gauge transformation
with “field-dependent” parameters in the definition of supersymmetry transfor-
mation so that the transformed superfield remains in the Wess-Zumino gauge.
This means that one has to define a new supersymmetry transformation dg as
dg = 05 + Ogauge, Where 0g is the usual supersymmetry transformation and 0yqyge
is a gauge transformation whose parameters are appropriately chosen (normally
functions of component fields) to cancel out the unwanted component fields. The

final result is

sV = % (ac*X + Ao*a) (3.83)
1 7 .

dgA = —2aD e (o"T”) k), (3.84)

5D = —— (ac" D) + a5"0,\) (3.85)

where F),, =0,V, — 9,V is the usual field strength of V,,." An interesting point
is that the supersymmetry variation of D is a total derivative, and therefore one
can construct a supersymmetric action using the component field D of a vector
superfield as the Lagrangian.

In a theory with a non-Abelian gauge symmetry, one defines a vector
superfield as a real superfield V' transforming as an adjoint representation of the

gauge group and subject to the gauge transformation

i —t— .
eIV — TN eV gigh (3.86)
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where ¢ is the gauge coupling and A is a chiral superfield in an adjoint represen-
tation of the gauge group. All the results for the non-Abelian case are the same
as those in the Abelian case with the partial derivatives being replaced by the

gauge covariant derivatives, so they are not repeated here.

3.4 Construction of the Supersymmetric Action

To construct a supersymmetric action, one needs the Lagrangian whose super-

symmetric variation is either zero or a total spacetime derivative:

(55/d4:1:£ (z) = /d”‘xau(...) = 0. (3.87)

According to (3.66) and (3.85), the highest order terms in 6 and 6 of any chiral
and real superfields satisfy this requirement. This observation is a starting point
in constructing a supersymmetric Lagrangian using the superspace techniques.
Consider a general superfield S(z,6,6). One can extract its coefficient of 6028 as

follows. Using the rules of integration over Grassmann variables,

/ df, =0, / Oads = Gog, (3.88)

one sees that

/ d*0d70S (x,0.0) = / d*0d*0 [f () + 6%, (2) + 0% (2)
+(00) m (z) + (66) n (z) + (657) V, (x)
+(00)0,0% () +(00) 0404 ()
+(60) (09) d (z)]
= d(z). (3.89)
This means that the coefficient of §20° can be extracted by integrating S over

the Grassmann coordinates. Similarly, one can extract the coefficient of 6% in a

chiral superfield by integrating it over “half” of the Grassmann coordinates 6.
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Using the above method, the supersymmetric Lagrangian can be con-
structed as follows. Define a superpotential W (®) as a function of chiral su-
perfields ®; (i = 1,...,N). It is clear that W is also a chiral superfield, so
the supersymmetric variation of the coefficient of #* contained in it is a total
spacetime derivative and therefore such a coefficient can serve as a part of a
supersymmetric Lagrangian (which, of course, gives a supersymmetric invariant

action by itself). This means that
Lo (D) = / d*OW (@) + h.c. (3.90)

which, after integrating over spacetime, is supersymmetric invariant. Since ®;
describes a multiplet of matter fields, then its mass dimension is one. So the
most general form of W that gives a renormalizable Lagrangian is
Z ki@ 4 = mecb D, + - Zgukcb D, Dy, (3.91)
z]k
where k;, m;; and g;;, are constants. With the form of W, Lp (®) is

Lin (®) = /d2 [Zk¢+ Zm”q)@ \$ Zg,]kd)(l)@k

zgk

OW (¢i
Z W ( ¢ '—‘Z (% (% W@,ﬂ, (3.92)

where W (¢;) is the superpotential in (3.91) with all the superfields ®; being
replaced by their § = # = 0 components ¢; describing the scalar fields. It will be
seen below that the above Lagrangian describes the potential and non-derivative
interaction terms of the theory.

The kinetic terms can be obtained by integrating a real superfield ®®1,

with @ a chiral superfield as usual, over the Grassmann coordinates,

Liin (V) = / d*0d*0poT

= FF* — ¢9,0"¢" — 1o, 0"). (3.93)
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It can be seen that the last two terms of this equation are kinetic terms for a
scalar field and a fermionic field respectively. However, there is no kinetic term
for the F-field. Thus this field has no dynamics (unphysical) and is called an
auxiliary field.

Combinding L, (P) of (3.90) together with its hermitian conjugate, and

Liin (V) of (3.93), one can write the full Lagrangian as

L = Z / d*0d*0D; D! + ( / 200 (D) +h.c.> (3.94)

— Z [EF} + 8,0:0" ¢ — i0i0" 0,

I (¢
[Z ¢ ; Za¢a¢ Vg + h.c.

As the auxiliary fields F; are non-dynamical, then one can eliminate them using

(3.95)

their equations of motion?

oL
n—
[V ()
F; = [ s } (3.96)

Using the above result in (3.95), the supersymmetric Lagrangian becomes

L = Z[Eﬂ*wmawi—mﬁm“é‘uwi]

7

(3.97)

oW ( ¢z
SR

The last term on the right-hand side above is called the F-term contribution

to the potential. Using the explicit form of the superpotential, one sees that it

contains the mass terms and self-interactions of the scalar fields.

2This process actually has a quantum mechanical origin. In the path integral quantization,
one performs the functional integration of the exponential of the action. If the Lagrangian
contains a non-dynamical field F, then “the functional integration over F” gives exactly the
same result as “replacing F' with its form, obtained from its classical equations of motion, in
the Lagrangian.”
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To introduce gauge interactions into the supersymmetric Lagrangian, the

Lagrangian of (3.94) is required to be invariant under the gauge transformation:
O — e WA P, (3.98)

where A (x) is a chiral superfield (so that e 9®)® is still a chiral superfield).

Under the transformation (3.98), Ly, (V) is not invariant:
TP — Pletior o iohp, (3.99)

To make Ly, (V') invariant under the transformation (3.98), it needs to be mod-

ified by introducing a vector superfield into the Lagrangian:
/ d*0d*90T o — / d*0d*0dTe*V ® (3.100)

and recall that e transforms as in (3.86). As the Lagrangian is now gauge
invariant, one is eligible to use the Wess-Zumino gauge in which the Lagrangian

takes the form

/ POdP0DT VD = Do — iha, DM+ go* Z D,T%¢
FigV2 ("X — Mo) + |FI* (3.101)

where D, = 0, +igAjT%and T* are group generators. On the other hand, the
superpotential in(3.91) is unchanged provided the coefficients k;, m;;, and g;jx
are chosen appropriately so as to make W gauge invariant.

Finally, the kinetic terms of gauge fields ‘are considered. In the electro-
magnetic theory, the kinetic terms of a gauge vector field is described by the

contraction of the electromagnetic field strengths:
1w
£kin = _ZF F,u,u (3102)

The kinetic terms for the vector superfield must therefore give rise to the above

Lagrangian. Such terms can be constructed by defining a supersymmetric field
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strength;:
Wa=De? Dye?" (3.103)

where D° = LeABD iDp. Wy is a chiral superfield as one can check by using

1
2
(3.59), and is gauge covariant, i.e., it transforms under the gauge transformation

as Wy — e 9MW 49" For Abelian symmetries, it reduces to
—2
Wa=D"DyV (3.104)

where the coupling constant g has been absorbed into V. Since W}y is chiral
superfield, WAW, is also a chiral superfield and its trace over the group indices

is gauge invariant. Thus the action for the gauge supermultiplet takes the form

1 1 1
/ %6 {3292Tr (WAWA)} +he = —=F%F" 4+ -D,D"

AN @ 2
L0,

1 -
F50 " a0y A + hc., (3.105)

where fo¢ are the Lie algebra structure constants. One sees that in addition to
the kinetic terms for the gauge field, this Lagrangian contains the kinetic terms
for the gauginos A, (—%‘)\“Uuﬁ“;\a and its hermitian conjugate) and the canonical
coupling of the gauginos and the gauge fields (% g N0, Al A and its hermitian
conjugate).

Because there is no kinetic terms for D, in (3.105), D, are auxiliary fields
and can be integrated out. To integrate out-the D, field; one combines (3.101)

and (3.105) and then derives the equations of motion for D, which give
D,=—-g) ¢;Ti¢;, (3.106)
ij

where 7,7 are group indices. Substituting this result into the Lagrangian gives

the so-called D-term contribution to the potential as

2
VD:%Z

a

(3.107)

> 96T,
i
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3.5 The Minimal Supersymmetric Standard Model

3.5.1 The MSSM Particle Contents

The Minimal Supersymmetric Standard Model (MSSM) is the supersymmetric
extension of the Standard Model with the smallest possible number of superfields
and their interactions.

It is natural to ask “Is it possible that the particles in the Standard
Model might already be superpartners of one another?” Unfortunately, the an-
swer is “No” because the matter fermions and the gauge bosons belong to the
different representations of the gauge group. Even though the Higgs boson and
the neutrino have their spins different by one-half but the same gauge quantum
numbers, they cannot be the superpartner of each other as this would lead to the
unacceptable phenomenological results. For example, the terms required to give
masses to the charged leptons explicitly break the lepton number conservation if
the superpartner of a neutrino were the Higgs field.

In the SM, an SU(2) scalar doublet with hypercharge Y = 1/2 is needed
to break the SU(2) x U(1) invariance, but the MSSM needs two such doublets:
one has hypercharge Y = 1/2 like the SM doublet while the other has hypercharge
Y = —1/2. Each scalar doublet and its fermionic superpartners are contained in
a Higgs superfield doublet. There are two important reasons for introducing two
doublets in the MSSM. The first one is that only one Higgs doublet cannot give
masses to all fermion matter fields after the electroweak symmetry breaking. The
other one is more technical. With only one doublet, its fermionic superpartners,
which are chiral fermions, contribute the extra gauge anomalies into the theory,
and these anomalies would definitely spoil the renormalizability of the theory.
Thus the second Higgs doublet with just the right quantum numbers has to be
introduced so that the anomalies contributed by its fermionic superpartners will

cancel precisely those from the first doublet.



76

Table 3.1: Chiral superfields of the MSSM.
Superfield SU(3) SU(2), U(l)y Particle Contents

Q 3 2 % (UL,dL), (ﬂL7dL)
Ue 3 1 —2 Up, W
De 3 1 1 dp, d%
li/ 1 2 —% (VL,eL), (ﬂL,éL)
E* 1 1 1 Er, 5
H, 1 2 1 (Hy, hy)
H, 1 2 - (Hy, hs)

To represent all particles of the Standard Model and their superpart-
ners, the matter fields and their superpartners are combined into chiral super-
fields while the gauge boesons and their superpartners are combined into vector
superfields. For the left-handed SM fermions, the forms of the corresponding
chiral superfields are quite obvious as the chiral superfields automatically contain
left-handed fermions. But for a right-handed SM fermion, one needs to use its
hermitian conjugate, which is a left-handed fermion, to construct the superfield.
All of these superfields and their corresponding SM particles belong to the same
representations of the Standard Model gauge group. For the second Higgs super-
multiplet which has no SM counterpart, it is a singlet under SU(3)¢, a doublet
under SU(2)., and has Y = —1/2 to cancel the gauge anomalies.

As for the names of the particles, the superpartners of quarks and leptons
are called squarks and sleptons respectively. In particular, the superpartner of
the top quark is called the stop squark and that of the electron is called the se-
lectron. The fermionic superpartners of the gauge bosons are called the gauginos.
For example, the superpartners of W+ and Z° bosons are called winos and zinos
respectively. For the Higgs bosons, their superpartners are called the Higgsinos.
These particles are gathered in Tables 3.1 and 3.2, where all spinors are repre-
sented as two-component Weyl spinors. In Tables 3.1 and 3.2, each superfield
is denoted by a capital letter with a hat (e.g., Q) while the superpartner of each

SM particle is denoted by the letter corresponding to the particle with a tilde
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Table 3.2: Vector superfields of the MSSM.
Superfield SU(3) SU(2), U(l)y Particle Contents

Ge 8 1 0 9,9
B 3 1 0 B, b

(e.g., w is the scalar superpartner of the up quark). The “c” superscript on the
superfields corresponding to the right-handed fermions in the SM (namely Ue, De
and EC) indicates that it is the hermitian conjugate of the right-handed fermion
that appears in each superfield; this explains the notations for the particle con-
tents of such superfields. Notice that Table 3.1 contains only the first generation
particles without their antiparticles. The superfields for the other generations

can be defined in the same way.

3.5.2 The MSSM Action

In Section 3.4, the general form of the supersymmetric Lagrangian was con-
structed using two kinds of superfield, namely the chiral superfields and the vec-
tor superfields. The chiral superfield, which describes the multiplet of a matter
field, contains a complex scalar field ¢, a left-handed Weyl fermion 1, and an
auxiliary field F'. The vector superfield, which describes the multiplet of a gauge
field, contains a gauge field A,; a-gaugino A, and an auxiliary field D. The general
gauge invariant supersymmetric action, with all the auxiliary fields eliminated by

their equations of motion, is given by
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S = / d'z {Z <‘Du¢i}2 +izﬁiaupﬂwi)

7

——Z (a@%wﬂ 50 a%wzwj) Z'a@

—= Z (Fg,F™ — iXg, D" \*)

_\/ﬁzga [j\a (&iTa(bi) 4\ (¢i*Tawi)}

a,t,j
1 ‘ _
S Ty
a 2,

The indices 7, j run over all the chiral multiplets in the theory. The function W

2

(3.108)

is a general gauge invariant superpotential.

In order to construct the action of the MSSM, one demands that the
superpotential W be invariant under SU (3) x SU (2),; x U (1)y-. The information
concerning the gauge group representations of all superfields in Table 3.1 enables

one to construct the MSSM gauge invariant superpotential as

A
W= > pe.sHy HY
a,B=1

3
+ Z [()\E)ij ]:IgfziE; + (Ap)y; ﬁzQz‘D; + (Av); ﬁleUJc]

ij=1
2
+ 3 e [AlL"‘LﬁECJr M L0 D] + AU DD
a,f=1
2
+ Y fieapHS LY, (3.109)
a,B=1
where the SU(2) indices (o, 3) and the family indices (4, j) have been displayed
for convenience. However, some of the contractions over SU (2), SU (3), and
family indices were not displayed explicitly. In particular, the couplings \; and
i1 actually contain family indices so that, for example, the explicit form of the

term AgUCDCDC is ()‘3)ijk EABc(UC)Z‘A(DC)jB<DC)kC with i,j, k and A, B, C being
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respectively family and SU(3) indices, and €. being the totally antisymmetric
SU(3) invariant tensor with €153 = 1.

It is not difficult to see that the interactions in the last two lines in
(3.109) cause some problems phenomenologically, since they generally result in the
violations of lepton or baryon numbers. A popular way to eliminate these terms is
to impose a conservation of a multiplicative quantum number called R parity. The
R parity is assigned to be 41 for the SM particles and —1 for their superpartners
[10]. Requiring the R parity conservation, the MSSM superpotential becomes

2 3
W o= 3 pieagHy HS + > (Ap)y; HoLiES

a,=1 i,j=1

o] 3
+5 > (Ap)y; HQ:D5 + Y (), QiU (3.110)

T 4=, =

This form of the superpotential will be used from now on.
In the discussion of the super Poincaré algebra, it was found that P? =

P,P*" is a Casimir operator. An important consequence of this is that
(QP? — P?Q) [boson) = (Mipys0n — M fermion) [fermion) = 0, (3.111)

so all particles in the same supermultiplet have the same masses. However, since
the existing experiments have so far failed to find the evidence for the superpart-
ners of all known particles; supersymmetry must-be broken in the realistic model
so as to make the masses of all superpartners larger than the highest energy scale
of all existing experiments.

To discuss supersymmetry breaking, one should not forget that the equal-
ity of masses within a supermultiplet was an important ingredient for solving the
hierarchy problem. Thus to have a model with supersymmetry breaking, one
begins with a fully supersymmetric Lagrangian and then adds extra terms into
it to explicitly break supersymmetry. The forms of such extra terms have to
be restricted so that they will not introduce quadratic divergences to the parti-

cle masses via loop diagrams. These terms are called the “soft supersymmetry
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breaking” terms. It was found that the acceptable soft supersymmetry breaking

part of the Lagrangian takes the form

2 2
7C 2|7 2 |xc |2

Loty = m3~|CjL|2+m121 |ﬂR|2—i_7nz~

+ ()\EAEHZLé% + )\DADH(ILCZ%: -+ )\UAUHCILﬁ% + B/,LH]_HQ + hC)

Lo 1. 1
+my | Hy|* +miy, | Ho|? + SMBB + S MWW + S Myg (3.112)

where mZ, m2, m2, m? and mg are general hermitian 3 x 3 matrices in the family
space, and ApAg, \pAp and A\ Ay are general 3 X 3 matrices also in the family
space. If these parameters are complex, then (3.112) contains more than 100
unknown real parameters [11]. However, most processes are sensitive to only
some (small) subset of these parameters at least at the classical level. Now the
construction of all parts of the MSSM Lagrangian is completed.

In the next chapter, one of the MSSM phenomenology, the Higgs phe-

nomenology, will be considered.



CHAPTER IV

ELECTROWEAK SYMMETRY BREAKING AND
HIGGS PHENOMENOLOGY IN THE MSSM

Having defined the Minimal Supersymmetric Standard Model (MSSM)
in the previous chapter, we now turn to the electroweak symmetry breaking and
Higgs particles in this model. Unlike the Standard Model in which only one
Higgs doublet is required to break the electroweak symmetry and give masses to
all quarks and charged leptons, two Higgs doublets are required in the case of
the MSSM. As will be seen, there are five physical Higgs states, which include
three neutral Higgs bosons and two charged Higgs bosons. Among these five
Higgs particles, the lightest one, A%, is electrically neutral and has its tree-level
mass less than that of the Z° boson (mz ~ 91 GeV), which is within the energy
range that the Large Electron-Positron Collider (LEP) can detect (< 104 GeV).
Unfortunately, there has been no experimental evidence of such Higgs particle
from LEP. So if the tree-level calculation gives the correct value of h° mass, then
the MSSM should have been ruled out by now. However, as we shall see, the h°
mass acquires large radiative corrections proportional to the fourth power of the
top quark mass, and this makes- its upper bound well beyond the highest energy
that LEP can reach [13]. This gives us some hope that the MSSM could survive
as a phenomenologically viable theory.

In this chapter, we start with a review of the electroweak symmetry break-
ing in the MSSM in Section 4.1. We then go on to calculate all the Higgs masses
at tree level in Section 4.2. In Section 4.3, the radiative corrections to the lightest
Higgs mass myo, using the method of effective potential [13], will be obtained and

the upper bound of the lightest Higgs boson mass will be analyzed.
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4.1 The Tree-Level Scalar Potential and the Con-
ditions for Electroweak Symmetry Breaking

To spontaneously break the SU (2), x U (1), symmetry, the scalar potential
should have the absolute minimum away from the origin (in the space of the
Higgs scalars). Therefore, in this section, only the part of the MSSM potential
that depends on the Higgs fields will be focused. This part of the potential is

comprised of three types of contributions:

2
Sor| i (3.108). With the

1. The supersymmetric “F-terms” of the form >
i

superpotential in (3.110), they contribute the mass terms:
p (JHi|" + [H|") - (4.1)

2. The soft SUSY breaking part (3.112) of the Lagrangian gives the additional

mass and mixing terms:
qul ‘H1‘2 + m%’[z |}¥2|2 (42)
and

BuHHy + h.c. = Bu (H{ Hy — HYHY) + hec.. (4.3)

2
> gon T Z‘ give rise
]

to the quadratic interactions which, after the electroweak symmetry break-

3. The supersymmetric “D-terms” of the form —3 Y
a

ing, result in the mass terms. The SU(2), contributes the terms
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S HL(r*/2) Hy o+ HY (2/2) Ho| [ H] (7 /2) H, + H] (7°/2) Ha|
- > (H(r*/2) Hy) - (H](7%/2) H)
:Z (] (7 /2) Ha) + (H] (72 /2) Ha)
+ 2(12 (M} (7°/2) H.) - (H} (" /2) Ha)

- (Pt - (jsp e st

4
+ (A (H3) + Hy (Hy)") ((H)" He + (HY)" Hy ), (4.4)
while the part corresponding to U(1)y is

%(Qf/zf |, - HQTHQr 2 %’2 ([ + )

2 _12\1?
— (1) + B [F)] . @)
Thus the complete potential for the Higgs fields in the MSSM is

Vi = (il ) ([ () (al ) (15517 + |85 [)
+ [b(H{ Hy — HYHY) + h.c.]

(¢*+4d7)
8

g9’ + (ot o \t?
Jr§‘1111 (H9)"'+HY) (Hy) ‘ : (4.6)

" (s |2 13" — |13 — |1y )

where b = Bu. Note that the terms proportional to | ,u|2 came from the supersym-
metric invariant part of the Lagrangian, and hence is necessarily positive, while
the factors of m%h and m%ﬁ originated from the soft-supersymmetry breaking
terms, and have the possibility of being negative via the renormalization group
running.

To find the minima of the above Higgs potential after the breaking of

SU (2); x U (1), down to U (1)gy, one employs the SU (2); degrees of freedom
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to choose the appropriate vacuum expectation values (VEVs) of H; and Hs. Thus

one may choose H;” = 0 at the minimum of the potential, which implies that

ov
OHT

B [b L)' ()| 1 =0 (4.7

Hif =0

This equation implies that either
1M (4.8)

or
2

bt % (=) (=) | =0 (4.9)

must hold. The second choice implies that the b terms in (4.6) become

g ||

(4.10)
which is positive, and hence unfavorable to symmetry breaking. Thus the proper
solution for which the b terms can be negative is (4.8). Surprisingly, the fact that
the choice H;" = 0 forces H, to become zero implies that the electromagnetism
is not spontaneously broken. Thus to find the minima of the potential away
from the origin, one can now completely ignore the charged components, and
just considers the potential for the neutral fields:

2 2 2 2

Vo = (ul mi, ) [HY (P mi, ) [ 16

2 12
(BT ) (9 L )(\H?\Q—\HS\Q)Q. (4.11)

Note that the coefficient of the quartic terms is not a free parameter, but is de-
termined from the known electroweak couplings (# = 0.065) [12]. This is in
contrast to the case of the Standard model in which the quartic coupling constant
A/4 is a free parameter. With a relatively small quartic coupling constant in the
MSSM, one suspects the possibility of having a relatively light Higgs particle in

the MSSM, at least at the tree level.
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To proceed to find the potential minima, consider the b terms in (4.11)
which depend on the phases of the fields. One can set b to be real and positive
by absorbing its phase into the product HYHY. As the terms other than the b
terms are non-negative, then the minimization of V' at the points away from the
origin is possible if the product H)HY is real and positive, this implies that the
VEVs of HY and HY have the opposite phases. Because these two Higgs fields
have opposite hypercharges, one can use a U(1)y gauge transformation to set
both their phases to zero. So all VEVs and couplings can be chosen to be real,
which means that the breaking of CP symmetry is not caused by the 2-Higgs
potential in the MSSM.

To simplify the calculation, HY and HY, which are now regarded as real,

are rewritten as
v = |H| and . y=|H)|. (4.12)
Therefore the potential for neutral fields can be rewritten as

vV, = (lu|2 +my )2’ + ({u|2 +mi, )y

2 /2
—2bay + (g Jgg ) (22 = 7). (4.13)

To identify the minimum conditions of V; occutrring at non-zero values of x and

y, one first considers a special direction z = y in which the potential becomes
Vo= TP+ %) ¥ (P m2,) < 26] 2. (4.14)

One sees that V, is bounded from below (i.e., the theory does not have any

instability) only if
2|ul® + m3y, +m, > 2b> 0. (4.15)

With the above condition, the origin x = y = 0 is the minimum point of the

potential along the direction x = y. Since it is required that the minimum of the
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potential must be away from the origin for the symmetry breaking to take place,
then the origin must be a saddle point. For the origin to be a saddle point, the

following condition must be satisfied:

am) (82Vn) <82Vn )2
. =) - <0 (4.16)
( ox dy 0xdy A
or
(el +mi;,) (el + miy) < b (4.17)

One of the possible situations that satisfies (4.17) is that either (|u|2 +m3,)
or (| u|2 + mlz%) is negative. In the supergravity inspired model, the soft-SUSY
breaking parameters m%h and m%b are equal and positive at the grand unification
scale of about 1016 GeV. Their values at the electroweak symmetry breaking scale,
however, decrease via the renormalization group running, and one can show that
the parameter m7; decreases much faster than m7, and becomes so negative
that (] u!z + qul) < 0 at the electroweak symmetry breaking scale (while m3, is
still positive) [12]; this makes the electroweak symmetry breaking possible. Note
that, with the conditions (4.15) and (4.17), the situation in which (|,u\2 +mi) =
(I +m?,) is impossible.

Having established. the necessary conditions (4.15) and (4.17) for |HY|
and |HY| to get non-zero VEVs, says vy and v, tespectively, one can determine
the VEVs by using the minimization conditions:

oV, LAV,

T I 7] E 1%
which yield
(| +m%,) v = by — i (¢ + %) (3 —v}) (4.19)
and
(uf? + m2,) vo = bin + = (g% + g2) (2 — 1) o, (4.20)

4
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Even though v; and v, are individually undetermined, a certain combination of
vy and vy is fixed by the mass of the W bosons. To show this, consider the Higgs

kinetic terms
(DuH1>T (Dqu) + (DMH2)T (DMHZ) (4-21)

where D, = D,, = 0, + ig (%) Wi+ (%) yB,. Analogous to the determination
of the masses of the vector bosons in the SM, one inserts the VEVs of H; and H»

into the non-derivative terms above. Defining

(—g'B* + gW¥)

L 4
Ay T 9/2)1/2 (4.22)
one finds that
2 1,5 2 2 2
Mz=.3 (9 +9 ) (Vl + Vz) (4.23)
and also
) 15005 2
My = 59 (1 +03). (4.24)

With the knowledge of mj, and ¢g*, one can determine

2 2
v v = ;W = 174 GeV. (4.25)

Thus the minimization conditions (4.19) and (4.20) can be rewritten as

(1 m%, ) = beot (8) + mTZZ cos (203) (4.26)

and

2
m

(|H|2 +my,) = btan (8) — TZ cos (20), (4.27)

where tan () = v1/ve. The angle [ lies between 0 and 7/2 since both vy and vy

are positive real numbers. Moreover, one can eliminate the parameter || and b

in terms of tan ((3), but the phase of u is still undetermined.
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4.2 The Tree-Level Masses of the Scalar Higgs
Bosons in the MSSM

In the SM, there are four real scalar degrees of freedom in the scalar doublet.
After the electroweak symmetry breaking, three of them become the longitudinal
modes of the massive vector bosons W+ and Z°, while the other becomes a neutral
Higgs boson, the mass of which is determined from the terms quadratic in the
fluctuations about the potential minimum.

In the MSSM with two Higgs doublets, there are 8 real scalar degrees
of freedom. Three of them are eaten by the massive vector bosons W* and Z°
as in the SM. The masses of the others are again determined by expanding the
potential about the minimum, up to the second order in the field fluctuations.
Though straightforward, the work is complicated by the fact that the quadratic
terms are not diagonal in the fields. So one needs to diagonalize these terms in
order to determine the physical Higgs masses. The general procedure is that, for
any potential V' of scalar fields ¢;, one defines the mass matrix

= I i (4.28)
20000,

evaluated at the minimum of V. Then the mass terms take the form —@-M?j&j /2,
where & = ¢; — v; is the fluctuation of ¢; about its VEV w;. Note that the mass
matrix M?j is symmetric. By diagonalizing the mass matrix, one obtains the
physical masses and physical fields as its eigenvalues and eigenvectors respectively.

Even though the procedure just described might be complicated in prac-
tice, the situation is not that terrible in the case of the MSSM, as the mass matrix
is block diagonal in this case. Indeed, the MSSM Higgs mass matrix is a direct

sum of four 2 x 2 blocks. The first independent block in the mass matrix corre-

sponds to the pair of fields (Im H?, Im HY). The part of the scalar potential in
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(4.6) involving this pair is

Vi = (Il +mi,) (m H)" + (|l + mi,) (m )" +2b (Im HY) (Im H)

AT TRe ) + (m 2)? — (Re ) — (mB)]" (4.20)

Using the VEVs
_ H1+ =0 o H20 =1y
(Hi) = ( Y~ ) and (M) = ( Ho—0 ) (4.30)
one finds the matrix elements M, of this block as follows:

(9> +97) (12

M2, =uf” + mi, . v; = v3) = beot(3), (4.31)

and
M3, =b, M3, = btan(f3). (4.32)

It can be easily checked that the eigenstates corresponding to the eigenvalues of

this 2 x 2 block of the mass matrix are

V2 [(Im HY) sin B + (Im HY) cos 3] (4.33)
and

V2 [(Im HY) cos B+ (Im HY) sin §] . (4.34)

The eigenstate in (4.33) is a-massless eigenstate and eaten by the longitudinal
mode of the Z°. On the contrary, the eigenstate in (4.34) corresponds to a scalar

particle A° of mass

2b
sin 23"

Mo = (4.35)

The next 2 x 2 block of the mass matrix is due to the charged pair

<H F(Hy )T> As these fields are complex, their mass matrix is defined by

charged

) [ *V/o (Hfr)TaHfr >*V/o (Hf)Ta(HE)T (4.36)
0°V)o (Hy) OH  9*V/o (Hy) 0Hy ) |
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where V' is the potential in (4.6). Performing the differentiations and evaluating
the results at the VEVs (4.30), one obtains

2 2
A2 ( beot B+ Lvi b+ L, ) ' (4.37)

h. d = 2 2
charee b+ L, btan§+ %1/12

The matrix M?

- ! 2 2 -
chargea 1188 eigenvalues 0 and my;, +m3,. The corresponding massless

state
G" = H/ sinj3 - (HQ’)T cos 3 (4.38)

is eaten to become the longitudinal mode of the W boson, while the one of mass

m%v —|—m1240
Ht = H} cos 8~ (H{)Tsinﬁ (4.39)

becomes a physical positively charged Higgs particle.
The hermitian conjugate of the above pair (Hz_ , (Hfr )T> gives another
2 x 2 block of the mass matrix with the same eigenvalues. The corresponding
massless state G= = (GT)! eaten by the W=, while the massive one H~ = (H*)"
of mass (m%y + mio)l/ ? becomes a physical negatively charged Higgs particle.
The last block of the mass matrix comes from the last pair (Re HY — vy,
Re HY — 1), analogous to the case of (Im HY Tm HY). The corresponding mass

matrix is

o [ beot B+ m%sin® B L<bp — tm? sin 20
M= ( —bf = sm%sin26  btan f+m3 cos® (4.40)

which has two eigenstates: h° corresponding to the eigenvalue

1
mpo = 5 {mﬁo +m7 — \/(mio + mQZ)2 — 4m?,m?% cos? 26} (4.41)

and HY corresponding to the eigenvalue

1

M = 3 { o +my + \/(mio + m2z)2 — 4m?,m3, cos? 25} (4.42)
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are both physical massive neutral particles.

Thus there are totally five Higgs particles in the MSSM. By examining
the masses above, one observes that even though the masses m 40, myo and my+
are unconstrained (since they grow as b/sin 8 which are arbitrary in principle),
the mass myo has an upper bound.

To find the upper bound of myo in a simple way, one rewrites m?%, and

m7 as

Thus mio becomes

1
mio = §{x+a— \/ (x + a)® — 4ax cos? 25}. (4.43)
It is easy to see that m7, is a strictly-increasing function of x for fixed a. For

small x (r < a), one finds that

> W 1/2
mi = -z ta—a M——ECOSQQﬁ]
a a
1 2 2 4 Y2
= —{x+a—a[1+—x x—Z——J;—COS22ﬁ:|
2 a a
1 e T,
= §{x+a—a(1+5+2—cﬁ——cos 2ﬁ)}
~ xcos’20, (4.44)
while for large x (x> a),
) 1/2
4
Mmpp = =S T+a—z M——acos%ﬁ]
x x
1 a a* 2a
= ~|lr+a—z |1+ —+ - — —cos” 203
2 r 22?2 o«
~ acos®2p. (4.45)

Thus m3, has its upper bound of about acos?26. From (4.42) and (4.45), one

can summarize that

mpo < my lcos2B| <my < mY. (4.46)
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This gives the upper bound on the mass of the lightest Higgs boson in the MSSM,
h°, at the tree-level. The MSSM seems to predict that one of the neutral Higgs
scalars must be lighter than the Z boson. However, the above tree-level masses of
the Higgses receive significant one loop corrections, which will be discussed in the
next section. Further, according to (4.46), the mass of hY vanishes for 3 = /4. Tt
is important to realize that, at tree-level, all Higgs masses and couplings depend
on only two parameters, m 40 and tan .

Before going on to the next section, we summarize the spectrum of the
MSSM Higgses. In terms of the original gauge-eigenstate fields, the mass eigen-

states, including the ones eaten by the vector bosons, are given by
@ {/ sinf3 —cos 3 Im HY
( A° ) = V2 ( cosfS sinf Im HY ) (4.47)

G* - sin@  —cos 3 Hf
(A*) 4 ﬁ(cosﬂ sin 3 )(H;*)’ (4.48)

with G~ = G and G~ = G™*, and
RO\ cosa —sina Re HY — 1y
(HO ) _\/5( sina  cosa ) (ReHg_VQ (4.49)

which defines a mixing angle . The tree-level masses of these fields are

m%o = 2b/sin23 (4.50)
M = mio +miy (4.51)
mi = % {mio +m3 — \/(mio + m22)2 — 4m?,m?, cos? 2ﬁ} (4.52)
mie = % {mio +m3 + \/(mio + mZZ)2 — 4m?,m?% cos? 25} . (4.53)

In terms of these masses, the mixing angle « in (4.49) is determined at the tree-

level by
m2. 4 m2 m2 2
sin 2 = — 2A0 + QZ sin 203, cos2a = — 2’40 QZ cos 2(3. (4.54)
M0 + Mo Mo — Mo
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Notice that, once the value of v +v3 has been fixed by the mass of the W bosons,
the supersymmetric Higgs boson masses (actually for the whole Higgs sector) are
then described by two additional parameters, the usual choice being tan  and

m po.

4.3 Radiative Corrections to the Mass of the
Lightest Supersymmetric Higgs Boson

The search for Higgs bosons which are related to the origin of masses is one of the
extremely important research projects in experimental particle physics. Accord-
ing to the last section, the neutral Higgs boson, h°, is the lightest supersymmetric
Higgs boson, and has its mass at the tree-level less than that of the Z. The upper
bound of my0, which is reached when the mass of A” is very much larger than M
(i.e., when [cos 23| ~ 1), implies the large value of tan 3 (tan ~ tan 7). So if
the tree-level calculation really gives the correct value of myo, the MSSM should
have been ruled out by now as there has been no signal of Higgs bosons from
LEP, the maximum energy of which exceeds M. So one might ask if there is any
possibility that the upper bound of mye could be pushed up so that it exceeds
the maximum energy available at LEP. If the answer to this question turns out
to be yes, then the fact that the Higgs boson has not been found at LEP cannot
be used to rule out the MSSM.

Indeed, if one includes the radiative corrections to the Higgs masses, the
upper bound on myo can be substantially increased. The calculations of such
corrections are the main purpose of this section. As will be justified later on, in a
model with unbroken supersymmetry, the corrections to the Higgs masses due to
fermions and their superpartners cancel. But since the supersymmetry has been
broken by splitting the masses of the fermions and their scalar superpartners,
the corrections to the neutral Higgs masses do not vanish at one-loop level. The

radiative corrections can be very large if one considers the loop diagrams due to
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heavy particles such as top quarks and squarks. Thus the lightest Higgs boson
mass has a chance of being heavier than the mass of the Z boson.

In this section, we give a review of the radiative corrections to myo and
show that the radiative corrections can shift the maximal value of myo from
myz to about m ~ 130 GeV. As the nicest method for calculating the radiative
corrections to the Higgs masses is the method of effective potential, we start with
a review of the effective potential and then go on to give some examples of the
effective potential calculations at the one-loop level. The calculational method is
finally applied to the calculation of the radiative corrections to the Higgs masses,
thereby showing the effects of top quarks and squarks on the Higgs masses via

the loop diagrams.

4.3.1 The Effective Potential

To discuss the effective potential formalism in a simple way, we consider the case
of a scalar field; the generalization to the case of many scalar fields is straight-
forward. The dynamics of a scalar field ¢ coupled to an external source J(x) is

described by the Lagrangian
L=Ly+J(x)o(x). (4.55)

In quantum field theory, the generating functional corresponding to the above

Lagrangian is given by

= gt [atelieten e aden | (4.56)
which represents the vacuum-to-vacuum transition amplitude in the presence of

the external source J (z):
W [J] = (0]0),. (4.57)
If the logarithm of W [J] is expanded as a functional Taylor series in J (z):

I [J] = Z% / By A, GO (o, ) (@) - T, (4.58)
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then it can be shown that the “Taylor coefficients” G, known as the connected
Green’s functions, can be calculated by summing over all connected Feynman
diagrams with n external lines.

Define a “classical field,” ¢.(z), as the vacuum expectation value (VEV)

of the field ¢ in the presence of the external source J (z),

_ [ Qe@)0)] = 4y, SInW
pe(z) = {W]}—G()(x) = 5T@ (4.59)

With the above definition of W|[J], one can perform a Legendre transformation

to obtain a functional I' of ¢, as

Doy 171 [ dea@s) (4.60)
which clearly satisfies 6I'[¢.]/dJ = 0. From this definition, one obtains

oT[¢c]
d¢e()

which reduces to 0I'[¢.]/d¢. = 0 in the absence of the source J. The importance

=—J(z) (4.61)

of this equation is as follows: Recall the definition of the classical field ¢.(z) as the
VEV of ¢(x) in the presence of the source J. If J is set to zero, then the classical
field is indeed the VEV of ¢(#) with all quantum corrections included, hence
the true ground state of the theory.! However, despite this formal definition,
one still does not know what exactly the ground state ¢.(x) of a given theory
really is; it may or-may not-be zero; or even it is-non-zero it still has a chance of
being either a constant or some specific function of spacetime. What the equation
O [pe] /0Pe| 720 = O tells us is that, suppose one could find a way to calculate I'[¢.],
then the ground state of the theory can be obtained by solving this equation.

A beautiful way to calculate I'[¢.] is as follows. Just like the case of

In W [J], one expands I'[¢.] in powers of ¢,

NGRS Z % /d4x1 . -d4an(”)(a71, ey ) Pe(x1) e Do) (4.62)

! This is in contrast to the conventional way of finding a tree-level VEV by minimizing the
classical potential in the Lagrangian, where it was inherently assumed that the VEV of a scalar
field is a constant and not a function of spacetime.
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It can be shown that the coefficient '™ (z; ... z,) can be calculated by summing
over all the one-particle irreducible (or 1PI) Feynman diagrams with n external
lines.? Thus one is able to calculate T'[¢.] by calculating the 1PI diagrams using

the standard perturbation theory. In general, I'[¢.] takes the form

tlod = [ s | <V) 450,026 + .. (4.63

where (...) indicates terms with higher numbers of derivatives. T'[¢.] is called
an effective action while V(¢.) is called an effective potential. In most cases
of interest in which the ground state ¢. is spacetime independent (hence its
spacetime derivatives vanish), the derivative terms disappear and so one is left
with only the effective potential term on the right-hand side of (4.63).

The calculation of V(¢.) goes as the following. One considers '™ in the

momentum space

d*k d*k,
F(n)(ggl, ceyTp) = / <27r)14 = (27r)4(27r)454(k1 et k)

X expli(ky - 21 + -+ ky - )T (ky, ... ky) (4.64)

where the delta function inside the integral came from the conservation of total
momentum. To calculate each term in (4.63), one expands I'™(ky, ..., k,) as a
power series in the momenta k; about k; = 0 and rewrites the delta function as a

Fourier integral:

A 1 1 . d*ky d*k
F[¢c] Y ; A /d L1 d xn/ (271‘)4 (271’)4
x/d4xexp[—z’(/€1+~'-—|—k’n) cxlexpli(ky-x14 -+ kn - ,)]

x (™) (k1, ..o k) de(1) - - - de(y)

2A 1PI diagram is the Feynman diagram which cannot be divided into two disconnected
diagrams by cutting just one internal line.
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B 1, . / Ak d'k,
- ; nl / o dn [ 55T Gy
X /d%exp [—i(ky+ -+ kn) - x]expi(ky - x1 4+ + kp - )]

x [LTN0,...,0)¢c(z1) - delzy) + .. ]

— - coodia, .
2 / do o [ G Gy
x/d4x xexp|[—i(k - (z+x)+ -+ k(x4 2,))]

x [LON0,.c0,0)pe(a1) -+ dol@n) + .. ]

1 n n
= /d%ZE{F( )0, .oy O)pe(2)] -} (4.65)
Comparing (4.63) and (4.65), one sees that the effective potential can be obtained
by calculating the 1PI diagrams with zero external momenta:

V(6 = S0 ST 0o (4.66)

n

In the calculations of the 1PI diagrams, infinities generally arise and one has
to add counter terms to cancel these infinities, thereby introducing the “mass
scale” (i.e., the renormalization point) into the theory. In doing this, the typical
procedure is to impose the renormalization conditions on the derivatives of V.
For example in A\¢* theory, the mass squared can be defined as the value of the

inverse propagator at zero momentum
T @)+ L4° (4.67)

which in turn results in the condition on the second derivative of V,
, AV
pw=—=0 .
dgbg ¢c:0

Similarly, the definition of the coupling constant as the four-point function at

(4.68)

zero external momenta,

T (0) = -, (4.69)
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results in the condition

AW

= — : 4.70

Note that the definitions of mass and coupling constant in the above example

originated from the assumption that the ground state of the theory is at ¢, = 0,

or in other words, the symmetry of the theory is not spontaneously broken.
When the spontaneous symmetry breaking occurs, the VEV of the scalar

field no longer vanishes and so (4.61) (for J = 0)

ol [¢c]
0%e

—0 (4.71)

admits a non-zero solution ¢. # 0 corresponding to the ground state of the theory.

If, moreover, the VEV is translational invariant, then (4.71) reduces to

oV (¢e)
e

=0 . with the solution ¢, # 0, (4.72)

which is analogous to the typical condition for spontaneous symmetry breaking,
except that the potential being minimized is now an effective potential which
includes the radiative corrections to the classical potential. An immediate conse-
quence of this is that there is a possibility that radiative corrections can induce
spontaneous symmetry breaking even though the VEVs of the scalar fields vanish
at the tree level. Such a situation is indeed possible and is called the Coleman-
Weinberg mechanism [15].

In the case of the spontaneous symmetry breaking, the definition of the
mass squared is almost the same as (4.68) except that the derivative of the ef-
fective potential is evaluated at the solution ¢, # 0 of (4.72). To see this, it is
appropriate to reformulate the whole thing using the so-called “background field”
technique [16] as follows. Expressing ¢(x) as a sum of a classical background field

v(z) and the field fluctuation n(z), i.e., ¢(x) = n(z) + v(z), and treating n(x) as
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a quantum field, one finds that the corresponding generating functional W[J, v]

is related to the one in (4.56) by

W, 0] = W ] exp {—z’ / di J(:U)v(x)} | (4.73)

Let 1. be the classical field of 7, which is related to ¢. defined in (4.59) by
$e = 1. + v, then it is easy to verify that the effective potential T [Ne,v] =
In W [J,v] — [ d*xJ(x)n.(z) is equal to the one defined in (4.60), i.e

[ [7e,v] =T [8]. (4.74)

By setting 7. = 0 (and hence v = ¢.), one obtains an important relation:

[0, ¢ =T [¢e] - (4.75)

To see how this relation may be used in practical calculations, one expands the

effective action T [1,, v] as
I [, v Z /d41,1 d 2, ™ (2y, . oy 20 0)1e(21) - - - () (4.76)

where T (zy, .. 2,:v) is the sum of all 1PI diagrams with n external lines
(of “n particles”) whose vertices may depend on the background field v and
its derivatives. With this expansion, the relation (4.75) implies that I'[¢.] can be
calculated by summing over all “vacuum-to-vacuum” diagrams (i.e., the diagrams

with no external lines) in the theory with the background field v = ¢,

Llge] = TO(g). (4.77)

This result will be used in the next subsection.

To obtain the mass spectrum of the theory, one chooses the background
field v such that T™(z;v) = 0. With this choice of the background field, the
effective potential has its extremum point at 7. = 0, which in turn implies that

the ground state is at n(x) = 0. Thus 7 is the quantum field which generates the
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particle spectrum of the theory, and its mass p is obtained from the coefficient
I'®(ky, ky) in momentum space as u?> = —I'?(0,0) (see (4.67)).> To determine

what this choice of the background field really is, consider

o [ne,v] _ OT[p]
one(x) 0¢e()
~ O e, ]
S T (4.78)

where we have used (4.74) and the fact that, since ¢.(x) = n.(z) + v(z), the
functional derivative with respect to ¢. is equivalent to the one with respect to

either 7, (with v fixed) or v (with 7, fixed). Then the extremal condition

5T Me, V]

o =0 (4.79)

Ne=
and the relation (4.75) imply that such a choice of the background field is nothing
but the true ground state of the original theory with the field ¢(x) (i.e., the
function ¢,(x) that extremizes I'[¢.]).

To obtain the mass in terms of the effective potential, it is convenient to
assume that ¢, that extremizes the effective action is translational invariant, that

is, it is a constant. Then, with the specific choice of v = gzgc, one has

flgdd = [t [—m; 54 SOmS Zid) + | (@s0)
where
- - 1 v
¥ (0:62) 2 5 Y020, 1 058 Inelo)] (481)
n#l

Expressing 7. = ¢, — ¢. in (4.80) and (4.81), and using (4.74), one gets the

effective action of the original action as

o= [dte|-v(0) + 500020~ did) +..| s

3This comes from the fact that I‘(z)(k, —k) is the inverse of the propagator of the particle.
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with
V(¢c) = - Z %f\(n)(u s aO; q~50>[¢c(l‘) - Qgc]n

n#l

_ _Z%ﬂ")(o,...,m[(pc(@]n (4.83)
n#l

where the second line is the usual form of the effective potential. The equal-
ity (4.74) implies that V(¢.) = V(1.; e), 80 that the renormalization condition
d*V [dn?

ne=0 = p1* (used to determine the mass 1) becomes d*V/d¢Z|, _;. = p*.
This means that the mass of the particle is obtained by evaluating the second
derivative of the effective potential at its extremum point ¢.

Although, in principle, the effective potential can be calculated using
perturbation theory but the calculation involves a double sum: a sum over all
1PI Green’s functions, and for each 1PI Green’s function there is an expansion
in powers of the coupling constant. A nice way to organize the double sum is
known as the loop expansion. It is an expansion with respect to the number of
independent loops of the connected Feynman diagrams. Thus the lowest order
graphs are all diagrams with no closed loops (tree graphs). The next order consists
of the one-loop diagrams which have one integration over the internal momentum.
The usual classical potential is typically identified with the tree-level terms of
V(¢.) in theloop expansion. In fact the loop expansion is indeed an expansion
in powers of the Planck’s constant h. This can be seen as follows. For a given

graph, one can define the quantities:
I = the number of internal lines;
L = the number of independent loops;
V' = the number of vertices in a given Feynman diagram.

Then the number of independent loops L is equal to the number of independent

internal momenta after the momentum conservation at each vertex is taken into
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account. Since one combination of these momentum conservations corresponds to
the overall conservation of external momenta, the number of independent loops

in a given Feynman diagram is given by
L=1—-(V-1). (4.84)

To understand how the number of loops relates to the power of h, one restores

the Planck’s constant to the Lagrangian via the relation:

‘C (gba 8H¢7 h) = h_l‘c (¢7 au¢) (485)

where L (¢,0,¢) is the Lagrangian in the unit & = 1. Thus every vertex carries
a factor of h~!. Since the propagator is the inverse of the differential operator
occurring in the quadratic terms in £, the propagator carries a factor of 4. Then

it is easy to see that
P= =V =51, (4.86)

where P is the power of h associated with any graph.

Because fiis a parameter that multiplies the total Lagrangian, it is unaf-
fected by shifts of the fields and by the redefinition or division of £ into free and
interacting parts associated with such shifts. In short, it allows us to compute
V(¢.) before the shifts.  This is the advantage of the loop expansion since one
can investigate the theory even the radiative corrections qualitatively change the
structure of the theory (e.g., by turning the minima of a classical potential into
the maxima of the resulting effective potential). In other formalisms, it is much

more difficult to detect the occurrence of such phenomena.

4.3.2 Effective Potential Calculations

To illustrate the calculations of the effective potential, we start with the sim-

plest case, the A\¢* theory, which contains only scalar fields. The result is then
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generalized to include vertices involving fermions and gauge bosons. In the calcu-
lations below, we employ the background field technique described in the previous
subsection, so that the effective action is obtained by summing all the vacuum-

to-vacuum diagrams with the classical field ¢. as the background field.
The Effective Potential of the \¢* Theory

The Lagrangian of the A\¢* theory takes the form

L= 509~ U()

Ao 1
5 B — O, (4.87)

where the B and € terms on the second line have been included to take into
account of the wave function, mass and coupling constant renormalization, and
the classical potential takes the form

A
széﬁf+ﬂ&. (4.88)

To make the result valid for any value of yi, the potential U in (4.87) is treated
as a perturbation. After the splitting ¢ = ¢, + 1, there are two vertices with two
lines: p? and A$? as shown in Fig. 4.1. Their combination is just the second

derivative U” evaluated at ¢ = ¢.. Thus one can define
1
m (pe) =U" = p* + §>\¢3- (4.89)

To calculate the effective potential, the tree-level terms come from the classical

potential itself, with ¢ being replaced by ¢.:
Logo Ay
= - — .. 4.
Vo = Su6E+ Lo (4.90)

The one-loop corrections to the effective potential are obtained by summing up

the diagrams in Fig. 4.2, with massless propagators and m? (¢.) vertices. At
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I S— = + + L

Figure 4.1: The combination of vertices u* and \¢?/2.
00,0 " -

Figure 4.2: One-loop diagrams which contribute to the effective potential.

one-loop, the effective potential is thus
Lo, Ay 1o, 1 .,
Y Zr B — =
d*k Z"" L [m?(¢.)]"

(2m)* £ 2n | k> + ie

s ]‘ 42 )\ 4 1 & 1 4

+%/ (;z:; o [1 3 Z;Lj@z] (4.91)

where the counterterms with parameters B and C have been included so as to
make to renormalization conditions satisfied.
The integral in the last line is divergent. If the cutoff at some large

momentum k? = A% is used to regularize the integral, one obtains

2

mz(¢e)

1 A 1 1 A
Vige) = §M2¢z + aébi 3 §B¢2 = Z(Jcbff +

3272
2
my(¢c) {ln m‘if‘:) — 1} :

* 2

i (4.92)

By imposing the renormalization conditions on the renormalized mass and cou-
pling constant, the parameters in the renormalization counterterms (B and C')

can be determined. A convenient choice for u? # 0 case is the conditions (4.68)

and (4.70):
d*V 5
dd? |40
d*v
e — ) (4.94)
Aoy | 4,—o
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which lead to the effective potential

(4.95)

6472 L

With this result, the last term does not seriously affect our classical intuition.
For the case u? = 0, things are different. To obtain the effective potential

for this case, one cannot just take the limit p?> — 0 in (4.95), because of the

infrared singularity. To get around this difficulty, one comes back to start with

(4.92) and chooses a new renormalization condition for the coupling constant at

the mass scale M # 0:

_dv

] F#é be=M

The appearance of M should not be a surprise: In the absence of yu, the classical

A : (4.96)

Lagrangian no longer contains an intrinsic mass scale. However, the renormaliza-
tion process involves a large momentum cutoff, thereby introducing a mass scale
into the theory. This destroys the scale invariance of the theory, and this is how
the mass scale M comes to play the role in the theory.

With the above condition and restoring m?2 (é.) = p? + 1 A\¢?2, the effective

potential becomes
ol Ay

1 £ 84 NS B Np?
+647T2 {<,U +§¢C) In {—/L2

L 270 1 29 @ ey o 2M2
2)\,u o 24)\ ¢C—|—4)\ o, In e N (4.97)

Taking the limit x? — 0, one obtains

o, 3

Vige) = (4.98)

4 256w | M2 6
It can be seen that the one-loop radiative corrections turn the potential minimum

at the origin ¢ = 0 into a maximum, and generate a new minimum at

Aln (;222) = —%r? + O(N). (4.99)
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This results in a spontaneous symmetry breaking induced by radiative correc-
tions mentioned earlier. However, this new minimum lies outside of validity of

perturbation theory since the higher order calculations will give the higher power

of AMn < ](’222) which is bigger than one.

The General One-Loop Calculations of the Effective Potential

Having considered the special case of the ¢* theory which contains only
the scalar vertices, we now turn to the more general cases which involve scalar,
fermion, and gauge boson loops. Again, we confine our calculations at one-loop
level. The notations are as follows. The real scalar fields are denoted by ¢%, the
fermionic fields are denoted by ¥, and the vector bosons are denoted by Aj. The
index a is typically a group index; it runs over the appropriate range for each
representation of group.

The one-loop approximation to the effective potential can be written as
V(@)=W+Vi+ VitV + 1V, (4.100)

where V} is the tree-level approximation; Vi, V; and V, are respectively the con-
tributions from scalar loops, fermion loops and gauge loops; and V. is the con-
tribution from the renormalization counterterms. Note that Vj is just a classical
potential.

To compute V, one needs to know every vertex of the scalar loops. Anal-
ogous t0 (4.89), the vertex connecting two scalar fields of types @ and b is given
by

0*Vy
00,00,

evaluated at ®.. Consider the loop with n vertices as shown in Fig. 4.3. As each

M2, () (4.101)

internal line is constructed by connecting the same type of scalar fields, then this

loop contains a factor

M2 M2 M2, .. M? . M? (4.102)

aiaz aza3 azaq Gn—10n anal
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il

Mg,

Figure 4.3: A one-loop diagram with n vertices.

apart from the scalar propagators. After summing over all types of the scalar

fields, the above factor becomes the trace of the nth power of M?:

n times
2 2 2 2
Z a1a2 a2a3 a3a4 Man 1anMana1 B Z< M=---M )a1a1
ai...an a1
= Tr[(M?)"]. (4.103)

Since there are n propagators with the same momentum k, each factor of M?>
has to be multiplied by a propagator before integrating over the loop momen-
tum. As V; is obtained by summing over all scalar one-loop diagrams, then it is

proportional to
(M?)" 1 (MH"
d*k — | = d*kT o
/ Z [ (k24 ie)n jl / ! ; n(k2+ze)
= d'k . (4104
/ Z 2n k2 +Ze (4.104)

Repeating the process in the case of A\¢* theory, one arrives at

Vi= o (M) a2 (4.105)

6472

plus cutoff-dependent quadratic terms, which are absorbed in V.
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We next consider the fermion loops. The calculation is similar to the
previous case. One defines a generalized mass matrix m (®) whose dependence

on the scalar fields arises from the Yukawa couplings:
L= =) Tme(®)T,+.... (4.106)
ab

With @ replaced by the VEV @, one obtains mg, (P.) as a vertex with two
fermion legs, a and b. Note that the matrix m is a matrix in the spinor space as
well as the internal space.

The calculations go as follows. One first notes that since the trace of an
odd number of Dirae v matrices is zero, there can be only an even number of
fermion propagators in each loop diagram. Thus each diagram is proportional to
some power of mm/:

1 ix 1
i 0 AS LI 4.107
V’Lkum Wk, k? “l ( )

..Tn

Then the rest of the calculations are exactly the same as the scalar case except
for the overall minus sign for the fermion loops. The result is

i

Vi= " 6472

Tr [(m (@) m' (®,))* In (m (o) m (cpc))} (4.108)

plus some quadratic terms which can be absorbed into V.. Note that in this
equation the trace runs over spinor indices as well as internal indices. Typically
M; = mm'is already diagonal;, and m (¢) = m!(¢). Tf the spinors are all

Majorana spinors-as in the supersymmetric theory, then

[Z m2 In mi] (4.109)

with m, being the eigenvalues of the mass matrix. The factor of 2 on the right-

V=

2
6472

hand side comes from the trace over Majorana indices.
Finally, the contribution V, from the gauge fields is considered. At the
one-loop level there are two types of diagrams containing gauge fields. The sim-

plest ones have only gauge fields traveling around the loops. The others are
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gauge mixed loops, shown in Fig. 4.4. However, if one quantizes the theory in

the Landau gauge, where the gauge propagator is

Kk
. o Gu — T2
iA, (k) = —@—kQ i (4.110)

then, as the momentum of the internal scalar field is the same as that of the
internal gauge boson (since the external momentum is zero) and the vertex is
proportional to the momentum of the scalar field, all the gauge mixed loops

vanish due to the fact that they contain a factor

(G — kukl//kQ)

Rk g = ikt &
R IS
k.2
(k, — k,E?/E?)
— = k.2
£Z(9 (4.111)

Thus the contributions from gauge fields come from the sum over pure gauge
loops. Defining a gauge field mass matrix in terms of the nonderivative couplings

of gauge fields to the scalar fields:
1
L:...+§ZM;(@)AWA§+..., (4.112)
ab

then the vertex is just the mass matrix M7 (®.) evaluated at the VEV ®.. The
calculation of V; is then analogous to the previous cases, with the result

3

Vo= 6472

T [(M;)2 (@) 1n M2 ((I)c)] (4.113)

apart from quadratic terms which are absorbed in V.. The extra factor of 3 comes

from the trace of the Landau gauge propagator.

4.3.3 Bounds on the Mass of the Lightest Supersymmetric
Higgs Boson

Equipped with the general one-loop results for the effective potential, we are ready

to calculate the radiative corrections to the mass of the lightest supersymmetric
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Figure 4.4: An example of gauge mixed loop.

Higgs boson, kY. This is done by first finding the effective potential of the Higgs
fields at one-loop level in terms of the classical fields (of all components of the
Higgs doublets). Once the VEVs of all components of the Higgs doublets are
found by minimizing the effective potential,* the Higgs mass matrix is obtained
by evaluating the second order derivatives with respect to the classical fields of the
effective potential at the VEVs. After diagonalizing the mass matrix, the masses
(with radiative corrections included) of all Higgs particles are finally obtained.
We now begin the calculation. As we are interested only in the mass of
hY which is a linear combination of Re Hy and Re HY, it is sufficient to consider

only the part of the tree-level effective potential that contains Re HY and Re HY:

92 +g/2 9
Vo = miA? + m3B? + 2m3AB + 2 (4> - B*)”, (4.114)
where we have defined
A:ReH?, B = Re HY

m% 3 (‘M’Z + mH1) ) TTL% - (I/’L’2 + mHQ) ) mg =b.

To find the one-loop corrections of the above potential, one notes that if all vector
fields in the MSSM are quantized in the Landau gauge and since all fermions in
the MSSM are Majorana fermions, then one can write the one-loop corrections

to the Higgs potential, V;, as the sum over scalar, fermion, and gauge loops:

1 2 [ M? 3 2 [ M2
wo- L [(W) (1HF>]+ Lo {(Mf) (111 AQH
2 2 mm!
—647T2Tr [(mmT) (ln Az )] : (4.115)

4Like the tree-level case, the only non-zero VEVs are of Re HY and Re HY.
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where M?, M? and m are mass matrices of scalar fields, vector fields and fermionic
fields, respectively, and A is a cutoff scale as usual. Note that (4.115) is the
corrections to the effective potential before the renomalization conditions are
taken into account (see (4.92)). If one observes that the coefficient of each term
in (4.115) is the number of spin degrees of freedom of the fields in each loop
diagram (the spin degrees of freedom of a spin-J particle is 2.J + 1), then one can

rewrite (4.115) as

v 6417r2 ; (=)* (2J+1) Tx [(Mi)2 (m ]\f—;ﬂ , (4.116)

where M3 is the mass matrix of the fields with spin J (for spin-1 fields, M7 =
2
mm/'). Since the trace over M2, TrM?, results in the summation over all mass

eigenvalues of the fields with spin-.J, one can write V4 as a supertrace,

V, = 6417T28tr {(A/F)? (logMTzﬂ, (4.117)
Str f(M?) = > (=1 (2Ji+1) f (m]), (4.118)

where m; is the mass of the i-th particle of spin J;. After imposing the renormal-

ization conditions, the effective potential V' becomes

V(Q) = W(@)+ (@)

2 g’ +49” 2
= miA® +m3B* + 2miAB + 3 (A% — B?)
1 ne [, M1
In— — = 4.11
—|—647r28tr [(M ) <n 7 2)} , (4.119)

1

where @ is the renormalization scale. Note that the factor —3

in the logarithmic
term in (4.119) has been restored (compared with (4.92)) for convenience even
though it could have been absorbed into the polynomial terms.

We are now at the point to show that one-loop diagrams involving the

top-quark supermultiplet induce a finite, non-negligible contribution to the Higgs

potential as the top-quark mass is fairly large, m; ~ 170 GeV. Consider the
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interactions between the Higgs fields and other fields in the MSSM. Although
the Higgs fields interact with lots of fields, the major contributions to the Higgs
effective potential come from their interactions with the top-quark supermultiplet
due to the large value of the corresponding Yukawa coupling \;. According to
(3.110), only the H; Higgs doublet interacts with the top-quark supermultiplet.

So it is sufficient to consider only the interactions coming from the term
M@, Pz Py (4.120)

in the superpotential, where ®;  and ®s are chiral superfields associated with the
right-handed top-quark and the left-handed quark doublet in the third generation,
respectively. This term implies the interactions of H; with top quarks and squarks
with the strengths proportional to the Yukawa coupling ;.

To calculate the one-loop diagrams, one simplifies the calculation by tak-
ing the large tan 8 limit, which is equivalent to taking the VEVs v; # 0 and
vy =~ 0 (so that tan§ = vy /s > 1). That this limit simplifies the calculation
can be understood as follows. Since the tree-level mass m2A0 = 2b/sin 23 must
be finite, then the limit of large tan § (or small sin 2/3) corresponds to the situ-
ation in which b — 0, so one neglects the bilinear term 2m2AB in (4.114). Also
as the quartic terms containing B (which come from the (A? — B?)? term in
(4.114)) give the mass matrix elements proportional to at least one factor of the
VEV.of B (which.is v, ~ 0.in the large tan £ limit), then one can neglect these
terms as well. Thus in this situation, the lightest supersymmetric Higgs boson is
h° = h =~ /2Re HY = \/2A (compare this with the form of h° at the end of the

last chapter). Let m; — m, v; — v, the tree-level effective potential becomes

2 12
Vo= m2A2 4+ &9 (4.121)
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so that
——— =2mPA+ T —L A3
9A AT T
—om?4+ L 2 1A% 4.122
gaz — M 2 (4.122)
Thus the tree-level minimization gives
2 2 2
2 g +g° 5 my
= — 4.123
m 1 v 5 ( )
and so the tree-level mass of h is
19%V;
D 0 2

If one assumes in addition that the two stop squarks have the same mass
and do not mix with each other, and that m%,m? > m%, the dominant field

masses are those of the top quark ¢ and the stop squarks :
m; = A\ A% mi = N A® +m? (4.125)

where m; came from the stop mass term in the soft-SUSY breaking part of the
Lagrangian, and D-terms which give an additional contribution to the stop mass
have been neglected due to the smallness of the gauge couplings. Thus one can
approximate the one-loop correction V4 by including only the contributions from

top quark ¢ and stop squark ¢ loops. The result is

3 oo mi 1 o fmi 1
V1:167r2 {mg (an—t—§>—mt(H@—§ (4.126)

where the factor of 3 on the right-hand side is'the number of colors of quarks.

The minimization of V = Vo+ Vi (e [J5] =0 at A =v) gives

Vo 3 8"”?[ 2( m?) 2( m?)”
e T mi:|In—=) —m;(In— =0 (4.127)
{GA sm2 9A | T\ Q2 AN OLyN |

om?
0A

om2 . .
where we have used the fact that = % after neglecting the D-terms. It is
convenient to choose a renormalization scale ) such that the log terms in (4.127)

sum up to zero. Thus, the above minimization condition becomes

oy
52 = 0 (4.128)
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and

m2 2
{m? (ln Q—;) —m? (ln %)} - = 0. (4.129)

The first condition in (4.128) has already been considered and gives the result in
(4.123), while the second one in (4.129) allows us to evaluate the renormalization
scale (). Thus one finally obtains the mass of the lightest supersymmetric Higgs

boson A as

e 2042,

3 m?
Yy /) 42 i
= Mo |tree + 265 (4)\tu In H%) , (4.130)
where m2o|iee = m3 is the mass of h” at tree level.

Since the condition (4.128) is exactly the same as the tree-level minimiza-

tion condition, then the relation between the VEVs and the mass of W boson

still holds at one-loop order. Thus, in this limit, one can still use the relation
1
v = <\/§GF> : (4.131)

where G is the Fermi coupling constant. With this identification and using

(4.125), the result (4.130) becomes

m?2
wido EQniacth R A +ln £ (4.132)

3GE
Vi
Thus one can see that, in the limit'of tan 3 > 1, the correction to the mass of h°
grows quartically with top mass and logarithmically with the stop mass. Thus
the one-loop effective potential gives a significant improvement to the mass of the
lightest supersymmetric Higgs boson if the top quark is sufficiently heavy. This
is indeed the case as we know nowadays that the top quark mass is about 170
GeV.

In general, one needs to compute the upper bound of myo for given values

of tan # and the squark masses. In doing so, one has to keep the terms involving
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B = Re HY in the tree-level effective potential. The one-loop correction (unrenor-

malized) sufficient for determining the corrections to myo is still the same:

3 9 2 12\2 mg—i—)\fAQ 1
T [W“t“ <lan_§
A2A? 1
_()\?Az)Z(ln e —§>}, (4.133)

where the top quark mass and the stop mass have been expressed in their original

forms as in (4.125).° If m? > mj (= A\fA?), then one can approximate (4.133) as

3 3

Ve s o ()

{—ng)\? (A%) In

A7 A2
mg + A\j A2

After the renormalization is performed, the divergent mass term in (4.134) can

%
M (4%)° In (4.134)
be absorbed by the tree-level potential.

The rest of the calculation is straightforward: One just adds the one-loop
correction V; to the tree-level effective potential, and evaluates the second order
derivatives of the total effective potential at A = 11, B = v, to obtain the mass
matrix for the Higgs fields h° and H°. It can be shown that the mass of the

lightest supersymmetric Higgs boson has an upper bound:

mz

2
i g (4.135)
my

\/_ 2

which is higher than the one obtained in the previous chapter. Fig. 4.5 shows the

mpo < \/mQZO cos? 23 +

upper bound on the lightest Higgs mass as a function of tan 3 for several choices
of my.. With the supersymmetry breaking scale mg = 1 TeV, one sees that the
upper bound of myo can reach 130 —150 GeV in the range of m; = 150 —200 GeV.
This explains why the h° boson has not been seen at LEP: the upper bound on
mypo in the MSSM, when the one-loop radiative corrections are included, is such
that the h' boson can be kinematically not accessible at LEP energies (~ 104

GeV).

®Actually, A% in (4.133) should be replaced by (Re HY)? + (Im H?)?2. But since the VEV
of Im HY is zero, then Im HY does not contribute anything to the mass of m;o and so can be
ignored.
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Figure 4.5: The mass of the lightest neutral Higgs boson as a function of tan 3
for various top quark masses [14].. This figure includes radiative corrections to
the Higgs mass, assuming the supersymmetry breaking scale m; =1 TeV. (This
figure is taken from [14]).



CHAPTER V

CONCLUSIONS

In this thesis, we have reviewed the Higgs sector of the MSSM and some
aspects of the MSSM Higgs bosons. The Higgs sector of the MSSM consists of
two Higgs doublets with opposite hypercharges. The tree-level potential for these

scalar doublets was determined from three types of contributions:

1. The supersymmetric F-terms which give the quadratic terms involving the

1 parameter, 2 (| H3| + | H3)):

2. The supersymmetric D-terms which give the Higgs self-interactions of which
coupling constants are completely determined by the SU(2), and U(1)y

gauge coupling constants.

3. The soft-supersymmetry breaking terms which give additional mass and

mixing terms, muy, |Hi|* + muy, |Hz|* and b (H, Hy — HYHY).

Such the Higgs potential allowed us to break the electroweak symmetry if the
VEVs of their electrically neutral components, 1y and 15, are non-zero. After the
electroweak symmetry breaking, the physical Higgs states include three neutral
Higgs bosons (h°;, H° and A°) of different masses, and one pair of charged Higgs
bosons (HE) of equal masses. Once v? + vz has been fixed by the experimental
values of the mass of the W bosons and the weak coupling, the MSSM Higgs
sector can be described in terms of two independent parameters: the ratio of
MSSM VEVs, tan 3 = v; /vs, and the mass of the A° Higgs boson.

A remarkable consequence of the tree-level Higgs potential is the mass of
the lightest supersymmetric Higgs boson, h°, which is always smaller than the Z°

boson mass. However, it is a nature of the theory that myo receives the radiative
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corrections, so its upper bound can be raised substantially. Indeed, by comput-
ing the one-loop corrections due to the top quark and its scalar superpartner,
stop squark, it was found that the correction to myoe (in the theory with soft-
supersymmetry breaking terms) is proportional to the fourth power of the top
quark mass, but vanishes if supersymmetry is unbroken. It was moreover found

that the upper bound on myo is changed by one-loop corrections into

<o m?
E ot In —L, (5.1)
/272 my

where one assumed that all squarks have equal masses. Thus the upper bound

mpo < \/mQZo cos?23 +

on myo, in the case of the large top quark mass m;, can exceed the highest energy
accessible at LEP. For m; = 175 GeV and m; = 1 TeV, the upper bound of my,
varies from 130 — 150 GeV.

As there have been more sophisticated analyses which include a variety
of two-loop effects, renormalization group effects, etc., this bound can, of course,
be changed. However, there is no model which has the mass upper bound larger
than 150 GeV for the lightest supesymmetric Higgs boson. Such a mass scale will
be accessible at LEP II or the Large Hadron Collider (LHC), so the experiments

to be performed in the near future will provide a definitive test of the MSSM.
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