
http://www.pdffactory.com


PHENOMENOLOGICAL SUPERSYMMETRY

Mr. Wirin Sonsrettee

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science Program in Physics

Department of Physics

Faculty of Science

Chulalongkorn University

Academic Year 2005

ISBN 974-53-2775-1









vi

ACKNOWLEDGEMENTS

I would like to express my gratitude toward my advisor, Dr. Rujikorn

Dhanawittayapol. His teaching inspired my appreciation in theoretical physics.

His suggestions always led me to the heart of the problems and the way to inves-

tigate and solve them.

I would like to thank Dr. Ahpisit Ungkitchanukit for his kindness. He

not only taught me physics but also guided me to the way of life.

I also would like to express my gratefulness to Dr. Auttakit Chattarabhuti

for his suggestions and his helps.

I am very grateful to Dr. Burin Asavapibhop and Dr. Sathon Vijarnwan-

naluk for serving as my thesis committee and for their suggestions.

A special thank goes to Houang A. T. Kiet for discussions about super-

symmetry and his helps. A lot of thanks also go to Pawin Ittisami and Pitayuth

Wongjun for discussions and their helps, especially in lending me some of their

very useful books.

I thank the XI Vietnam School of Physics for giving me the opportunity

to attend the school with full support.

I also thank my true friend, Pairud Kamsing, for his friendship and en-

couragements.

I sincerely thank Rangsima Chanphana for her mental supports. There

were many times that I confronted serious problems in life, and thought of ending

my dream and my graduate study. I may not have passed those difficult times

without her.

Lastly, I would like to thank my family and friends for their encourage-

ments and supports throughout the whole period of my study.



CONTENTS

Page

Abstract in Thai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Abstract in English . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Chapter

I Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

II The Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Mathematical Descriptions of Symmetries . . . . . . . . . . . . . 7

2.1.1 Some Group Theory . . . . . . . . . . . . . . . . . . . . . 7
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CHAPTER I

INTRODUCTION

Over a long period of time, physicists had started to discover the laws of

Nature by observing facts about Nature. The patterns of Nature behaviors have

been seen and the equations were written down. In this way, the electromagnetic

(EM) theory was formulated. The EM theory, however, was seen in a deeper

view. In the 19th century, physicists knew that the Maxwell’s equations have

the Lorentz symmetry. Einstein put this fact to use in developing his theory of

Special Relativity. Today, physicists extract symmetries from the assumptions

and formulate a law of Nature with regarding to the symmetries. Symmetries in

modern physics have taken an even stronger role to such an extent that the laws

of modern physics cannot even be formulated without the concept of symmetry

[1]. In particle physics, the Standard Model (SM) describes elementary particles

and their fundamental interactions based on symmetries. The SM action has the

Lorentz symmetry and the symmetry under translations in spacetime. All fields

in the SM therefore belong to some representations of the Poincaré group. The

interactions in the SM are described by the gauge bosons which mediate strong,

weak and electromagnetic interactions. The laws of interactions are constructed

from a gauge principle which states that the Lagrangian is invariant under the

local symmetry transformations. The electromagnetic and weak interactions can

be unified into the electroweak (EW) interactions through the process of spon-

taneous symmetry breaking. The spontaneous symmetry breaking implies the

existence of the scalar field called the Higgs field. The interactions of the Higgs

field with any particle cause the particle to acquire mass after the symmetry

breaking.

The results from decades of theoretical and experimental research have

confirmed that the SM is extremely successful in that its predictions have agreed
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very well with the experimental results of high precision. The SM, however, is

not the best theory for understanding the fundamental laws of Nature. There

have been many unsolved problems in the SM. We now give a brief overview of

some important problems:

1. The SM cannot explain a number of arbitrary parameters:

Parameter Amount
Quark masses 6
Leptons masses 3
Mixing angles θi 3

QCD θ 1
Phase δ 1
Coupling constants 3
Higgs sector 2
Total 19

These parameters appear in the equations, and they just have to be put in

to make the theory fit observations. For example, if one asks “Why is the

top quark, which is the heaviest known elementary particle, something like

300,000 times heavier than the electron?” The answer is “We don’t know.”

2. People believe that the SM is just an effective low energy theory. So one

needs more fundamental theory which has a larger domain of validity ex-

tending to smaller distances, or equivalently, to higher energies that have

not yet been explored by particle accelerators. A possible theory, so-called

the Grand Unified Theory (GUT), has been proposed. The GUT unifies

the strong, weak and electromagnetic interactions in the sense that they

become a part of a larger gauge group with a single coupling constant. One

motivation for the unification comes from renormalization group calcula-

tions which show that the strengths of three effective (running) coupling

constants tend to the same value at the grand unification scale of about

MGUT ∼ 1016 GeV. This motivated some people to construct a GUT model
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Figure 1.1: The plot of the inverse of the coupling constants of electromagnetic
(α1), weak nuclear (α2), and strong nuclear (α3) forces as functions of the energy
scale according to the renormalization group calculations in the Standard Model.

with one gauge group with only one coupling constant above the MGUT

scale. Below this scale, the GUT gauge group should be broken to the Stan-

dard Model gauge group in the same way that the electroweak gauge group

SU(2)L×U(1)Y is broken to the electromagnetic gauge group U(1)EM below

the weak scale MW ∼ 100 GeV. However, using the data of high precision

for the coupling constants at the weak scale, the SM calculation indicated

that the coupling constants do not really tend to a single value at any high

energy scale. the standard model miss each other. This is shown in Fig.

1.1.
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3. The hierarchy problem cannot be solved by the SM itself. The problem

arises from the fact that the difference between the EW scale and the GUT

scale is extremely large. In the calculation of the Higgs mass in the SM,

one obtains the result

m2
H = m2

H,bare +O(Λ2), (1.1)

where mH is the observed Higgs mass (physical Higgs mass), mH,bare is

the bare Higgs mass which is the mass parameter that appears in the SM

Lagrangian, and O(Λ2) represents the quantum corrections from the effect

of interactions between Higgs and other particles with “Λ” being the cutoff

energy. One can view Λ as the energy scale above which the SM is not

valid and the new physics occurs. One expects that Λ is the GUT scale

(∼ 1016 GeV). There are, however, bounds on the Higgs mass. By imposing

the condition to preserve the unitarity of the W+W− → W+W− scattering

amplitude [2], the physical Higgs mass needs to have an upper bound, mφ ≤

1 TeV. Thus in order to get the acceptable value of Higgs mass, the bare

mass must be fine-tuned to a very high precision in order to cancel the very

large quantum correction terms. This has annoyed physicists so much that

they called it a hierarchy problem.

4. The gravity cannot fundamentally be unified with the other interactions of

the Standard Model. Although it is possible to study quantum field theories

on a curved spacetime (in which gravity is treated as a classical background

field, and particles and other fundamental forces are described by quan-

tum fields), it is far from how to unify or connect a quantization of gravity

with the SM. In this context, a second related problem is the cosmological

constant, the energy of the vacuum. The energy density calculated by in-

voking spontaneous symmetry breaking in the SM is 50 orders of magnitude
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higher than the observational limit. This necessitates excessive fine tuning

between bare pieces, which have, a priori, no reason to be related to each

other at all.

There are many theories proposed to solve these problems. Once again, physi-

cists also expect the symmetry to play the central role in all of them. Which

symmetries are available? Looking at the SM, it has both the spacetime sym-

metry via the Poincaré group and the internal symmetry in the field space via

the gauge group separately. Are there any more general kinds of symmetry than

these? In 1974, Haag, Lopuszanski and Sohnius showed that the supersymmetry

constitutes the only possible non-trivial generalization involving the Poincaré and

internal symmetries [3]. Thus supersymmetry is one of the candidates to extend

the SM.

Supersymmetry (SUSY) is, by definition, a symmetry between fermions

and bosons [4]. Hence SUSY implies that there are equal numbers of fermionic

and bosonic degrees of freedom in Nature. SUSY assigns to each fermion a bosonic

partner, and vice versa. They are called the superpartner of each other.

The problems of the SM above can be solved by supersymmetry. For ex-

ample, because every fermion has a bosonic superpartner, the hierarchy problem

can be solved in supersymmetry by reducing the quadratic divergences (O(Λ2))

to logarithmic divergences (O(log Λ2)) with a cancellation of Feynman diagrams

which separately correspond to fermions and bosons. However, in a truly super-

symmetric theory the masses of a fermion and its superpartner have to be the

same, but the superpartner of each SM particle has not yet been observed in

Nature. Thus in a viable theory, supersymmetry has to be broken by introducing

the mass difference between each fermion and its superpartner without causing

the quadratic divergences to reappear.

One of the simplest model of the supersymmetric extension of the Stan-

dard Model is the Minimal Supersymmetric Standard Model (MSSM). In the
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MSSM, all particles of SM are doubled with their superpartner except the Higgs

particle. There are five Higgs bosons in the MSSM. The lightest supersymmet-

ric Higgs which is denoted by h0 and has the tree-level mass less than that of

the Z boson, yet it has not been observed experimentally. Unfortunately (for

experimentalists at least!) mh0 can receive the radiative corrections which possi-

bly cause it to become heavier than mZ . Thus it is interesting to compute the

radiative corrections to mh0 .

The organization of this thesis is as follows. In Chapter 2, we review

the construction of the Standard Model from the postulate that it obeys some

practical symmetries. In detail, we briefly review some necessary Lie group the-

ory which is the mathematical language of continuous symmetry, and use the

formalism to construct the dynamics of the SM. In Chapter 3, the general su-

persymmetric field theory and the MSSM are constructed analogously, excepted

that they are based the graded Lie groups instead of the ordinary Lie groups. In

Chapter 4, the Higgs phenomenology will be reviewed. The one-loop effective po-

tential for the supersymmetric Higgs fields is calculated to analyze the bound on

the mass of the lightest supersymmetric Higgs particle. Finally the conclusions

are made in Chapter 5.



CHAPTER II

THE STANDARD MODEL

In order to comprehend the extension of the Standard Model with super-

symmetry, the construction of the Standard Model (SM) with symmetries should

be understood before. To describe the symmetries of the physical theories, physi-

cists use the idea of group theory. In this chapter, we start with a brief review

of group theory paying a particular attention to the Poincaré group, and then go

on to discuss particles in quantum field theory, as representations of the Poincaré

group. To describe the interactions in the SM, we next discuss gauge symmetries

which, together with the Poincaré symmetry, dictate the possible form of the dy-

namics of the theory. After that, the symmetry group SU (3)C×SU (2)L×U (1)Y

of the SM is presented. We end this chapter with a discussion of the breaking

of SU (2)L×U (1)Y (weak isospin × hypercharge electroweak symmetry) via the

Higgs mechanism which gives masses to the particles.

2.1 Mathematical Descriptions of Symmetries

2.1.1 Some Group Theory

By studying the composition of symmetry transformations, one can conclude that

they form a group. In this section, we briefly discuss basic ideas of group theory,

paying a particular attention to Lie groups and Lie algebras. We begin with the

definition of group.

Definition 1. A group (G, ◦) consists of a set G together with a composition

law denoted by ◦ which associates an element x ◦ y ∈ G to each pair of elements

(x, y) ∈ G×G such that the following properties are satisfied:

1. Associativity: x ◦ (y ◦ z) = (x ◦ y) ◦ z for all x, y, z ∈ G.
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2. There exists an identity element, e ∈ G, such that e ◦ x = x ◦ e = x for

all x ∈ G.

3. For each x ∈ G, there exists an inverse element, x−1 ∈ G, such that x ◦

x−1 = x−1 ◦ x = e.

The group is said to be abelian if the commutative law x ◦ y = y ◦ x holds

for all x, y ∈ G.

If the elements of G only satisfy the first two properties, then (G, ◦) is

called a semigroup.

The kind of groups that plays most important roles in particle physics is

Lie group [5]. A Lie group is the group whose elements are parametrized by a

set of continuous parameters, which are normally treated as the coordinates of

a manifold, called a group manifold, whose dimension is called the dimension of

the Lie group. By convention, these parameters are set to zero for an identity

element; this means that the identity element is associated with the origin of the

coordinate system on the group manifold. A small deviation from the identity

element (that is, the group element “nearby” the identity) is thus specified by a

direction (or vector) from the origin, which is expressed as a linear combination

of the basis vectors (with either real or complex coefficients which play the role

of the continuous parameters) on the tangent space of the identity element. Such

the basis vectors are called the generators of the Lie group.

Let A be a linear combination of the generators. Then it can be proved

that any element g of a Lie group, which is connected to an identity element by a

continuous curve on the group manifold, takes the form of the exponential map,

g = exp(A).

Moreover, the group generators are required to form the basis of a Lie algebra [6]

defined formally as follows.
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Definition 2. A Lie algebra consists of a vector space L over a field F (here R

or C) with a composition rule called product, written ◦, defined as follows:

◦ : L × L 7−→ L

If v1, v2, v3 ∈ L, then the following properties define the Lie algebra:

1. Closure : v1 ◦ v2 ∈ L.

2. Linearity : v1 ◦ (v2 + v3) = v1 ◦ v2 + v1 ◦ v3.

3. antisymmetry : v1 ◦ v2 = −v2 ◦ v1.

4. Jacobi identity : v1 ◦ (v2 + v3) + v2 ◦ (v3 + v1) + v3 ◦ (v1 + v2) = 0.

For a Lie group of which the generators are basis vectors, the product ◦

is just a Lie bracket of two vectors.

It can be shown that most Lie groups are matrix groups, in which the

elements are square matrices and the product of two group elements is just an

ordinary matrix multiplication. In such cases, the generators are simply the

square matrices; the exponential map is just an ordinary exponential of a matrix,

defined as a Taylor series expA =
∑∞

n=0A
n/n!; and the Lie algebra product ◦ is

a commutator of two matrices.

A familiar example of matrix Lie groups is a group of 2 × 2 unitary

matrices with unit determinant, known as the special unitary group SU(2,C)

with complex parameters. Its generators are complex, traceless, antihermitian

2× 2 matrices with the Lie product

a ◦ b ≡ [a, b] = ab− ba. (2.1)

The associated Lie algebra L is called su(2,C). The most popular basis consists

of three matrices

τi =
i

2
σi

where the σi are the three Pauli matrices.
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2.1.2 Lorentz and Poincaré Groups

In the special theory of relativity, one demands that physics be invariant un-

der Lorentz transformations. The group of Lorentz transformations, called the

Lorentz group, is a Lie group. In detail, the Lorentz group is the group which

leaves an interval (x−y)2 ≡ (x0−y0)2−|~x−~y|2 in the Minkowski space invariant,

i.e., all linear coordinate transformations

x→ x′ = Λx

such that (x − y)2 = (x′ − y′)2. Thus it is a special orthogonal group SO(1, 3),

and its element Λ ∈ SO(1, 3) can be written in the exponential form

Λ =

[
exp(− i

2
ωρσMρσ)

]
(2.2)

where the generators Mρσ and the parameters ωρσ are antisymmetric in ρ and σ,

and the factor i appears so as to make (Mρσ) hermitian. Mµν are related to the

rotation generators M1, M2, M3 and the Lorentz boost generators N1, N2, N3 by

(
Mµν

)
=


0 −K1 −K2 −K3

K1 0 J3 −J2

K2 −J3 0 J1

K3 J2 −J1 0

 ,

where Jl = iMl, Kl = iNl. The 4× 4 matrices (Mµν) constitute a basis of the Lie

algebra o(1, 3), with the commutation relations

[Mµν ,Mρσ] = −i(ηµνMνσ − ηµσMνρ − ηνρMµσ + ηνσMµρ) (2.3)

where ηµν = diag(1,−1,−1,−1) is the metric tensor.

Besides the Lorentz transformations, one can see that a translation Tx(a)

which changes the coordinates x by

x→ x′ ≡ Tx(a)x = x+ a
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with a a constant four-vector, also leaves the Minkowski interval invariant. Cer-

tainly, one can write Tx(a) in the exponential form

Tx(a) = exp[−iaλPλ] (2.4)

where Pλ are the translation generators.

By combining Lorentz transformations and translations, one obtains the

Poincaré group which transforms the spacetime coordinates as

x→ x′ = Λx+ a. (2.5)

It is the largest group that leaves the Minkowski interval invariant. Thus the

Poincaré group has the generators of Lorentz transformations Mµν and the gen-

erators of translations Pµ satisfying the Lie algebra

[Pµ, Pν ] = 0 (2.6)

[Mµν , Pλ] = −i(ηνλPµ − ηµλPν) (2.7)

[Mµν ,Mρσ] = −i(ηµνMνσ − ηµσMνρ − ηνρMµσ + ηνσMµρ). (2.8)

In quantum field theory, an elementary particle may be viewed as the

“quantum” of a classical relativistic field Ai(x) which may be labeled by some set

of indices, denoted collectively by i. To form a relativistically invariant action,

the field Ai(x) must be a representation of the Poincaré group (that is, it must

have the consistent transformation properties with respect to the Poincaré trans-

formations) otherwise one cannot construct a Poincaré invariant action using the

field together with some other objects, such as spacetime derivatives [7]. Thus

the collective index i may consist of some indices responsible for the Poincaré

transformations together with some other indices which make the field transform

as some representations of other symmetry groups of the theory.
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2.1.3 Representations of Lorentz and Poincaré Groups

So far, we have considered a group element as being an abstract mathematical

object, defined by its composition rules with other group members. To incorpo-

rate the symmetries into the theory, we have to construct a concrete form of the

group elements in terms of the objects that we already knew (such as matrices

or differential operators) together with a space on which the group elements act.

Such a space may be a finite dimensional vector space or a space of functions,

and is called a “representation space.”

Starting with the Lorentz group, we are interested in the representations

in the form of functions of spacetime possibly with indices. More specifically,

a set of objects ϕi, with i = 1, . . . , n, is said to transform as an n dimensional

representation of the Lorentz group if it transforms as

ϕi → ϕ′i ≡
[
exp(− i

2
ωρσMρσ)

]i
j

ϕj (2.9)

where
[
exp(− i

2
ωρσMρσ)

]i
j is a matrix representation of dimension n of the Lorentz

group. If ϕi are also spacetime functions ϕi(x), then the Lorentz transformation

generally affects x.

The simplest example of this is the case of a scalar field φ(x), which is

invariant under the Lorentz transformation in the sense that

φ(x) → φ′(x′) ≡ φ′(Λx) = φ(x). (2.10)

A more complicated example is given by a vector field V µ(x) with one spacetime

index, which under xµ → x′µ = Λµ
νx

ν , transforms as

V µ(x) → V ′µ(x′) = Λµ
νV

ν(x). (2.11)

Here the matrix representation in (2.9) is just a transformation matrix for the

spacetime coordinates.
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In general, a tensor field of arbitrary rank T µ1,...,µm
ν1,...,νn(x) can be built

out of a vector by adding more indices, and transforms multilinearly with the

transformation matrices Λ:

T µ1,...,µm
ν1,...,νn(x) = Λµ1

µ′1
. . .Λµm

µ′mΛν1
ν′1 . . .Λνn

ν′nT µ
′
1,...,µ

′
m
ν′1,...,ν

′
n
(x′). (2.12)

These are tensor representations which yield a large class of relativistic fields.

Besides the tensor representation, however, there are also spinor representations

of the Lorentz group, which are less obvious. Such representations can be found

by a trick due to Dirac.

We start with defining the 4× 4 matrices γµ which satisfy

{γµ, γν} ≡ γµγν + γνγµ = 2ηµνI4×4. (2.13)

Then we can construct a representation of Lorentz generators as

1

2
Σµν ≡ i

4
(γµγν − γνγµ) (2.14)

which satisfy the Lorentz algebra (2.8). The representation space on which Σµν

acts is 4-dimensional complex representation space, called the Dirac spinor ΨD.

In quantum field theory, this representation describes a spin-1/2 particle.

A particularly useful representation of the gamma matrices is the Weyl

representation defined by

γµ =

(
0 σµ

σµ 0

)
(µ = 0, 1, 2, 3) (2.15)

where

σµ ≡ (I2×2,
−→σ ) (2.16)

σµ ≡ (I2×2,−−→σ ) = σµ. (2.17)

That this representation is useful is due to the fact that the “chirality” operator

γ5 defined by

γ5 ≡ iγ0γ1γ2γ3 =

(
−I2×2 0

0 I2×2

)
(2.18)
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is block diagonal. Moreover, by substituting the representation (2.15) into (2.14),

the Lorentz generators in this representation read

1

2
Σ0i =

i

4

[
γ0, γi

]
= − i

2

(
σi 0
0 −σi

)
, (2.19)

and

1

2
Σij =

i

4

[
γi, γj

]
= −1

2
εijk
(
σk 0
0 σk

)
≡ 1

2
εijkΣk (2.20)

which are also block diagonal. This means that the 4 × 4 representation above

is reducible. To decompose it into irreducible parts, we express the Dirac spinor

ΨD in the Weyl representation as

ΨD =

(
ΨL

ΨR

)
(2.21)

where

ΨL =

(
ψ1

ψ2

)
=

(
ψA
)

(A = 1, 2) (2.22)

ΨR =

(
χ1̇

χ2̇

)
=

(
χȦ
)

(Ȧ = 1, 2). (2.23)

The two component objects ΨL and ΨR, called the left-handed and the right-

handed Weyl spinors respectively, are irreducible representations of the Lorentz

group. The reason behind the names left-handed and right-handed is as follows.

In field theory, these spinors satisfy the Dirac equations. If the masses of these

spinors are zero, then it can be shown that the particle’s spin is always parallel

(anti-parallel) to its momentum for the right-handed (left-handed) spinor. Thus

the operators PL = (1− γ5)/2 and PR = (1 + γ5)/2 are projection operators that

project out the left-handed and right-handed parts of the Dirac spinor respec-

tively, hence the name chirality operator for γ5.

It is easily seen that, under an infinitesimal rotation with parameters θi

(and Σ0i as generators) and an infinitesimal boost with parameters βi (and Σij
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as generators), these spinors change by

ΨL →
(
1− iθ · σ

2
− β · σ

2

)
ΨL = ΛLΨL (2.24)

ΨR →
(
1− iθ · σ

2
+ β · σ

2

)
ΨR = ΛRΨR. (2.25)

From (2.24) and (2.25), we obtain the properties

Λ†
LΛR = Λ†

RΛL = 1, (2.26)

where ΛL and ΛR are Lorentz transformation operators for left-handed Weyl and

right-handed Weyl spinors respectively.

We now discuss some algebras of Weyl spinors. The indices of ψA are

raised and the indices of χȦ are lowered using the matrices

ε =
(
εAB
)

=

(
0 −1
1 0

)
=
(
εAB
)−1

(2.27)

and

ε =
(
εȦḂ
)

=

(
0 1
−1 0

)
=
(
εȦḂ
)−1

(2.28)

according to the rule

ψA = εABψB and χȦ = εȦḂχ
Ḃ. (2.29)

Short-hand notations for summations over indices are defined differently for dot-

ted and undotted indices. For undotted indices, sum over indices is defined ac-

cording to the northwest-southeast rule, while the southwest-northeast rule is

applied for the summation over dotted indices:

(ψχ) = ψAχA = εABψBχA = ψ2χ1 − ψ1χ2 (2.30)(
ψχ
)

= ψȦχ
Ȧ = εȦḂψ

Ḃ
χȦ = ψ

1̇
χ2̇ − ψ

2̇
χ1̇. (2.31)

For σ matrices, they have mixed indices as

σµ =
(
σµ
AḂ

)
, σµ =

(
σµȦB

)
(2.32)
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since they provide a mixing of left-handed and right-handed Weyl spinors accord-

ing to (2.15). It can be checked that σµ and σµ are related as follows:

σµ
AȦ

= εABεȦḂσ
µḂB (2.33)

σµȦA = εABεȦḂσµ
BḂ

. (2.34)

One can also show that σ2ψ∗ transforms like χ under the Lorentz transformation

and that σ2χ∗ transforms like ψ. Left-handed and right-handed Weyl spinors

thus can transform into one another by complex conjugation:

(ψA)∗ = ψ
Ȧ
. (2.35)

As a Dirac spinor is a direct sum of two irreducible representations of

the Lorentz group, there is a standard way of reducing the number of degrees

of freedom of the Dirac spinor so that the resulting spinor contains only one

irreducible representation. One defines a Majorana spinor ΨM as a Dirac spinor

in which ψA and χȦ are not independent, but are related by χȦ = iσ2ψ∗A. Thus

ΨM =

(
ψA

iσ2ψ∗A

)
=

(
ψA

ψ
Ȧ

)
. (2.36)

Thus, it has the same number of degrees of freedom as that of a Weyl spinor,

although it is written in the form of a Dirac spinor. From this definition, it follows

that a Majorana spinor is invariant under the charge conjugation defined by

Ψc
M ≡ CΨ

T

M = ΨM (2.37)

where

C =

(
iσ2 0
0 iσ2

)
(2.38)

and

Ψ = Ψ†γ0. (2.39)
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We see that the Majorana spinor is invariant under “complex conjugation,” and

so it is sometimes called a real spinor. Note that the process of reducing the

degrees of freedom above is equivalent to imposing the constraint Ψ = Ψc on the

Dirac spinor.

So far, all necessary field representations of the Lorentz group have been

considered, but the representations of the Poincaré group have not been discussed

yet. As mentioned earlier, the Poincaré group is the largest group that leaves the

metric in the Minkowski space invariant. Thus, to have a theory whose physics

does not depend on both the Lorentz frame and the origin of the coordinate

system, all fields must be the representations of the Poincaré group. In particular,

after the theory is quantized, the basis of the Hilbert space of a free particle is

considered the representation of the Ponicaré group.

To label the physical states, we need the operators whose eigenvalues

are invariant under the action of all elements of the Ponicaré group. Thus these

operators must commute with all generators of the Ponicaré algebra, and they are

called the Casimir operators. As the Casimir operators are normally constructed

from the generators, they commute among themselves and so have simultaneous

eigenvectors and eigenvalues. As a result, all eigenvectors with the same set of

eigenvalues of the Casimir operators form an irreducible representation of the

group.

There are two Casimir operators for the Poincaré group. The first one is

quite obvious; we first observe that P 2 = m2, or the mass squared, commutes with

all generators and is therefore a Casimir operator. Under the Lorentz transfor-

mations, it transforms as a scalar and hence is invariant. Certainly, it is invariant

under translations because all translations commute.

To find the other Casimir operator, one introduces

W µ =
1

2
εµν%σPνMρσ (2.40)
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which is called the Pauli-Lubanski tensor. Using the commutation relations of

the Poincaré group, one can verify that the square of this tensor W 2 is a Casimir

operator. Thus all physical states in quantum field theory can be labeled with the

eigenvalues of these two Casimir operators. However, the physical significance of

W 2 operator is not easy to understand.

To find the physical significance of W 2, let us consider the rest frame of

a massive particle: Pµ = (m,~0). Inserting this into (2.40), we find that

W i = −1

2
mεijk0M

jk (2.41)

= −mJi (2.42)

W 0 = 0 (2.43)

where Ji is just the usual rotation matrix in three dimensions. Thus, in the rest

frame of a massive particle, the Pauli-Lubanski tensor is just the spin generators.

Its square is therefore the Casimir of SO(3) (rotation group), which we know

yields the spin of the particle:

W 2 = −m2s(s+ 1) (2.44)

where s is the spin of the particle.

However, we have not discussed massless particles. Since the massless

particle has m2 = 0, then P 2 = 0. If moreover W 2 = 0, or

W ·W |p〉 = 0, P · P |p〉 = 0 (2.45)

where |p〉 is a particle state of momentum p which belongs to the subspace P 2 =

W 2 = 0. From (2.40), it is clear that W µ and P µ are orthogonal:

W · P = 0 ⇒ W · P |p〉 = 0. (2.46)

From (2.45) and (2.46), we conclude that they must be proportional to each other,

(W µ − λP µ) |p〉 = 0 (2.47)
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with λ being a proportionate constant. Thus the massless states in this subspace

can be characterized by one number λ, which is the ratio of W µ and P µ and

so has the dimension of the angular momentum. It is called the helicity. If the

parity is included, the helicity can have both plus and minus signs, ±|λ|. To

see what λ actually is, we use the frame in which P µ = (P, 0, 0, P ). In this

frame, P 0 = P = |~P | and W 0 = ε0ijkPiMjk/2 = ~P · ~S where ~S is the spin of the

particle. This implies λ = ~P · ~S/|~P | is a projection of the particle’s spin along its

3-momentum direction, hence the name helicity.

Now, we can label all one-particle states with the eigenvalues of these

Casimir operators. A complete list of states is give in terms of the mass (m), spin

(s) and helicity (λ):

P 2 > 0 : |m, s〉, s = 0, 1/2, 1, 3/2 . . . (2.48)

P 2 = 0 : | ± λ〉. (2.49)

2.2 Dynamics of Fields from Symmetries

In the previous section, we considered the fields as the representations of, but not

limited to, the Poincaré group. In this section, we study the dynamics of fields

using only the symmetry principles.

2.2.1 The Actions with Lorentz Symmetry

When you believe that the law of physics does not change upon some transfor-

mations, it is the law of symmetry. From the modern point of view, the laws of

physics are described by the actions. Thus to say that a law of physics has a

symmetry is equivalent to saying that the action is invariant under the transfor-

mations associated with that symmetry. Thus the symmetries dictate the possible

forms of the action one would like to construct.
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For a real scalar field, an action describing the non-trivial dynamics must

contain ∂µφ. In order to be a Lorentz invariant action, the index µ must be con-

tracted with another factor ∂µφ. Therefore the kinetic term must be proportional

to two time derivatives ∂µφ∂
µφ (because we don’t know how to quantize actions

with more than two time derivatives). The other terms involve the polynomials

of φ. If we moreover demand that the action of the scalar field be invariant under

the transformation φ → −φ so as to exclude terms of odd power in φ (which

may render the potential unstable) form the action, we end up with the Lorentz

invariant action of the form

S(φ) =

∫
d4x

[
1

2
(∂µφ)2 − 1

2
m2φ2 − 1

4!
λφ4 + · · ·

]
, (2.50)

where various numerical factors have been put in for convenience. The terms

without the spacetime derivatives form the negative of the potential V (φ), so we

generally write

S(φ) =

∫
d4xL(φ) (2.51)

=

∫
d4x

[
1

2
(∂µφ)2 − V (φ)

]
, (2.52)

where L(φ) is the Lagrangian of the scalar field. The quadratic term of the poten-

tial is the mass term, while higher powers, like φ4, φ6, etc. give non-linear contri-

butions to the equation of motion, and therefore correspond to self-interactions.

For spinor fields, each term in the Lagrangian is non-trivial. To construct

the scalar terms from spinors, one notices that Ψ†
LΨR and Ψ†

RΨL are Lorentz

scalars:

Ψ†
LΨR → Ψ†

LΛ†
LΛRΨR = Ψ†

LΨR (2.53)

Ψ†
RΨL → Ψ†

RΛ†
RΛLΨL = Ψ†

RΨL, (2.54)

where the properties Λ†
LΛR = Λ†

RΛL = 1 have been used.
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To construct vector quantities from spinors, more properties of γ matrices

are needed. Using the antisymmetry of ωµν and (2.14), we find[
i

4
ωµνΣ

µν , γλ
]

= −1

4
ωµν

[
γµγν , γλ

]
(2.55)

= −1

4
ωµν

(
γµγνγλ − γλγµγν

)
(2.56)

=
1

4
ωµν

(
γλγµγν + γµγλγν − 2γµgλν

)
(2.57)

=
1

2
ωµν

(
gλµγν − γµgλν

)
(2.58)

= ωλµγ
µ, (2.59)

or equivalently,(
1 +

i

2
ωµνΣ

µν

)
γµ
(

1− i

2
ωµνΣ

µν

)
=

(
1− i

2
ωλµ

)
γν . (2.60)

This equation is just the infinitesimal form of

Λ−1
1
2

γµΛ 1
2

= Λµ
νγ

ν , (2.61)

where

Λ 1
2

= exp

(
− i

2
ωµνΣ

µν

)
. (2.62)

By using (2.61) and the properties Λ†
L = Λ−1

R and Λ†
R = Λ−1

L , it is clear that

the quantities Ψ†
Lσ

µΨL and Ψ†
Rσ

µΨR transform as four-vectors. Therefore it is

possible to write the Lorentz invariant kinetic terms which are of first order in

the derivatives,

L(ΨL) = iΨ†
Lσ

µ∂µΨL (2.63)

and

L(ΨR) = iΨ†
Rσ

µ∂µΨR. (2.64)

Now, the spinor action is defined as

S(ψ) =

∫
d4xLD (2.65)

=

∫
d4x

[
Ψ†
Lσ

µ∂µΨL + iΨ†
Rσ

µ∂µΨR +m(Ψ†
LΨR + Ψ†

RΨL)
]
, (2.66)
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where LD denotes the Dirac Lagrangian. In terms of the Dirac spinor, the above

action reads

S(ψ) =

[∫
d4xΨD(iγµ∂µ −m)ΨD

]
(2.67)

which is a compact form.

Finally, we consider the Lorentz invariant action of the vector fields.

An electromagnetic field is a good example of the vector fields. It is described by

a four-vector Aµ, the gauge potential. The field strength tensor is defined as

Fµν = ∂µAν − ∂νAµ, (2.68)

which is related to the electric and magnetic fields by

F 0i = ∂0Ai − ∂iA0 = −Ei, (2.69)

F ij = −εijkBk. (2.70)

The Maxwell equations in the absence of sources can be derived from the action:

SEM =

∫
d4x

[
−1

4
FµνF

µν

]
=

∫
d4x

[
1

2
(E2 −B2)

]
. (2.71)

So far, we have considered the construction of the actions based on only

the requirement of Lorentz invariance. The actions considered up to now only

describe free fields and some self-interactions, and therefore do not give the real

descriptions of Nature. In the real world, different fields interact with one another,

such as the interactions of charged particles with the electromagnetic fields. We

therefore need to consider more general forms of the action, possibly with some

new invariance principles; this will be done in the following subsection.

2.2.2 Interactions from Gauge Symmetries

The Lorentz symmetry considered in the previous subsection is not enough for

modeling all the particle interactions. As is well known nowadays, fundamental
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interactions among elementary particles are based on the existence of another

kind of symmetry, known as gauge symmetry.

To discuss this kind of symmetry in detail, consider a set of N scalar

fields forming a vector in an “internal space,”

Φ =


ϕ1

ϕ2
...
ϕN

 (2.72)

subject to the internal symmetry transformations

U ≡ exp [−iT aαa] , (2.73)

where a = 1, 2, . . . , n (n is the number of generators of the transformation), the

generators T a are N × N matrices and αa ∈ R. If αa are constant at every

spacetime point, an internal symmetry transformation is called a global phase

transformation. On the other hand, if αa are spacetime dependent, the internal

symmetry transformation is called a local phase transformation or gauge trans-

formation. We will see that the latter case is responsible for most interactions in

the SM as the theory is required to be invariant under the local gauge transfor-

mations. The Nœther’s theorem to be discussed later says that the invariance of

the equations of motion under a continuous symmetry implies the existence of a

conserved charge. Thus there are conserved quantities in the SM associated with

the local gauge symmetries.

The theory invariant under the local phase transformations is called gauge

theory. The first version of such theory is the electromagnetic theory of Maxwell

with the local phase transformations forming an Abelian group. Thus it is an

Abelian gauge theory, in contrast to the non-Abelian Yang-Mills theories which

are based on non-Abelian groups. Since the SU(2) symmetry of the Standard

Model is a non-Abelian gauge symmetry, we will first take a look at the gauge

principle before continuing to the full Standard Model gauge group.



24

2.2.3 Gauge Principle

We start with the simplest gauge theory in the SM based on an Abelian Lie group

of complex numbers of modulus one, called U(1). As we shall see, the requirement

that the theory be invariant under the Abelian U(1) gauge symmetry implies the

existence of a massless vector boson (photon) which mediates the electromagnetic

interactions. By local U(1) symmetry, we mean that the field actions are invariant

under the following transformations:

ΨD(x) → Ψ′
D(x) = exp[−iα(x)]ΨD(x) (2.74)

ΨD(x) → Ψ
′
D(x) = exp[iα(x)]ΨD(x). (2.75)

Because the derivatives in the Dirac equation act on α(x) as well as on the field

ΨD(x), one can show that the free Dirac Lagrangian is not invariant under this

transformation,

L0 = ΨD(x)(iγµ∂µ −m)ΨD(x)

(2.76)

changes to

L′0 = ΨD(x)(iγµ∂µ −m)ΨD(x)

+ΨD(x)γµΨD(x)∂µα(x). (2.77)

To make the Dirac Lagrangian invariant under the U(1) transformations,

one introduces the gauge field Aµ through the minimal coupling with coupling

constant e,

Dµ ≡ ∂µ + ieAµ, (2.78)

where Dµ is called a covariant derivative, and demands that DµΨD transforms in

the same way as the spinor field does,

DµΨD → exp[−iα(x)](DµΨD). (2.79)
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This can be accomplished if Aµ transforms as

Aµ → A′
µ = Aµ +

1

e
∂µα. (2.80)

The gauge field Aµ is identified with the electromagnetic 4-dimensional potential

in the previous subsection.

From the covariant property of Dµ, one can construct new covariant ob-

jects from the products of covariant derivatives. For example, consider the anti-

symmetric product of two covariant derivatives acting on a spinor, it transforms

covariantly, i.e.,

[Dµ, Dν ] ΨD → D′
µ (D′

ν) Ψ′
D −D′

µ (D′
ν) Ψ′

D (2.81)

= Dµ

(
e−iα(x)DνΨ

)
−Dµ

(
e−iα(x)DνΨ

)
(2.82)

= e−iα(x) (DµDνΨ)− e−iα(x) (DµDνΨ) (2.83)

= e−iα(x) [Dµ, Dν ] Ψ. (2.84)

If one write [Dµ, Dν ] ΨD in terms of Aµ, one finds

[Dµ, Dν ] = ie [∂µAν − ∂νAµ] (2.85)

= ieFµν (2.86)

or

Fµν =
−i
e

[Dµ, Dν ] = ∂µAν − ∂νAµ. (2.87)

Thus Fµν is gauge invariant and is the field strength in (2.68).

It is now straightforward to couple a Dirac field of charge e to the elec-

tromagnetic field by replacing ∂µ by Dµ in the Dirac Lagrangian as

LD = ΨD(x)(iγµDµ −m)ΨD(x). (2.88)
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Then the Dirac Lagrangian is invariant under the U(1) transformation:

LD → L′D = Ψ
′
D(x)(iγµD′

µ −m)Ψ′
D(x)

= ΨD(x) exp[+iα(x)]

{
iγµ∂µ − e

(
γµAµ +

1

e
iγµ∂µ

)
−m

}
× exp[−iα(x)]ΨD(x)

= ΨD(x)(iγµDµ −m)ΨD(x)

= LD.

From (2.88), one can conclude that “the requirement that the theory be

invariant under gauge transformations imposes the specific form of the interac-

tions with the gauge fields.” In other words, the symmetries imply dynamics.

Instead of an Abelian Lie group U(1), one may consider a non-Abelian

Lie group. This idea was implemented by Utiyama in 1956 for any Abelian group

G with generators ta satisfying the Lie algebra

[ta, tb] = iCabctc (2.89)

with Cabc being the structure constants of the group. Let the multiplet of (scalar

or spinor) fields

Φ =


ϕ1

ϕ2
...
ϕN

 .

transform according to

Φ(x) → Φ′(x) = exp [−iT · α(x)]Φ(x) (2.90)

≡ U(α)Φ(x), (2.91)

where Ta (a = 1, . . . , n) are N × N matrices representing the generator ta and

αa(x) (a = 1, . . . , n) are arbitrary function of space-time. To make the Lagrangian

of Φ invariant under the non-Abelian transformations, one gauge field for each
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generator is introduced. The covariant derivative is defined using the gauge field

as

Dµ ≡ ∂µ + igT aAaµ. (2.92)

To ensure that the Lagrangian is invariant under the local non-Abelian gauge

transformation, the covariant derivative acting on the field must transform like

the field itself, i.e., DµΦ → U(DµΦ). To achieve this, one requires that

T aAaµ → U

(
T aAaµ +

i

g
∂µ

)
U−1. (2.93)

Finally, we obtain the field strength tensor for a non-Abelian Lie group

in the same way as we did in the case of an Abelian symmetry. Thus

T aF a
µν =

−i
g

[Dµ, Dν ] (2.94)

= ∂µT
aAaν − ∂νT

aAaµ − ig
[
T aAaµ, T

aAaν
]

(2.95)

or

F a
µν = ∂µA

a
ν − ∂νA

a
µ − gCabcAbµA

c
ν . (2.96)

Thus F a
µν is a gauge covariant quantity and transforms as

igF a
µνT

a → U(α)igF a
µνT

aU−1(α). (2.97)

Similar to the electromagnetic case, the gauge-invariant kinetic term of the non-

Abelian gauge bosons takes the form

Lkin = −1

4
F a
µνF

aµν . (2.98)

2.2.4 Conservation Laws from Symmetries

In the last two subsections, we saw that the local symmetries of the action demand

the existence of the gauge fields and also put the restrictions on the possible
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forms of the terms in the Lagrangian. There is another important property of

the theory with local symmetries discovered by Emmy Nœther. The theorem of

Nœther states that for every continuous symmetry of the action there results a

conserved quantity. From this theorem, the symmetries and conservation laws

are connected. To appreciate the theorem, we review its derivation.

Consider a field φ, which transforms as

φ(x) → φ′(x) = φ(x) + α∆φ(x), (2.99)

where α is an infinitesimal continuous parameter and 4φ(x) is some deformation

of the field configuration. The changed Lagrangian which is the result of the field

change is

α∆L =
∂L
∂φ

(α∆φ) +

(
∂L

∂(∂µφ)

)
∂µ(α∆φ)

= α∂µ

(
∂L

∂(∂µφ)
∆φ

)
+ α

[
∂L
∂φ

− ∂µ

(
∂L

∂(∂µφ)

)]
∆φ. (2.100)

The second term vanishes by the Euler-Lagrange equations.

If this transformation is a symmetry transformation, the Lagrangian does

not change or changes by a 4-divergence term:1

L(x) → L(x) + α∂µJ
µ(x), (2.101)

for some Jµ(x).

To compare (2.100) with (2.101), one finds that

α∂µ

(
∂L

∂(∂µφ)
∆φ

)
= α∂µJ

µ(x)

∂µ

(
∂L

∂(∂µφ)
∆φ− Jµ

)
= 0

∂µj
µ(x) = 0, (2.102)

1Under this condition, the action is invariant or changes by a surface term respectively, and
the Euler-Lagrange equations of motion are not affected.
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where jµ(x) =
(

∂L
∂(∂µφ)

∆φ− Jµ
)

and is called a current. (2.102) says that the

current jµ(x) is conserved. By integrating (2.102) over the spacelike hypersur-

face in the Minkowski space and demanding that the current vanishes at spatial

infinity, one finds that the charge

Q ≡
∫
j0d3x (2.103)

is constant in time, and hence conserved. An important property of this conserved

charge is that, using the methods of either classical or quantum field theory, one

can show that it generates the infinitesimal transformation associated with it.

What this really means is that:

• In classical field theory, the infinitesimal change of the field (divided by the

transformation parameter) is obtained by calculating the Poisson bracket

of the conserved charge and the field.

• In quantum field theory, the charge is the generator of the unitary trans-

formations on the field operator, and on the Hilbert space of the states.

In the case of rotations, for example, the infinitesimal transformation of the field

under a rotation about the x3 axis is

φ→ φ′ = (1− iεL3)φ, (2.104)

where L3 is the third component of the quantum-mechanical orbital angular mo-

mentum operator. In quantum field theory in which the field is an operator, then

the field must transform according to the rule

φ→ φ′ = UφU−1, (2.105)

under such rotation, where infinitesimally

U =
(
1− iεM3

)
(2.106)
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where M3 is a rotation generator about x3 axis. Thus (2.104) and (2.105) agree

only if

[
M3, φ

]
= −L3φ (2.107)

or

[
iεM3, φ

]
= δφ. (2.108)

If the action is invariant under this rotational symmetry, then the above consid-

eration leads to the expression of the corresponding charge Q in terms of the field

φ. Once φ becomes an operator with the usual commutation relations, one can

check that [Q, φ] = −L3φ so that the charge Q is indeed the rotation generator

M3.

2.2.5 Gauge Groups of the Standard Model

The gauge group of the Standard Model is the direct product group SU (3)C ×

SU (2)L × U (1)Y , which means that the three factors separated by the × sign

commute. This gauge group is composed of the symmetry group of the strong in-

teractions, SU (3)C , and the symmetry group of the electroweak interactions,

SU (2)L × U (1)Y . The symmetry group of the electromagnetic interactions,

U (1)EM , is just a subgroup of SU (2)L × U (1)Y . In this sense, the weak and

electromagnetic interactions are said to be unified. The SU (3)C is believed to

be an exactly symmetry while the SU (2)L × U (1)Y is spontaneous symmetry

broken. The SU (2)L × U (1)Y symmetry is broken through the Higgs mecha-

nism. This mechanism gives the masses of the W± and Z bosons as well as the

mass splitting among the leptons through their interactions with the Higgs field.

Because the Higgs field is the main topic of this thesis, we put emphasis on the

electroweak theory and Higgs mechanism in the remain part of this chapter.
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2.3 The Electroweak Theory without Sponta-

neous Symmetry Breaking

In the first step of constructing the electroweak theory, one identifies the appro-

priate representations of SU(2)×U(1). We begin with the lepton sector. For the

SU(2) part, the left-handed parts of the charged leptons and neutrinos form dou-

blets of SU(2) with a charged lepton on the top and the corresponding neutrino

at the bottom:

L =

(
ν
l

)
L

(2.109)

where the family index has been suppressed. The right-handed charged leptons,

on the contrary, are SU(2) singlets:

R = lR. (2.110)

Thus this SU(2) is normally referred to as SU(2)L where L stands for “left-

handed.”

L transforms under the weak isospin transformation (a specific name for

the 2-dimensional representation of the SU(2) group) as

L(x) → e−
1
2
iαaτa

L(x), (2.111)

L(x) → e
1
2
iαaτa

L(x), (2.112)

where τ are the 2× 2 Pauli matrices and α is spacetime independent, while R(x)

is invariant,

R(x) → R(x), (2.113)

R(x) → R(x). (2.114)

For the transformation under a global U(1) group, each component of L(x) are

multiplied by the same phase factor, e−iα,

L →
(
eiα/2 0

0 eiα/2

)
L, (2.115)
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while

R → eiαR. (2.116)

The kinetic terms of the lepton Lagrangian take the form

Lkin = Liγµ∂µL+Riγµ∂µR. (2.117)

and thus is invariant under both weak isospin and global U(1) transformations.

Because one requires that the gauge group U(1)Q of electromagnetic in-

teractions is a subgroup of SU(2)× U(1), then L(x) and R(x) should transform

under the U(1)Q group. The U(1)Q is generated by the electric charge Q. From

the fact that each charged lepton has charge −1 and the neutrino has no charge

(all charges are given in units of the elementary charge e), Q acts on L(x) and

R(x) by

QL(x) =

(
0 0
0 −1

)
L(x) (2.118)

QR(x) = −R(x). (2.119)

Thus U(1)Q transforms L as(
ν
l

)
L

→
(
ν ′

l′

)
L

= e−iQα
(
ν
l

)
L

(2.120)

=

(
e−i(0)αν
e−i(−1)αl

)
L

(2.121)

=

(
ν
eiαl

)
L

. (2.122)

Note that U(1)Q affects only the lL component of L.

To see how U(1)Q is embedded in SU(2) × U(1), we observe that its

generator Q, when action on L, can be expressed as

Q =
1

2
τ3 −

1

2
I. (2.123)

Let the weak SU(2) generators be denoted by Ti, i = 1, 2, 3, and satisfy

[Ti, Tj] = iεijkTk, (2.124)
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and the generator of the U(1) group be Y . Y is called the weak hypercharge, so

this U(1) is referred to as U(1)Y . The explicit form of T i acting on the weak

isospin doublet L is T i = τ i

2
, while its representation acting on the singlet R is

T i = 0. The values of the weak hypercharge for leptons are assigned as follows:

YL = −1
2

for SU(2) doublets and YR = −1 for singlets, as implied by (2.115) and

(2.116). With the above assignments, the generator Q in (2.123) takes the form

of a linear sum of two generators, one for each group in the direct product,

Q = T3 + Y. (2.125)

Thus the eigenvalue of Q for each lepton is really its electric charge.

To construct the electroweak interactions, the global symmetry of Lkin

has to be implemented to a local symmetry, and so the appropriate gauge fields

have to be introduced:

SU(2)L ⇒ W 1
µ , W

2
µ , W

3
µ (2.126)

U(1)Y ⇒ Bµ. (2.127)

With these gauge fields, the covariant derivatives for the lepton fields are

DµL(x) =

(
∂µ + i

g

2
τ iW i

µ + i
g′

2
Y iBµ

)
L(x) (2.128)

DµR(x) =

(
∂µ + i

g′

2
Y iBµ

)
R(x), (2.129)

where g and g′ are the coupling constants associated with the groups SU(2)L

and U(1)Y respectively. The field strengths are defined according to (2.87) and

(2.96):

W i
µν ≡ ∂µW

i
ν − ∂νW

i
µ + gεijkW j

µW
k
ν (2.130)

Bµν ≡ ∂µBν − ∂νBµ. (2.131)

With the above gauge fields, the kinetic terms for the lepton sector in

(2.117) can now be modified to yield the local gauge invariant terms as

Llepton(x) = LiγµDµL+RiγµDµR. (2.132)
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Table 2.1: Particle contents of the Standard Model.

Name Notations Spin SU(3)C , SU(2)L, U(1)Y

quarks, Q (uL, dL) (cL, sL) (tL, bL) 1/2 (3,2, 1
6
)

(3 families) uR cR tR 1/2 (3̄, 1, 2
3
)

dR sR bR 1/2 (3̄, 1,−1
3
)

leptons, L (νe, eL) (νµ, µL) (ντ , τ) 1/2 (1,2,−1
2
)

(3 families) eR µR τR 1/2 (1̄, 1,−1)

Higgs, φ (φ1, φ2) 0 (1,2, 1)

gluons g 1 (8,1, 0)

W bosons W± W 0 1 (1,3, 0)

B boson B0 1 (1,1, 0)

The kinetic terms of the gauge fields are

Lgauge(x) = −1

4
W i
µνW

iµν − 1

4
BµνB

µν . (2.133)

With the above results, we are now done with the lepton sector.

For the quark sector, things are almost the same. Left-handed quarks

form SU(2) doublets, while the right-handed ones are singlets. The hypercharge

assignments for the first generation of fermions are given in Table 2.1. Covariant

derivatives are defined in almost the same way, except that, since quarks are

SU(3)C triplets, the SU(3)C generators together with the gauge fields describing

the gluons have to be included in the covariant derivatives.

Thus one can write down the kinetic terms for any fermion field similar



35

to (2.132) as

LF = ΨLiγ
µDµΨL + ΨRiγ

µDµΨR, (2.134)

where ΨL = L,QL, and ΨR = eR, uR, dR.

Note that the Lagrangian Lψ(x) in (2.134) does not contain the mass

terms, mΨΨ = m(ΨRΨL + ΨLΨR), because the left-handed and right-handed

fermions transform differently under SU(2)T and U(1)Y and so one cannot con-

struct the gauge invariant mass terms in the usual way. Similarly, Lgauge cannot

have the mass term 1
2
m2AµAµ, because AµAµ is not gauge invariant. Thus in the

unbroken electroweak theory, all fields have no masses.

To give the masses to some fields, the so-called Higgs mechanism will have

to be employed. This will be considered in the next section.

2.4 Spontaneous Symmetry Breaking of the Elec-

troweak Theory

According to many phenomenological and experimental results, the gauge bosons

of weak interactions have masses while the photon of the electromagnetic inter-

actions does not. Thus the electroweak theory needs some mechanism for giving

masses to weak gauge bosons. The solution to this problem is the spontaneous

breaking of SU(2)×U(1) down to U(1)Q through the Brout-Englert-Higgs mech-

anism, which is popularly abbreviated as the Higgs mechanism. In order to ex-

plain the Higgs mechanism, the spontaneous breaking of an abelian U(1) gauge

symmetry is usually taken as an example before the full understanding of the

non-Abelian cases.

2.4.1 Higgs Mechanism in an Abelian Theory

In this subsection, the Higgs mechanism is used to yield the “photon mass.” Even

though such a situation does not occur in the real world, it is the simplest way

to study the Higgs mechanism.
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The Higgs mechanism occurs via the process of spontaneous symmetry

breaking. So before learning what it means by Higgs mechanism, we need to know

what the spontaneous symmetry breaking is. Indeed, it is the situation in which

the Lagrangian is invariant under some continuous symmetries but the vacuum

is not. To see how one can actually achieve such a goal, consider a Lagrangian

describing the interactions between a U(1) gauge field and a complex scalar field

which is also subject to self-interactions,

L = −1

4
FµνF

µν + |Dµφ|2 − V (φ), (2.135)

where

Dµ = ∂µ + ieAµ

V (φ) = µ2|φ|2 + λ
(
|φ|2
)2
. (2.136)

This Lagrangian is invariant under U(1) gauge transformations:

φ(x) → φ′(x) = e−iα(x)φ(x) (2.137)

Aµ(x) → A′
µ(x) = Aµ(x) +

1

e
∂µα(x) (2.138)

for arbitrary α(x).

To find the vacuum state (the state of lowest energy), the kinetic term is

set to zero and the potential term V (φ) is minimized,

0 =
dV

d|φ|
= 2µ2|φ|+ 4λ|φ|3. (2.139)

λ must be positive for the potential to have a lower bound, but there are two

possible choices for µ2. If µ2 > 0, then the scalar field has the vacuum expectation

value (VEV) 〈φ〉 = 0. Such a theory is quantum electrodynamics with massless

photon and a charged scalar field of mass µ. If µ2 < 0, then the scalar field has

non-trivial VEVs with the modulus

〈|φ|〉 =

√
−µ2

2λ
≡ ν√

2
. (2.140)
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In this case, µ cannot be interpreted as the mass of the scalar field φ. As the

Lagrangian is invariant under the global U(1) symmetry, it doesn’t matter which

VEV is chosen. Nevertheless, once a specific VEV is chosen, this VEV is not

invariant under U(1) and the symmetry is spontaneously broken.

It is convenient to choose a real VEV 〈φ〉 = ν/
√

2, so one may express

the scalar field as

φ ≡ 1√
2
ei

χ
ν (ν + ξ), (2.141)

where χ and ξ are real fields of zero VEVs. If one substitutes the field φ in (2.141)

into the Lagrangian in (2.135), one obtains

L = −1

4
FµνF

µν + eνAµ∂
µχ+

e2ν2

2
AµA

ν

+
1

2

(
∂µξ∂

µξ + 2µ2ξ2
)

+
1

2
∂µχ∂

µχ

+(ξ, χ interaction terms). (2.142)

This Lagrangian presents a theory with a photon of mass MA = eν, a scalar

field ξ of mass
√
−2µ2 > 0, and a massless scalar field χ called the Goldstone

boson. Because this Lagrangian is equivalent to the Lagrangian in (2.135), it is

still gauge invariant.

Let us count the degrees of freedom (d.o.f) in this Lagrangian. There are

five degrees of freedom of massive fields: three for Aµ (since the longitudinal mode

is now allowed) and two for real scalar fields, ξ and χ. At first, this result seems

to disagree with the number of d.o.f of (2.135) in which there are two d.o.f of

a massless gauge field (corresponding to the two independent transverse modes)

and two for a complex scalar field (corresponding two real components); hence

one less d.o.f. than that of the previous counting.

This seeming appearance of an extra d.o.f can be eradicated if one notices

that the above Lagrangian is still gauge invariant (even though such an invariance

is “hidden”) and therefore the gauge degree of freedom can be used to get rid of
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this extra degree of freedom. This can be done by choosing a particular gauge.

A convenient way is that one chooses the gauge such that the function α(x) in

(2.137) at each spacetime point equals to the phase of φ,

φ → φ′ = e−i
χ
ν

1√
2
ei

χ
ν (ν + ξ) =

1√
2
(ν + ξ) (2.143)

Aµ → A′
µ = Aµ +

1

eν
∂µχ. (2.144)

This gauge is called a unitary gauge. Once the gauge choice is fixed, the Goldstone

boson disappears and the Lagrangian becomes

L = −1

4
F ′
µνF

′µν +
e2ν2

2
A′
µA

′ν +
1

2
∂µξ∂

µξ

−1

2
(−2µ2)ξ2 +

1

2
(e2)(ξ + 2ν)ξA′

µA
′ν − λ

4
ξ3(ξ + 4ν). (2.145)

This Lagrangian describes the interactions between a massive vector boson A′
µ

and the massive real scalar field ξ, called the Higgs boson. The Higgs boson has

the mass square

m2
ξ = −2µ2 = 2λν2. (2.146)

Now all massless fields disappear after choosing a particular gauge choice, and

one can say that the massless field has been eaten to give a mass to the photon.

This is called the Higgs mechanism.

It is instructive to check the consistency of the theory regarding to the

number of degrees of freedom (d.o.f.) before and after the spontaneous symme-

try breaking. Before the spontaneous symmetry breaking, there was a massless

photon (which contributed two d.o.f. corresponding to the two independent trans-

verse modes) and a complex scalar field (with two real d.o.f.), hence four total

degrees of freedom. Since the massless fields disappeared after the spontaneous

symmetry breaking, and the massive photon has three d.o.f. (two for transverse

modes and one for a longitudinal mode), the total number of d.o.f. after sponta-

neous symmetry breaking is still four, just like the original Lagrangian (2.135).



39

In general, for N gauge vector fields to become massive via the Higgs

mechanism, there must be at least N + 1 real scalar fields: N of them become

unphysical and disappear, and the other one becomes the Higgs boson.

2.4.2 Electroweak Theory

Just as the Abelian case, the Higgs Mechanism can be applied to a theory with

non-Abelian symmetry such as the electroweak theory.

In the electroweak symmetry breaking, one needs three massive gauge

vector bosons of weak interactions and a massless photon of electromagnetic in-

teractions. This implies that at least four real scalars are needed. As it is the

SU(2)L×U(1)Y symmetry that we want to break, these scalar degrees of freedom

must be arranged such that they form a representation of this group. A conve-

nient choice is that they form two complex components of an SU(2) doublet:

Φ =

(
φ1

φ2

)
. (2.147)

The Lagrangian for this doublet is

LΦ = (DµΦ)†(DµΦ)− V (Φ), (2.148)

where

Dµ =

(
∂µ + i

g

2
τ iW i

µ + i
g′

2
BµY

)
(2.149)

and

V (Φ) = µ2|Φ†Φ|+ λ
(
|Φ†Φ|

)2
, λ > 0. (2.150)

Like the Abelian model, the vacuum state for µ2 < 0 is not at Φ = 0.

Since the potential depends on |Φ†Φ|, then it can be checked that any Φ that

satisfies |Φ†Φ| = ν2/2 can be a VEV. For convenience, one chooses

〈Φ〉 =
1√
2

(
0
ν

)
. (2.151)
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For this vacuum state to be invariant under the U(1)Q group of electro-

magnetic interactions, the above 〈Φ〉 has to be annihilated by the charge operator,

Q〈Φ〉 = 0. According to (2.123), one gets the condition

Q〈Φ〉 = (T3 + Y ) 〈Φ〉 = 0. (2.152)

Because Φ is a doublet and Y is a U(1)Y generator, one can write Y as

Y =

(
y 0
0 y

)
(2.153)

and so

0 = Q〈Φ〉 (2.154)

=

[
1

2

(
1 0
0 −1

)
+

(
y 0
0 y

)](
0
ν√
2
.

)
. (2.155)

Thus the hypercharge of the doublet is YΦ = 1
2
I. Thus Qφ1 = (+1)φ1 and

Qφ2 = 0, so it is convenient for Φ to be written as

Φ =

(
φ+

φ0

)
. (2.156)

To consider the Higgs mechanism in this model, one expresses Φ(x) as

Φ(x) =
1√
2
ei

τi

2
·χ

i

ν

(
0

ν +H

)
(2.157)

where the real scalar fields χi (i = 1, 2, 3) and H have zero VEVs. The above

expression is obtained from the vacuum state by first changing its magnitude

along the same direction in the SU(2) space (by adding H(x) to ν) and then

rotating it using an element of SU(2) (this process preserves its magnitude).

Choosing the unitary gauge,

Φ′(x) = e−i
τi

2
·χ

i

ν Φ =
1√
2

(
0

ν +H

)
, (2.158)

the scalar field Lagrangian in (2.148) reads

L =

∣∣∣∣(∂µ + i
g

2
τ iW i

µ + i
g′

2
BµY

)
(ν +H)√

2

(
0
1

)∣∣∣∣2
−µ2 (ν +H)2

2
− λ

(ν +H)4

4
. (2.159)
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The gauge boson mass terms comes from∣∣∣∣(∂µ + i
g

2
τ iW i

µ + i
g′

2
BµI

)
ν√
2

(
0
1

)∣∣∣∣2
=

ν2

8

{
g2
[
(W 1

µ)2 + (W 2
µ)2
]
+
(
gW 3

µ − g′Bµ

)2}
. (2.160)

If one introduces the linear combinations

W+
µ =

1√
2
(W 1

µ − iW 2
µ) (2.161)

and

W−
µ = (W+

µ )† =
1√
2
(W 1

µ + iW 2
µ), (2.162)

the first term of (2.160) becomes

g2ν2

8

[
(W 1

µ)2 + (W 2
µ)2
]

=
g2ν2

8
W+
µ W

−µ. (2.163)

Since W+
µ is a complex field, its mass squared is

(MW )2 =
g2ν2

4
. (2.164)

Thus W+
µ and W−

µ are identified as the charged bosons.

For the second term in (2.160), we can rewrite it as

ν2

8

(
gW 3

µ − g′Bµ

)2
=
ν2

8

(
W 3
µ Bµ

)( g2 −gg′
−gg′ g′2

)(
W 3
µ

Bµ

)
. (2.165)

In order to diagonalize the mass matrix in (2.165), one uses the following orthog-

onal transformation:(
Aµ
Zµ

)
=

(
cos θW sin θW
− sin θW cos θW

)(
Bµ

W 3
µ

)
, (2.166)

where θW is called the Weinberg angle defined by

sin θW =
g′√

g2 + g′2
(2.167)
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and

cos θW =
g√

g2 + g′2
. (2.168)

Then (2.165) becomes

1

2

(
Zµ Aµ

)(1
4
ν2(g2 + g′2) 0

0 0

)(
Zµ
Aµ

)
=

1

2

[
1

4
ν2(g2 + g′2)

]
ZµZ

µ. (2.169)

It can be seen immediately that Aµ is massless and thus identified as a photon,

while Zµ is massive boson of mass squared

(MZ)2 =
1

4
ν2(g2 + g′2). (2.170)

It is instructive to count the degrees of freedom both before and after

the spontaneous symmetry breaking. Before the symmetry breaking, one had a

complex scalar SU(2)L doublet Φ together with some gauge fields. The total

number of degrees of freedom of the theory is 12: 4 d.o.f. for Φ, 6 d.o.f. for a

massless SU(2)L gauge field, Wi, and 2 d.o.f. for a massless U(1)Y gauge field,

Bµ. After the symmetry breaking, one was left with a physical real scalar field H

(1 d.o.f.), three massive vector bosons, W and Z (9 d.o.f.), and a massless photon

(2 d.o.f.). One can say that the three d.o.f. of the scalar doublet have been eaten

by W± and Z to give the longitudinal components of W± and Z.

To find the values of coupling constants in the theory, one writes the

kinetic terms for the lepton fields in (2.132) in terms of the physical gauge fields:

Llepton = −g sin θW lγ
µlAµ

− g

2
√

2
[νLγ

µlLW
+
µ + lLγ

µνLW
−
µ ] + . . . . (2.171)

The electromagnetic coupling constant or electric charge is identified as

e = g sin θW = g′ cos θW . (2.172)

From the low-energy phenomenology, the weak interactions are described by

Lweak =

(
M2

WGF√
2

)1/2

[νLγ
µlLW

+
µ + lLγ

µνLW
−
µ ], (2.173)
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where GF is the Fermi coupling constant. By comparing (2.171) with the second

term on the left hand side of (2.173), one identifies

g

2
√

2
=

(
M2

WGF√
2

)1/2

. (2.174)

Note that (2.164) gives

ν = (
√

2GF )−1/2 = 246 GeV. (2.175)

Even though the explicit fermion mass terms mΨΨ = m(ΨRΨL +ΨLΨR)

were prohibited by gauge symmetry as discussed before, the Higgs boson, H, can

be used to give the fermion masses via the gauge invariant Yukawa interactions

of the form

−λaΨLΦΨR, (2.176)

where λ(a), a = e, d, u are Yukawa couplings.

The Yukawa coupling of the Higgs boson to the up and down quarks is

−λ(d)QLΦdR + h.c., (2.177)

or more explicitly

−λ
(d)

√
2

(
uL dL

)( 0
ν +H

)
dR + h.c. . (2.178)

This yields a mass term for the down quark if one identifies

λ(d) =
md

√
2

ν
(2.179)

with md being the down quark mass. For the up quark mass term, one defines

Φc ≡ Φ̃ = −iτ2Φ∗ and write the SU(2)L invariant coupling as

−λ(u)QLΦ
cuR + h.c., (2.180)

which generates an up quark mass term. Similar couplings can be used to generate

mass terms for the charged leptons. Since the neutrinos have no right-handed

components, they remain massless.
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2.4.3 The Electroweak Action

To write the general action of the electroweak theory, all particle families have

to be included. All the results obtained so far have been for the first generation

of fermions only. For other generations, we merely use the previous results with

the following substitutions:

e → eA = (e, µ, τ)
νe → νe = (νe, νµ, ντ )
u → pA = (u, c, t)
d → nA = (d, s, b)

(2.181)

where the particles µ, νµ, c, and s belong to the second generation particles, and

τ , ντ , t, and b belong to the third generation, and so all the SU(2) doublets are

of the generic form:

LA =

(
νA
eA

)
L

(2.182)

QAL =

(
pA
nA

)
L

. (2.183)

Once the Lagrangian for each fermion generation has been obtained, one merely

sums over all generations to obtain the electroweak action:

S =

∫
dx4L (2.184)

=

∫
dx4 (LG + LF + LΦ + LY ) . (2.185)

It consists of four parts:

1. LG is the kinetic terms for the vector gauge fields:

LG = −1

4
W i
µνW

iµν − 1

4
BµνB

µν . (2.186)

2. LF is fermionic kinetic terms:

LF = ΨLiγ
µDµΨL + ΨRiγ

µDµΨR, (2.187)
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where ΨL and ΨR represents all left-handed and right-handed fermionic

fields respectively, and the sum over the femionic species is understood.2

3. LΦ is the Higgs boson Lagrangian:

LΦ = (DµΦ)†(DµΦ)− V (Φ), (2.188)

where

DµΦ =

(
∂µ + i

g

2
τ iW i

µ + i
g′

2
BµY

)
(ν +H)√

2

(
0
1

)
(2.189)

and

V (Φ) = −µ2 (ν +H)2

2
− λ

(ν +H)4

4
. (2.190)

4. LY is the general Yukawa interactions between scalars and fermions:

LY = λ
(e)
ABlALΦeBR + λ

(p)
ABQALΦ̃pBR + λ

(n)
ABQALΦnBR + h.c., (2.191)

which contains family indices, A and B.

The fields lAL, eBR, QAL, pBR, nBR are gauge eigenfields, i.e., they transform as

singlets or doublets under SU(2) gauge transformations. After the spontaneous

symmetry breaking,

Φ → Φ′ =
(ν +H)√

2

(
0
1

)
,

LY takes the form

LY =
H(x)√

2
[λ

(e)
ABeALeBR + λ

(p)
ABpALpBR + λ

(n)
ABnALΦnBR]

+
ν√
2
[λ

(e)
ABeALeBR + λ

(p)
ABpALpBR + λ

(n)
ABnALΦnBR]

+h.c. (2.192)

which gives the fermion mass terms with the mass matrix

M
(a)
AB =

−ν√
2
λ

(a)
AB , a = e, p, n. (2.193)

2Note that the kinetic terms of the vector gauge fields and fermions remain unaltered after
the symmetry breaking.
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whose eigenvectors are called the mass eigenfields, which represent the particles

that one observes in Nature.

Since the mass matrix in (2.193) is not diagonal, some of the gauge eigen-

fields may not represent particles that one observes in the experiments. To ob-

tain the particle spectrum observed in experiments, the mass matrix has to be

diagonalized with the result that all the fields in the Lagrangian are now the

mass eigenfields, some of which are the linear combinations of the original gauge

eigenfields. For the theory with only two fermion generations, one has the mass

eigenfields

dθ = cos θcd+ sin θcs (2.194)

sθ = cos θcs− sin θcd (2.195)

where the mixing angle θc is called the Cabibbo angle.

Let us finally note that such a difference between gauge and mass eigen-

fields has already been encountered before in the cases of the vector fields in

(2.169), where the physical gauge bosons Zµ and Aµ are linear combinations of

the gauge eigenfields W 3
µ and Bµ in (2.166).



CHAPTER III

SUPERSYMMETRIC FIELD THEORY

For decades, theoretical and experimental research has confirmed that

the Standard Model is very successful in explaining and predicting lots of ex-

perimental results, yet there have been many unsolved problems. As discussed

in Chapter 1, supersymmetry (SUSY) is one of important candidates for solving

such problems. In this chapter, we review the construction of supersymmetry

algebra (SUSY algebra) and supersymmetric field theories using the superspace

technique.

3.1 Construction of the Supersymmetry Alge-

bra

According to the first chapter, the hierarchy problem in the Standard Model can

be solved if the theory has a symmetry which relates bosons and fermions. Such

a kind of symmetry indeed exists and is known as supersymmetry or SUSY. Thus

a SUSY transformation on a field changes its spin by one-half unit and turns a

boson into a fermion and vice-versa:

Q |boson〉 = | fermion〉 ,
Q | fermion〉 = |boson〉 , (3.1)

where Q is a generator of SUSY. Thus the operator Q should transforms under

the Lorentz transformations as a spinor.

It is natural to ask how one can extend the Standard Model using super-

symmetry. The answer of this question is non-trivial because the Standard Model

already has Lorentz and gauge symmetries. So if one wants to add supersym-

metry (whose generators are spinors) to the theory, then supersymmetry should

combine with the Lorentz symmetry (whose generators have effects on spinors)

in a non-trivial way.
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Consider first the generators of gauge and Poincaré groups:

1. The internal symmetry generators: they do not affect the spacetime coor-

dinates.

2. The 4-momentum operators Pµ: they are the vector quantities which affect

the spacetime coordinates by translations.

3. The generator of the Lorentz group Mµν : they affect the spacetime coordi-

nates by “rotations.”

These generators form the Lie algebras via the commutation relations. As none

of these generators changes the spin of the field they act on, they are said to be

the “bosonic generators.”

On the other hand, as the supersymmetry generatorQ is a spinor quantity

(and so it is called a “fermionic generator”), it must have non-trivial commutation

relations with the rotation generators Mµν . Also in field theory, the spinors

have anti-commutation relations among themselves, then so should the SUSY

generators.

This above argument implies that the whole algebra should involve both

commutators and anti-commutators. Such a kind of algebra is not a new idea in

mathematics; it belongs to a class of algebra, known as the graded Lie algebras

which have been investigated by mathematicians. The supersymmetry algebra

we are interested in is actually known as the Z2 graded Lie algebra.

3.1.1 Z2 Graded Lie Algebras

Definition 3. A Z2 Graded Lie algebra consists of the direct sum of two vector

spaces L0 and L1:

L = L0 ⊕ L1 (3.2)
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together with a product

◦ : L × L → L (3.3)

If ∀xi ∈ Li, i = 0, 1 , then the following properties define the Z2 Lie algebra:

1. Grading:

xi ◦ xj ∈ Li+j mod 2

2. Supersymmetrization:

xi ◦ xj = −(−1)ijxi ◦ xj

3. Generalized Jacobi identities:

xi ◦ (xj ◦ xk) (−1)ik + xj ◦ (xk ◦ xi) (−1)ji + xk ◦ (xi ◦ xj) (−1)kj = 0

It is important to note that L is not a Lie algebra, since, as defined in

supersymmetrization, the product is in general not antisymmetric.

Example: Let L = Span{Xµ} be the direct sum of L0 and L1, where

L0 = Span{Ei} i = 1, . . . , dimL0

L1 = Span{Qa} i = 1, . . . , dimL1.
(3.4)

Let g(Ei) = 0 and g(Qa) = 1. The product ◦ is defined by

◦ : (Xµ, Xν) → Xµ ◦Xν = XµXν − (−1)g(Xµ)g(Xν)XµXν . (3.5)

Consider this product separately on the subspaces L0 and L1:

i) ◦ : L0 × L0 → Lo

Let Ei, Ej ∈ L0. Then

Ei ◦ Ej = EiEj − (−1)(0)(0)EjEi = [Ei, Ej] (3.6)
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ii) ◦ : L0 × L1 → L1

Let Ei ∈ L0 and Qa ∈ L1. Then

Ei ◦Qa = EiQa − (−1)(0)(1)QaEi = [Ei, Qa] (3.7)

iii) ◦ : L1 × L1 → L0

Let Qa, Qb ∈ L1. Then

Qa ◦Qb = QaQb − (−1)(1)(1)QbQa = {Qa, Qb} (3.8)

The above construction is easily seen to satisfy the grading and supersymmetriza-

tion properties of Z2 graded Lie algebra. It is not hard to verify that (3.5) obeys

the generalized Jacobi identities.

3.1.2 Supersymmetry Algebra

In order to construct a supersymmetric version of the Standard Model, one starts

with the construction the supersymmetric extension of the Poincaré algebra.

The supersymmetric extension of Poincaré algebra is a Z2 graded Lie

algebra consisting of the direct sum of the Poincaré algebra as the subspace L0

and a vector space L1 = Span{Qa}, a = 1, 2, 3, 4. The super Poincaré algebra

consistent with the generalized Jacobi identities is given by

[Pµ, Pν ] = 0 (3.9)

[Mµν , Pλ] = −i(ηνλPµ − ηµλPν) (3.10)

[Mµν ,Mρσ] = −i(ηµνMνσ − ηµσMνρ − ηνρMµσ + ηνσMµρ) (3.11)

[Pµ, Qa] = 0 (3.12)

[Mµν , Qa] = −1

2
(Σµν)abQb (3.13){

Qa, Qb

}
= −2(γµ)abPµ (3.14)

{Qa, Qb} = −2(γµC)abPµ (3.15){
Qa, Qb

}
= −2(C−1γµ)abPµ, (3.16)
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where the generators are

1. Pµ – the generators of translations;

2. Mµν – the generators of Lorentz transformations and spatial rotations;

3. Qa and Qa, a = 1, 2, 3, 4 – the spinor generators of supersymmetry trans-

formations.

Above, Q is a Majorana spinor and Q is its Dirac conjugate, so they contain

totally two independent complex spinor components. Also 1
2
Σµν = i

4
[γµ, γν ] and

C is the charge conjugation matrix defined in Chapter 2.

In the above set of (anti)commutation relations, the first three lines are

the Poincaré algebra. For the rest of them, (3.12)-(3.16), they are derived from the

general Jacobi identities of the graded Lie algebra. One can note, in particular,

that

1. (3.12) implies that Q transforms trivially under translations;

2. (3.13) implies that Q transforms as a spinor under Lorentz transformations.

Also since the anticommutator of two Qs gives a momentum P , then people

sometimes refer to Q as a “square root” of P .

As the supersymmetry generator Q is a Majorana spinor, it is more con-

venient to express the super Poincaré algebra in terms of its Weyl spinor compo-

nents. Thus the anti-commutator part of the super Poincaré algebra

QaQb +QbQa = 2γµabPµ (3.17)

can be expressed in terms of 2-component Weyl spinors as{
QA, Q

B
}

= 0,
{
QA, QḂ

}
= 2σµ

AḂ
Pµ,{

Q
Ȧ
, QB

}
= 2σµȦBPµ

{
Q
Ȧ
, QḂ

}
= 0.

(3.18)
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For the commutator (3.13), it reads

[Mµν , QA] = −(σµν)A
BQB (3.19)[

Mµν , Q
Ȧ
]

= −(σµν)
Ȧ
ḂQ

Ḃ
, (3.20)

where

1

2
Σµν =

(
(σµν)A

B 0

0 (σµν)
Ȧ
Ḃ

)
. (3.21)

This 2-component spinor formulation will be used throughout this chapter.

3.2 Superspace and Superfields

3.2.1 What are Superspace and Superfields?

To formulate a field theory having some continuous symmetries, one first con-

structs the Lie group of that symmetries, whose elements are obtained by expo-

nentiating the Lie algebra elements. The fields then belong to some representa-

tions of this group.

How about a supersymmetric field theory, whose symmetries are described

by a graded Lie group? Certainly, one cannot express the graded Lie group

elements as the exponential of the fermionic generators with complex number

coefficients. The reason for this is that, once this exponential factor is Taylor

expanded, half of the terms in the expansion are bosonic while the other half

contains fermionic terms; such a summation cannot be defined consistently. The

way out of this problem is to use the anti-commuting or Grassmann numbers as

the coefficients of the fermionic generators. In the super Poincaré algebra, the

supersymmetry generators Q are Weyl spinors. So to make a product of Q and its

Grassmann number coefficient Lorentz invariant, this Grassmann number must

also be a Weyl spinor. Thus the Grassmann variables in the Weyl representation

are written as

{θA}A=1,2 and
{
θ̄Ḃ
}
Ḃ=1̇,2̇
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and have properties:

{θA, θB} =
{
θ̄Ȧ, θ̄Ḃ

}
=
{
θA, θ̄Ḃ

}
= 0. (3.22)

With the multiplication of Grassmann numbers on the left of the supersymmetry

generators, all the anti-commutators become the commutators as

[
θAQA, θ̄ḂQ̄

Ḃ
]

= 2θAσµ
AḂ
θ̄ḂPµ (3.23)[

θAQA, θ
BQB

]
= 0 (3.24)[

θ̄ȦQ̄
Ȧ, θ̄ḂQ̄

Ḃ
]

= 0 (3.25)[
P µ, θAQA

]
= 0 (3.26)[

P µ, θ̄ḂQ̄
Ḃ
]

= 0. (3.27)

Note that the Grassmann variables are assumed constant, so they commute with

the momentum generators. As the above subalgebra is closed, yet nontrivial, it

motivates one to write the corresponding group elements as the exponentials

G
(
xµ, θ, θ

)
= exp

[
i
(
θQ+ θ̄Q̄− xµPµ

)]
(3.28)

which form a subgroup of the super Poincaré group. This transformation opera-

tor, G
(
xµ, θ, θ

)
, is called a finite “supertranslation” [8].

The reason behind the name “supertranslation” can be understood as

follows. One expands a spacetime with coordinates xµ by including θ and θ as

additional Grassmann coordinates. The resulting “superspace” thus has a set of

coordinates (xµ, θ, θ) on it, and the group element in (3.28) has the superspace

as its group “supermanifold.” Thus there is a one-to-one map between group

elements and points on the supermanifold.

The action of the group element G(aµ, ξ, ξ) on the superspace coordi-

nates (xµ, θ, θ) is defined by the right-action of G(aµ, ξ, ξ) on the group element
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G(xµ, θ, θ) which corresponds to coordinates (xµ, θ, θ):

G
(
xµ, θ, θ

)
G
(
aµ, ξ, ξ

)
= exp

[
i
(
θQ+ θ̄Q̄− xµPµ

)]
exp

[
i
(
ξQ+ ξ̄Q̄− aµPµ

)]
= exp

[
i
(
(θ + ξ)Q+

(
θ̄ + ξ̄

)
Q̄−

(
xµ + aµ − iξσµθ̄ + iθσµξ̄

)
Pµ
)]

= G
(
xµ + aµ − iξσµθ̄ + iθσµξ̄, θ + ξ, θ̄ + ξ̄

)
,

where the Baker-Campbell-Hausdorff formula has been used to evaluate the prod-

uct of exponentials. The parameters of the group element on the right-hand side

are the transformed superspace coordinates, or mathematically speaking:

G
(
aµ, ξ, ξ

)
:
(
xµ, θ, θ

)
→
(
xµ + aµ − iξσµθ̄ + iθσµξ̄, θ + ξ, θ̄ + ξ̄

)
. (3.29)

It is clear that the above result corresponds to a translation of superspace coor-

dinates; hence the name supertranslation. Note that if one includes Mµν terms

in the exponents of the group elements and repeats the calculations, then it is

not hard to verify that the superspace coordinates will get rotated in addition to

the translations.

A function Φ
(
xµ, θ, θ

)
on the superspace is called a “superfield.” Un-

der the above super Poincaré group action on the superspace coordinates, the

superfield transforms as

Φ
(
xµ + aµ − iξσµθ̄ + iθσµξ̄, θ + ξ, θ̄ + ξ̄

)
= Φ

(
xµ, θ, θ

)
+ (aµ − iξσµθ̄ + iθσµξ̄) ∂Φ

∂xµ + ξA ∂Φ
∂θA + ξ̄Ȧ ∂Φ

∂θȦ
+ . . .

=
[
1 +

(
aµ − iξσµθ̄ + iθσµξ̄

)
∂
∂xµ + ξA ∂

∂θA + ξ̄Ȧ ∂

∂θ
Ȧ

+ . . .
]
Φ
(
xµ, θ, θ

)
and infinitesimally,

δG
(
aµ, ξ, ξ̄

)
Φ
(
xµ, θ, θ̄

)
=

[(
aµ − iξσµθ̄ + iθσµξ̄

) ∂

∂xµ

+ξA
∂

∂θA
+ ξ̄Ȧ

∂

∂θ
Ȧ

]
Φ
(
xµ, θ, θ̄

)
(3.30)

from which it follows that the action of supertranslation on the superfield is

generated by

Pµ = i∂µ, (3.31)

iQA =
∂

∂θA
− iσµ

AȦ
θ̄Ȧ∂µ, (3.32)

iQȦ = − ∂

∂θ
Ȧ

+ iθAσµ
AȦ
∂µ (3.33)



55

so that δG
(
aµ, ξ, ξ̄

)
Φ
(
xµ, θ, θ̄

)
=
(
−iaµPµ + iξAQA + iξȦQ

Ȧ
)

Φ
(
xµ, θ, θ̄

)
. One

can verify that the above representation of the supertranslation operators satisfy

the super Poincaré algebra.

Observe that this representation treats θ and θ on equal footing. There

are, however, other representations that treat θ and θ slightly differently. Such

representations are known as the chiral representations. They are defined in

precisely the same way as above, but using different forms of the group elements

(i.e., different from (3.28)). There are two of them defined as follows:

1. L-representation: The group elements take the form

GL

(
xµ, θ, θ̄

)
= exp (−ixµPµ + iθQ) · exp

(
iθ̄Q̄

)
(3.34)

which is equivalent to (3.28) if xµ in (3.28) is changed to xµ − iθσµθ. Re-

peating the steps in the original case leads to the supertranslation rule on

the superfield,

δ(L)G(ξ, ξ̄)ΦL

(
xµ, θ, θ̄

)
=

(
ξA

∂

∂θA
+ ξ̄Ȧ

∂

∂θ̄Ȧ
+ 2iθσµξ̄∂µ

)
ΦL

(
xµ, θ, θ̄

)
(3.35)

so that the generators in this representation read

Pµ = i∂µ (3.36)

iQA =
∂

∂θA
(3.37)

iQȦ = − ∂

∂θ
Ȧ

+ 2iθAσµ
AȦ

(3.38)

which satisfy the super Poincaré algebra as they should. If one defines the

new bosonic coordinates

yµ = xµ + iθσµθ, (3.39)

then the above representation takes the form (3.31)-(3.33) with xµ being

replaced by yµ. Thus this L-representation is completely equivalent to the

original representation, and so the superfield in this representation is con-

veniently written in the form ΦL

(
xµ + iθσµθ̄, θ, θ̄

)
.
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2. R-representation: The group elements take the form

GR

(
xµ, θ, θ̄

)
= exp

(
−ixµPµ + iθ̄Q̄

)
· exp (iθQ) (3.40)

which is equivalent to (3.28) if xµ in (3.28) is changed to xµ + iθσµθ. This

leads to the transformation rule

δ(R)G(ξ, ξ̄)ΦR

(
xµ, θ, θ̄

)
=

(
ξA

∂

∂θA
+ ξ̄Ȧ

∂

∂θ̄Ȧ
− 2iξσµθ̄∂µ

)
ΦR

(
xµ, θ, θ̄

)
(3.41)

which implies the representation

Pµ = i∂µ (3.42)

iQA =
∂

∂θA
− 2iσµ

AȦ
θ
Ȧ
∂µ (3.43)

iQȦ = − ∂

∂θ
Ȧ

(3.44)

satisfying the super Poincaré algebra as one can check. Similar to the L-

representation case, one can check that with the new bosonic coordinates

zµ = xµ − iθσµθ, (3.45)

the above representation takes the form (3.31)-(3.33) with xµ being changed

to zµ. So the superfield in the R-representation is normally written in the

form ΦR

(
xµ − iθσµθ̄, θ, θ̄

)
.

It will be seen later on that the L- and R-representations play an important role

in the representations of the super Poincaré group.

3.2.2 Component Fields and their Supersymmetry Trans-
formations

To find a connection between a superfield, Φ
(
xµ, θ, θ̄

)
, and the ordinary fields

(functions of spacetime coordinates only), one expands the superfields as a Taylor
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series with respect to θ and θ. The coefficients obtained in this way are the

ordinary component fields.

Consider a general (Lorentz scalar or pseudoscalar) superfield Φ(x, θ, θ).

Its Taylor expansion in θ and θ terminates as

Φ
(
xµ, θ, θ̄

)
= f (x) + θAϕ

A
(x) + θ̄Ȧχ̄

Ȧ (x)

+ (θθ)m (x) +
(
θ̄θ̄
)
n (x) +

(
θσµθ̄

)
Vµ (x)

+ (θθ) θ̄Ȧλ̄
Ȧ (x) +

(
θ̄θ̄
)
θAψA (x)

+ (θθ)
(
θ̄θ̄
)
d (x) , (3.46)

where (θθ) = θAθA and
(
θ̄θ̄
)

= θ̄Ȧθ̄
Ȧ. This is due to the fact that the powers of

θ (and hence θ) higher than two vanishes identically due to the anti-commuting

nature of θ and θ. For example,

(θθ) θ1 = θBθBθ
1

=
(
θ1θ2 − θ2θ1

)
θ1

= −
(
θ2θ1 − θ1θ2

)
θ1

= − (θθ) θ1; (3.47)

which holds if both sides of the equation vanish.

The quantities f (x), χȦ (x), m (x), n (x), Vµ (x) , λȦ (x), ψA (x) and d (x)

are called component fields. With the requirement that Φ
(
xµ, θ, θ̄

)
is a Lorentz

scalar or pseudoscalar, these fields can be classified according to their Lorentz

transformation properties as follows:

• f (x), m (x) and n (x) are complex scalar or pseudoscalar fields;

• ϕ
A

(x) and ψA (x) are left-handed Weyl spinor fields;

• χ̄Ȧ (x) and λ̄Ȧ (x) are right-handed Weyl spinor fields;

• Vµ (x) is a Lorentz four-vector field;
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• d (x) is a scalar field.

To calculate the infinitesimal supersymmetry transformations of these

component fields, one equates

δSΦ
(
xµ, θ, θ̄

)
= δSf (x) + θAδSϕA

(x) + θ̄ȦδSχ̄
Ȧ (x)

+ (θθ) δSm (x) +
(
θ̄θ̄
)
δSn (x) +

(
θσµθ̄

)
δSVµ (x)

+ (θθ) θ̄ȦδSλ̄
Ȧ (x) +

(
θ̄θ̄
)
θAδSψA (x)

+ (θθ)
(
θ̄θ̄
)
δSd (x) (3.48)

with

δG
(
ξ, ξ̄
)
Φ
(
xµ, θ, θ̄

)
=

[(
−iξσµθ̄ + iθσµξ̄

)
∂µ+ξ

A∂A + ξ̄Ȧ∂̄Ȧ

]
×Φ

(
xµ, θ, θ̄

)
=

[(
−iξσµθ̄ + iθσµξ̄

)
∂µ+ξ

A∂A + ξ̄Ȧ∂̄Ȧ

]
×[f (x) + θAϕ

A
(x) + θ̄Ȧχ̄

Ȧ (x)

+ (θθ)m (x) +
(
θ̄θ̄
)
n (x) +

(
θσµθ̄

)
Vµ (x)

+ (θθ) θ̄Ȧλ̄
Ȧ (x) +

(
θ̄θ̄
)
θAψA (x)

+ (θθ)
(
θ̄θ̄
)
d (x)

]
, (3.49)

where ∂µ = ∂
∂xµ , ∂A = ∂

∂θA , ∂̄Ȧ = ∂

∂θ̄Ȧ
. Once the explicit form of the right-hand

side of the above equation is obtained, one is able to compare the coefficients of

the same power of θ and θ of the above two equations to give the supersymmetry

transformations of the component fields as:

δSf (x) = αϕ (x) + ᾱχ̄ (x) ,

δSϕA (x) = 2αAm (x) + (σµᾱ)A [i∂µf (x) + Vµ (x)] ,

δSχ̄
Ȧ (x) = 2ᾱȦn (x) + (ασµε)Ȧ [i∂µf (x)− Vµ (x)] ,

δSm (x) = ᾱλ̄ (x)− i

2
∂µϕ (x)σµ∂µϕ (x)− i

2
∂µχ̄ (x) ᾱ,
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δSn (x) = αψ (x) +
i

2
ασµ∂µχ̄ (x) ,

δSVµ (x) = ασµλ̄ (x) + ψ (x)σµᾱ+
i

2
α∂µϕ−

i

2
∂µχ̄ (x) ᾱ,

δSλ̄
Ȧ (x) = 2ᾱȦd (x) +

i

2
ᾱȦ∂µVµ (x) + i (ασµε)Ȧ ∂µm (x) ,

δSψA (x) = 2αAd (x)− i

2
αA∂

µVµ (x) + i (σµᾱ)A ∂µm (x) ,

δSd (x) =
i

2
∂µψ (x)σµᾱ+

i

2
ασµ∂µλ̄ (x)

=
i

2
∂µψ (x)σµᾱ− i

2
∂µλ̄ (x)ασµ.

(3.50)

One sees immediately that supersymmetry transformations transform bosons into

fermions, and vice versa. Notice that δSd (x) is a total derivative. This is very

important, because this implies that the coefficient of θ2θ
2

of some (composite)

superfield can play the role of the Lagrangian in a supersymmetric invariant

action. This point will be discussed later on in this chapter.

3.2.3 Covariant Derivatives

As in the case of gauge symmetries, one can define a covariant derivative D

as an operator acting on superfields that commutes with the supersymmetry

transformations δSUSY :

DΦ → D (δSUSY Φ) = δSUSY (DΦ) (3.51)

or

[D, δSUSY ] = 0. (3.52)

For the representations introduced in the previous subsection, the corresponding

covariant derivatives are:

1. For the ordinary representation:

DA = ∂A + iσµ
AḂ
θ̄Ḃ∂µ, (3.53)

D̄Ȧ = −∂̄Ȧ − iθBσµ
BȦ
∂µ. (3.54)
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2. For the L-representation:

D(L)A = ∂A + 2iσµ
AḂ
θ̄Ḃ∂µ, (3.55)

D̄(L)Ȧ = −∂̄Ȧ. (3.56)

3. For the R-representation:

D(R)A = ∂A, (3.57)

D̄(R)Ȧ = −∂̄Ȧ − 2iθBσµ
BȦ
∂µ. (3.58)

One can verify that these covariant derivatives commute with all supertransla-

tional operators {P,Q,A} as in (3.51), and satisfy the following algebra:

{DA, DB} =
{
D̄Ȧ, D̄Ḃ

}
= 0

D3 = D̄3 = 0{
DA, D̄Ḃ

}
= −2iσµ

AḂ
∂µ .

(3.59)

3.3 Constrained Superfields

In the last section, it has been shown that a supersymmetry transformation trans-

forms one component field of a superfield into other components fields with the

opposite statistics. Thus the component fields of a superfield form a representa-

tion of the super Poincaré group (or supersymmetry). For a general superfield,

the associated representation is normally reducible, that is, the superfield con-

tains more independent component fields than it is necessary. To reduce the

number of component fields so as to make the superfield contain only one irre-

ducible representation of supersymmetry, the trick is to impose some appropriate

constraint on the superfield, and this constraint has to commute with the super-

symmetry transformations in order to retain the supersymmetry transformation

rule of the component fields. Once the superfield satisfies this constraint, some
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component fields are no longer independent: they are expressed in terms of the

others (normally nonlinear combinations of them).1

Note that the trick just described is independent of the dynamics of the

theory, that is, one does not have to consider the Lagrangian of the theory.

However, sometimes merely imposing a constraint is not sufficient, and one has to

use some gauge transformations (allowed by the Lagrangian, hence the dynamics

of the theory) to get rid of some more component fields so as to reduce the

number of component fields down to that of an irreducible representation of

supersymmetry.

There are two types of constrained superfields used in particle physics

phenomenology (some other types do exist, but will not be considered here),

chiral superfields and vector superfields.

3.3.1 Chiral Superfields

A chiral superfield (also called a left-chiral superfield) Φ(xµ, θ, θ) is defined to

satisfy the constraint

DȦΦ = 0 (3.60)

withDȦ being a superspace covariant derivative defined in (3.54). This constraint

clearly commutes with the supersymmetry transformation, since if DȦΦ = 0 then

DȦδSΦ = 0 too, as the covariant derivatives commute with all the supertransla-

tion operators.

To see explicitly how the above constraint reduces the number of inde-

pendent component fields, observe that

DȦ = − ∂

∂θ
Ȧ

∣∣∣∣∣
y

(3.61)

1Mathematically speaking, what this constraint does is to reduce the number of dimensions
of the functional space of superfields so that the constrained superfields now lives in a subspace
(of the functional space) invariant under the supersymmetry transformations.
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where yµ = xµ+iθσµθ is the bosonic coordinates defined in the L-representation of

supersymmetry. This implies that the coordinates (yµ, θ, θ) in the L-representation

are appropriate for describing a chiral superfield. Thus the chiral superfield sat-

isfying (3.60) is simply a function of (yµ, θ) and takes the form

Φ (y, θ) = φ (y) +
√

2θAψA (y) + θAθBεABF (y) (3.62)

without the explicit appearance of θ (compare this with the general superfield

in (3.46)). The factor of
√

2 as been chosen by convention. Compare the above

equation with (3.46), one notices that the only spinor contained in the chiral

superfield is a left-handed Weyl spinor ψ(x); this leads to the prefix “chiral” in

the name of this superfield. Thus a chiral superfield contains three independent

component fields: two complex scalars φ and F , and a spinor ψ of left-chirality.

These three fields form an irreducible representation of the super Poincaré group.

If one were to expand all the component fields as the Taylor series with respect to

the fermionic coordinates (for example, one expands φ(y) = φ(x)+iθσµθ∂µφ(x)+

. . .), one would obtain the original form of the superfield (as in (3.46)) whose

component fields are no longer independent. Explicitly, the result is

Φ (y, θ) = φ (y) +
√

2θψ (y) + (θθ)F (y)

= φ
(
x+ iθσθ̄

)
+
√

2θψ
(
x+ iθσθ̄

)
+ (θθ)F

(
x+ iθσθ̄

)
= φ (x) + iθσµθ̄∂µφ (x) +

1

2

(
θσµθ̄

) (
θσν θ̄

)
∂µ∂νφ (x)

+
√

2θAψA (x) +
√

2iθA
(
θσθ̄
)
∂µψA (x) + (θθ)F (x)

= φ (x) + iθσµθ̄∂µφ (x)− 1

4
(θθ)

(
θ̄θ̄
)
∂µ∂µφ (x)

+
√

2θAψA (x) +
i√
2

(θθ) θ̄Ȧ∂µψ
A (x)σµ

AḂ
εḂȦ

+ (θθ)F (x) . (3.63)

This is how the chiral constraint reduced the number of independent component

fields.
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The supersymmetry transformations of the component fields of a chiral

superfield is obtained by first identifying the component fields in (3.63) with those

in (3.46), and then using the general formulae in (3.50). One finds

δSφ (x) =
√

2αψ (x) (boson → fermion) (3.64)

δSψ (x) =
√

2αAF (x) +
√

2iσµ
AȦ
ᾱȦ∂µφ (x) (fermion → boson) (3.65)

δSF (x) = −
√

2i∂µψ (x)σµᾱ (F → total derivative). (3.66)

Notice that the supersymmetry transformation of the component field F , which

is a coefficient of θ2, is a total spacetime derivative. As the other coefficient of

θ2 in (3.63) is already a total derivative which gives zero after integrating over a

spacetime, the whole set of coefficients of θ2 in a chiral superfield can serve as a

Lagrangian in a supersymmetric invariant action. This fact will be of great use

in constructing a supersymmetric Lagrangian.

An important property of chiral superfields is that a product of two chiral

superfield is also a chiral superfield. This can be verified by observing that if

DȦΦi = 0 = DȦΦj, then DȦ(ΦiΦj) = 0, or the product ΦiΦj is a chiral superfield

if Φi and Φj are. More explicitly,

ΦiΦj =
[
φi (y) +

√
2θψi (y) + (θθ)Fi

]
×
[
φj (y) +

√
2θψj (y) + (θθ)Fj

]
= φi (y)φj (y) + 2 (θψi (y)) (θψj (y))

+
√

2θφi (y)ψj (y) + (θθ)φi (y)Fj

+
√

2θψi (y)φj (y) + (θθ)Fiφj (y)

= φi (y)φj (y)

+
√

2θ [φi (y)ψj (y) + ψi (y)φj (y)]

+ (θθ) [φi (y)Fj + Fiφj (y)− ψi (y)ψj (y)] . (3.67)

This result implies that an arbitrary function of chiral superfields is also a chiral

superfield.
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Observe that a chiral superfield is a complex superfield. It is not hard

to see that the hermitian conjugate of a chiral superfield depends only on the

coordinates (z, θ) in the R-representation,

Φ† = φ∗ (z)−
√

2θ̄ψ̄ (z) +
(
θ̄θ̄
)
F ∗ (z) , (3.68)

and satisfies the constraint

DAΦ† =
∂

∂θA

∣∣∣∣
z

Φ† = 0. (3.69)

The superfield Φ† satisfying the constraint DAΦ† = 0 is called an “antichiral” or

“right-chiral” superfield (since it contains only a right-handed spinor). In terms

of the original superspace coordinates (xµ, θ, θ), the antichiral superfield takes the

form

Φ
(
z, θ̄
)

= φ∗ (z) +
√

2θ̄ψ̄ (z) +
(
θ̄θ̄
)
F ∗ (z)

= φ∗ (x)− iθσµθ̄∂µφ
∗ (x)− 1

4
(θθ)

(
θ̄θ̄
)
∂µ∂µφ

∗ (x)

+
√

2θ̄ψ̄ (x)− i√
2

(
θ̄θ̄
)
θσµ∂µψ̄ (x) + (θθ)F ∗ (x) . (3.70)

The supersymmetry transformations of the above component fields can be ob-

tained by performing hermitian conjugation on the previous result for a chiral

superfield. Similar to the case of chiral superfields, any function of antichiral

superfields is also an antichiral superfield, and the coefficients of θ
2

in the expan-

sion of an antichiral superfield can serve as a Lagrangian in a supersymmetric

invariant action.

Chiral and antichiral superfields represent supersymmetric multiplets of

matter fields, such as quarks and leptons. Thus for a known spin-1
2

particle, one

can construct a supersymmetry multiplet separately for its left-handed and right-

handed components by associating with them a chiral and an antichiral superfield

respectively. This is of great advantages in constructing the supersymmetric ex-

tension of the Standard Model in which left-handed and right-handed components
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of a matter spinor field transform differently under the Standard Model gauge

group.

3.3.2 Vector Superfields

The aim of this chapter is to describe the Standard Model particles and their

superpartners by the component fields of superfields. In the previous subsection,

it is clear that a chiral superfield, which contains only spin-0 bosons and a spin-

1/2 fermion, cannot describe all particles in the SM, because it does not contain

any spin-1 gauge boson as its component field. Thus one has to introduce another

type of constrained superfields, called a vector superfield V , as follows. First of

all, a vector superfield has to satisfy a “reality” condition:

V
(
x, θ, θ̄

)
= V † (x, θ, θ̄) . (3.71)

Just like (3.46), one can expand the vector superfield as

V
(
x, θ, θ̄

)
= C (x) + θϕ (x) + θ̄χ̄ (x)

+ (θθ)M (x) +
(
θ̄θ̄
)
N (x) +

(
θσµθ̄

)
Vµ (x)

+ (θθ) θ̄λ̄ (x) +
(
θ̄θ̄
)
θψ (x) + (θθ)

(
θ̄θ̄
)
D (x) . (3.72)

Its hermitian conjugate is

V † (x, θ, θ̄) = C∗ (x) + θ̄ϕ̄ (x) + θχ (x)

+
(
θ̄θ̄
)
M∗ (x) + (θθ)N∗ (x) +

(
θσµθ̄

)
V ∗
µ (x)

+
(
θ̄θ̄
)
θλ (x) + (θθ) θ̄ψ̄ (x) + (θθ)

(
θ̄θ̄
)
D∗ (x) . (3.73)
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The reality condition is satisfied if and only if

C (x) = C∗ (x) ⇒ C (x) is a real scalar field;

ϕ (x) = χ (x)

M (x) = N∗ (x)

Vµ (x) = V ∗
µ (x) ⇒ Vµ (x) is a real vector field;

λ (x) = ψ (x)

D (x) = D∗ (x) ⇒ D (x) is a real scalar field.

(3.74)

Thus the expansion of a vector superfield satisfying the reality condition is

V
(
x, θ, θ̄

)
= C (x) + θϕ (x) + θ̄ϕ̄ (x)

+ (θθ)M (x) +
(
θ̄θ̄
)
M∗ (x) +

(
θσµθ̄

)
Vµ (x)

+ (θθ) θ̄λ̄ (x) +
(
θ̄θ̄
)
θλ (x) + (θθ)

(
θ̄θ̄
)
D (x) , (3.75)

where

• C (x) and D (x) are real scalar fields;

• M (x) is a complex scalar field;

• λ (x) and ϕ (x) are spinor fields;

• Vµ (x) is a real vector field.

Note that the above superfield contains equal numbers of bosonic and fermionic

degrees of freedom as it should. Despite the simple form in (3.75), it proves

convenient to rewrite the vector superfield as

V
(
x, θ, θ̄

)
=

(
1 +

1

4
θθθ̄θ̄∂µ∂

µ

)
C (x) +

(
iθ +

1

2
θθσµθ̄∂µ

)
ϕ (x)

+
i

2
θθM (x) +

(
−iθ̄ +

1

2
θ̄θ̄σµθ∂µ

)
ϕ̄ (x)− i

2
θ̄θ̄M∗

−θσµθ̄Vµ (x) + θθθ̄λ̄ (x)− iθ̄θ̄θλ (x)

+
1

2
θθθ̄θ̄D (x) (3.76)
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which still satisfies the reality condition (3.71). One sees that the vector field

Vµ (x), which is needed to describe a gauge field, is contained in the vector super-

field. This is a good sign that one is on the right track to construct a superfield

which plays the role of a gauge field.

However, the above vector superfield still contains too many component

fields to form just one irreducible representation of supersymmetry (which, of

course, must contain a vector field). Thus for a vector superfield to contain just

one irreducible representation, an equal number of bosonic and fermionic degrees

of freedom have to be eliminated. To do this, the trick is to subtract a vector

superfield V using the other “real” superfieldK which contains fewer independent

component fields. The component fields of K have to be chosen just right that

they can eliminate precisely the unwanted component fields of V . Of course, K

cannot contain a vector field as its component field as it would eliminate the

desired gauge field from V .

It turns out that the superfield K that does a great job takes the form

K = Φ+Φ†, where Φ is a chiral superfield defined in the previous subsection, and

Φ† is its hermitian conjugate. To verify our assertion, consider the transformation

V
(
x, θ, θ̄

)
→ V ′ (x, θ, θ̄)

= V
(
x, θ, θ̄

)
+ Φ

(
x, θ, θ̄

)
+ Φ† (x, θ, θ̄)

≡ V
(
x, θ, θ̄

)
+ iΛ

(
x, θ, θ̄

)
− iΛ† (x, θ, θ̄) . (3.77)

where Φ = iΛ is a chiral superfield whose explicit form was given in (3.63). Using

(3.63), (3.70) and (3.76), the component fields transform under this transforma-

tion as
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C (x) → C ′ (x) = C (x) + φ (x) + φ∗ (x)

ϕ (x) → ϕ′ (x) = ϕ (x) +
√

2ψ (x)

M (x) →M ′ (x) = M (x) + F (x)

Vµ (x) → V ′
µ (x) = Vµ (x) + i∂µ (φ (x)− φ∗ (x))

λ (x) → λ′ (x) = λ (x)

D (x) → D′ (x) = D (x) .

(3.78)

Thus if the component fields of Φ are chosen as

√
2ψ (x) = −ϕ (x) (3.79)

F (x) = −M (x) (3.80)

2Re (φ (x)) = φ (x) + φ∗ (x) = −C (x) , (3.81)

then the component fields φ (x), M (x) and C (x) are completely eliminated, and

one is left with the fields Vµ, λ and D which form an irreducible representation of

supersymmetry. Note that under this transformation, λ and D are invariant while

the vector field Vµ transforms as Vµ (x) → V ′
µ (x) = Vµ (x) + i∂µ (φ (x)− φ∗ (x)),

which is precisely an Abelian gauge transformation. This implies that the above

transformation is a superfield version of an Abelian gauge transformation, and

Vµ really plays the role of a gauge field. One sees immediately that such a

process of component field elimination will work only if the theory has some

gauge invariance; this has been remarked at the beginning of this section.

Once the unwanted component fields have been eliminated, the vector

superfield is said to be in the Wess-Zumino (WZ) gauge, and takes the form

VWZ

(
x, θ, θ̄

)
=

(
θσµθ̄

)
[Vµ (x) + i∂µ (φ (x)− φ∗ (x))]

+ (θθ) θ̄λ̄ (x) +
(
θ̄θ̄
)
θλ (x) + (θθ)

(
θ̄θ̄
)
D (x) . (3.82)

Thus an irreducible representation of supersymmetry containing an Abelian gauge

field contains a gauge field Vµ(x), its fermionic superpartner λ(x) called a gaugino,
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and an auxiliary field D(x).

The derivation of supersymmetry transformations for a vector superfield

is rather tricky. Suppose one starts with a vector superfield in the Wess-Zumino

gauge and then performs a supersymmetry transformation using the method in

the previous section, it is not hard to check that the transformed superfield is no

longer in the Wess-Zumino gauge, that is, its C (x), ϕ (x), and M (x) components

no longer vanish. The way out of this trouble is to include a gauge transformation

with “field-dependent” parameters in the definition of supersymmetry transfor-

mation so that the transformed superfield remains in the Wess-Zumino gauge.

This means that one has to define a new supersymmetry transformation δS̃ as

δS̃ = δS + δgauge, where δS is the usual supersymmetry transformation and δgauge

is a gauge transformation whose parameters are appropriately chosen (normally

functions of component fields) to cancel out the unwanted component fields. The

final result is

δS̃V
µ =

1√
2

(
ασµλ+ λσµα

)
(3.83)

δS̃λ =
1√
2
αD − i

2
√

2
(σµσν)αFµν (3.84)

δS̃D =
i√
2

(
ασµ∂µλ̄+ ᾱσµ∂µλ

)
(3.85)

where Fµν = ∂µVν − ∂νVµ is the usual field strength of Vµ. An interesting point

is that the supersymmetry variation of D is a total derivative, and therefore one

can construct a supersymmetric action using the component field D of a vector

superfield as the Lagrangian.

In a theory with a non-Abelian gauge symmetry, one defines a vector

superfield as a real superfield V transforming as an adjoint representation of the

gauge group and subject to the gauge transformation

egV → e−igΛ
†
egV eigΛ, (3.86)
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where g is the gauge coupling and Λ is a chiral superfield in an adjoint represen-

tation of the gauge group. All the results for the non-Abelian case are the same

as those in the Abelian case with the partial derivatives being replaced by the

gauge covariant derivatives, so they are not repeated here.

3.4 Construction of the Supersymmetric Action

To construct a supersymmetric action, one needs the Lagrangian whose super-

symmetric variation is either zero or a total spacetime derivative:

δS

∫
d4xL (x) =

∫
d4x∂µ (. . .) = 0. (3.87)

According to (3.66) and (3.85), the highest order terms in θ and θ̄ of any chiral

and real superfields satisfy this requirement. This observation is a starting point

in constructing a supersymmetric Lagrangian using the superspace techniques.

Consider a general superfield S(x, θ, θ). One can extract its coefficient of θ2θ
2

as

follows. Using the rules of integration over Grassmann variables,∫
dθα = 0,

∫
θαdθβ = δαβ, (3.88)

one sees that∫
d2θd2θS

(
x, θ, θ̄

)
=

∫
d2θd2θ

[
f (x) + θAϕ

A
(x) + θ̄Ȧχ̄

Ȧ (x)

+ (θθ)m (x) +
(
θ̄θ̄
)
n (x) +

(
θσµθ̄

)
Vµ (x)

+ (θθ) θ̄Ȧλ̄
Ȧ (x) +

(
θ̄θ̄
)
θAψA (x)

+ (θθ)
(
θ̄θ̄
)
d (x)

]
= d (x) . (3.89)

This means that the coefficient of θ2θ
2

can be extracted by integrating S over

the Grassmann coordinates. Similarly, one can extract the coefficient of θ2 in a

chiral superfield by integrating it over “half” of the Grassmann coordinates θ.
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Using the above method, the supersymmetric Lagrangian can be con-

structed as follows. Define a superpotential W (Φ) as a function of chiral su-

perfields Φi (i = 1, . . . , N). It is clear that W is also a chiral superfield, so

the supersymmetric variation of the coefficient of θ2 contained in it is a total

spacetime derivative and therefore such a coefficient can serve as a part of a

supersymmetric Lagrangian (which, of course, gives a supersymmetric invariant

action by itself). This means that

Lint (Φ) =

∫
d2θW (Φ) + h.c. (3.90)

which, after integrating over spacetime, is supersymmetric invariant. Since Φi

describes a multiplet of matter fields, then its mass dimension is one. So the

most general form of W that gives a renormalizable Lagrangian is

W (Φ) =
∑
i

kiΦi +
1

2

∑
ij

mijΦiΦj +
1

3

∑
ijk

gijkΦiΦjΦk (3.91)

where ki, mij and gijk are constants. With the form of W , LF (Φ) is

Lint (Φ) =

∫
d2θ

[∑
i

kiΦi +
1

2

∑
ij

mijΦiΦj +
1

3

∑
ijk

gijkΦiΦjΦk

]

=
∑
j

∂W (φi)

∂φj
Fj −

1

2

∑
j,k

∂2W (φi)

∂φj∂φk
ψjψk, (3.92)

where W (φi) is the superpotential in (3.91) with all the superfields Φi being

replaced by their θ = θ = 0 components φi describing the scalar fields. It will be

seen below that the above Lagrangian describes the potential and non-derivative

interaction terms of the theory.

The kinetic terms can be obtained by integrating a real superfield ΦΦ†,

with Φ a chiral superfield as usual, over the Grassmann coordinates,

Lkin (V ) =

∫
d2θd2θ̄ΦΦ†

= FF ∗ − φ∂µ∂
µφ∗ − iψ̄σµ∂

µψ. (3.93)
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It can be seen that the last two terms of this equation are kinetic terms for a

scalar field and a fermionic field respectively. However, there is no kinetic term

for the F -field. Thus this field has no dynamics (unphysical) and is called an

auxiliary field.

Combinding Lint (Φ) of (3.90) together with its hermitian conjugate, and

Lkin (V ) of (3.93), one can write the full Lagrangian as

L =
∑
i

∫
d2θd2θ̄ΦiΦ

†
i +

(∫
d2θW (Φ) + h.c.

)
(3.94)

=
∑
i

[
FiF

∗
i + ∂µφi∂

µφi − iψ̄iσ
µ∂µψi

]
+

[∑
j

∂W (φi)

∂φj
Fj −

1

2

∑
j,k

∂2W (φi)

∂φj∂φk
ψjψk + h.c.

]
. (3.95)

As the auxiliary fields Fi are non-dynamical, then one can eliminate them using

their equations of motion2

∂L
∂Fj

= 0

Fj = −
[
∂W (φi)

∂φj

]∗
. (3.96)

Using the above result in (3.95), the supersymmetric Lagrangian becomes

L =
∑
i

[
FiF

∗
i + ∂µφi∂

µφi − iψ̄iσ
µ∂µψi

]
+

[
−1

2

∑
j,k

∂2W (φi)

∂φj∂φk
ψjψk + h.c.

]
−
∑
j

∣∣∣∣∂W (φi)

∂φj

∣∣∣∣2. (3.97)

The last term on the right-hand side above is called the F-term contribution

to the potential. Using the explicit form of the superpotential, one sees that it

contains the mass terms and self-interactions of the scalar fields.

2This process actually has a quantum mechanical origin. In the path integral quantization,
one performs the functional integration of the exponential of the action. If the Lagrangian
contains a non-dynamical field F , then “the functional integration over F” gives exactly the
same result as “replacing F with its form, obtained from its classical equations of motion, in
the Lagrangian.”
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To introduce gauge interactions into the supersymmetric Lagrangian, the

Lagrangian of (3.94) is required to be invariant under the gauge transformation:

Φ → e−igΛ(x)Φ, (3.98)

where Λ (x) is a chiral superfield (so that e−igΛ(x)Φ is still a chiral superfield).

Under the transformation (3.98), Lkin (V ) is not invariant:

Φ†Φ → Φ†e+igΛ
†
e−igΛΦ. (3.99)

To make Lkin (V ) invariant under the transformation (3.98), it needs to be mod-

ified by introducing a vector superfield into the Lagrangian:∫
d2θd2θ̄Φ†Φ →

∫
d2θd2θ̄Φ†e2gV Φ (3.100)

and recall that egV transforms as in (3.86). As the Lagrangian is now gauge

invariant, one is eligible to use the Wess-Zumino gauge in which the Lagrangian

takes the form∫
d2θd2θ̄Φ†e2gV Φ = |Dµφ|2 − iψ̄σµD

µψ + gφ∗
∑
a

DaT
aφ

+ig
√

2
(
φ∗λψ − λ̄ψ̄φ

)
+ |F |2 , (3.101)

where Dµ = ∂µ + igAaµT
a and T a are group generators. On the other hand, the

superpotential in (3.91) is unchanged provided the coefficients ki, mij, and gijk

are chosen appropriately so as to make W gauge invariant.

Finally, the kinetic terms of gauge fields are considered. In the electro-

magnetic theory, the kinetic terms of a gauge vector field is described by the

contraction of the electromagnetic field strengths:

Lkin = −1

4
F µνFµν (3.102)

The kinetic terms for the vector superfield must therefore give rise to the above

Lagrangian. Such terms can be constructed by defining a supersymmetric field
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strength:

WA = D
2
e−gVDAe

gV (3.103)

where D
2

= 1
2
εȦḂDȦDḂ. WA is a chiral superfield as one can check by using

(3.59), and is gauge covariant, i.e., it transforms under the gauge transformation

as WA → e−igΛWAe
igΛ. For Abelian symmetries, it reduces to

WA = D
2
DAV (3.104)

where the coupling constant g has been absorbed into V . Since WA is chiral

superfield, WAWA is also a chiral superfield and its trace over the group indices

is gauge invariant. Thus the action for the gauge supermultiplet takes the form∫
d2θ

{
1

32g2
Tr
(
WAWA

)}
+ h.c. = −1

4
F a
µνF

µν
a +

1

2
DaD

a

− i
2
λaσµ∂

µλ̄a

+
1

2
gfabcλaσµA

µ
b λ̄c + h.c., (3.105)

where fabc are the Lie algebra structure constants. One sees that in addition to

the kinetic terms for the gauge field, this Lagrangian contains the kinetic terms

for the gauginos λa (− i
2
λaσµ∂

µλ̄a and its hermitian conjugate) and the canonical

coupling of the gauginos and the gauge fields (1
2
gfabcλaσµA

µ
b λ̄c and its hermitian

conjugate).

Because there is no kinetic terms for Da in (3.105), Da are auxiliary fields

and can be integrated out. To integrate out the Da field, one combines (3.101)

and (3.105) and then derives the equations of motion for Da which give

Da = −g
∑
ij

φ∗iT
ij
a φj, (3.106)

where i, j are group indices. Substituting this result into the Lagrangian gives

the so-called D-term contribution to the potential as

VD =
1

2

∑
a

∣∣∣∣∣∑
ij

gφ∗iT
ij
a φj

∣∣∣∣∣
2

. (3.107)
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3.5 The Minimal Supersymmetric Standard Model

3.5.1 The MSSM Particle Contents

The Minimal Supersymmetric Standard Model (MSSM) is the supersymmetric

extension of the Standard Model with the smallest possible number of superfields

and their interactions.

It is natural to ask “Is it possible that the particles in the Standard

Model might already be superpartners of one another?” Unfortunately, the an-

swer is “No” because the matter fermions and the gauge bosons belong to the

different representations of the gauge group. Even though the Higgs boson and

the neutrino have their spins different by one-half but the same gauge quantum

numbers, they cannot be the superpartner of each other as this would lead to the

unacceptable phenomenological results. For example, the terms required to give

masses to the charged leptons explicitly break the lepton number conservation if

the superpartner of a neutrino were the Higgs field.

In the SM, an SU(2) scalar doublet with hypercharge Y = 1/2 is needed

to break the SU(2) × U(1) invariance, but the MSSM needs two such doublets:

one has hypercharge Y = 1/2 like the SM doublet while the other has hypercharge

Y = −1/2. Each scalar doublet and its fermionic superpartners are contained in

a Higgs superfield doublet. There are two important reasons for introducing two

doublets in the MSSM. The first one is that only one Higgs doublet cannot give

masses to all fermion matter fields after the electroweak symmetry breaking. The

other one is more technical. With only one doublet, its fermionic superpartners,

which are chiral fermions, contribute the extra gauge anomalies into the theory,

and these anomalies would definitely spoil the renormalizability of the theory.

Thus the second Higgs doublet with just the right quantum numbers has to be

introduced so that the anomalies contributed by its fermionic superpartners will

cancel precisely those from the first doublet.
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Table 3.1: Chiral superfields of the MSSM.
Superfield SU(3) SU(2)L U(1)Y Particle Contents

Q̂ 3 2 1
6

(uL, dL), (ũL, d̃L)

Û c 3 1 −2
3

ūR, ũ
∗
R

D̂c 3 1 1
3

d̄R, d̃
∗
R

L̂ 1 2 −1
2

(νL, eL), (ν̃L, ẽL)

Êc 1 1 1 ēR, ẽ
∗
R

Ĥ1 1 2 1
2

(H1, h̃1)

Ĥ2 1 2 −1
2

(H2, h̃2)

To represent all particles of the Standard Model and their superpart-

ners, the matter fields and their superpartners are combined into chiral super-

fields while the gauge bosons and their superpartners are combined into vector

superfields. For the left-handed SM fermions, the forms of the corresponding

chiral superfields are quite obvious as the chiral superfields automatically contain

left-handed fermions. But for a right-handed SM fermion, one needs to use its

hermitian conjugate, which is a left-handed fermion, to construct the superfield.

All of these superfields and their corresponding SM particles belong to the same

representations of the Standard Model gauge group. For the second Higgs super-

multiplet which has no SM counterpart, it is a singlet under SU(3)C , a doublet

under SU(2)L, and has Y = −1/2 to cancel the gauge anomalies.

As for the names of the particles, the superpartners of quarks and leptons

are called squarks and sleptons respectively. In particular, the superpartner of

the top quark is called the stop squark and that of the electron is called the se-

lectron. The fermionic superpartners of the gauge bosons are called the gauginos.

For example, the superpartners of W± and Z0 bosons are called winos and zinos

respectively. For the Higgs bosons, their superpartners are called the Higgsinos.

These particles are gathered in Tables 3.1 and 3.2, where all spinors are repre-

sented as two-component Weyl spinors. In Tables 3.1 and 3.2, each superfield

is denoted by a capital letter with a hat (e.g., Q̂) while the superpartner of each

SM particle is denoted by the letter corresponding to the particle with a tilde
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Table 3.2: Vector superfields of the MSSM.
Superfield SU(3) SU(2)L U(1)Y Particle Contents

Ĝa 8 1 0 g, g̃

Ŵ i 1 3 0 Wi, w̃i
B̂ 3 1 0 B, b̃

(e.g., ũ is the scalar superpartner of the up quark). The “c” superscript on the

superfields corresponding to the right-handed fermions in the SM (namely Û c, D̂c

and Êc) indicates that it is the hermitian conjugate of the right-handed fermion

that appears in each superfield; this explains the notations for the particle con-

tents of such superfields. Notice that Table 3.1 contains only the first generation

particles without their antiparticles. The superfields for the other generations

can be defined in the same way.

3.5.2 The MSSM Action

In Section 3.4, the general form of the supersymmetric Lagrangian was con-

structed using two kinds of superfield, namely the chiral superfields and the vec-

tor superfields. The chiral superfield, which describes the multiplet of a matter

field, contains a complex scalar field φ, a left-handed Weyl fermion ψ, and an

auxiliary field F . The vector superfield, which describes the multiplet of a gauge

field, contains a gauge field Aµ, a gaugino λ, and an auxiliary field D. The general

gauge invariant supersymmetric action, with all the auxiliary fields eliminated by

their equations of motion, is given by
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S =

∫
d4x

{∑
i

(∣∣Dµφ
i
∣∣2 + iψ̄iσµD

µψi

)
−1

2

∑
i,j

(
∂2W

∂φi∂φj
ψiψj +

∂2W̄

∂φi∂φj
ψ̄iψ̄j

)
−
∑
i

∣∣∣∣∂W∂φi
∣∣∣∣2

−1

4

∑
a

(
F a
µνF

aµν − iλaσµD
µλ̄a
)

−
√

2
∑
a,i,j

ga
[
λ̄a
(
ψ̄iT aφi

)
+ λa

(
φi∗T aψi

)]
−1

2

∑
a

∣∣∣∣∣∑
i,j

gφi∗T aijφ
i

∣∣∣∣∣
2
 . (3.108)

The indices i, j run over all the chiral multiplets in the theory. The function W

is a general gauge invariant superpotential.

In order to construct the action of the MSSM, one demands that the

superpotential W be invariant under SU (3)×SU (2)L×U (1)Y . The information

concerning the gauge group representations of all superfields in Table 3.1 enables

one to construct the MSSM gauge invariant superpotential as

W =
2∑

α,β=1

µεαβĤ
α
1 Ĥ

β
2

+
3∑

i,j=1

[
(λE)ij Ĥ2L̂iÊ

c
j + (λD)ij Ĥ2Q̂iD̂

c
j + (λU)ij Ĥ1Q̂iÛ

c
j

]
+

2∑
α,β=1

εαβ

[
λ1L̂

αL̂βÊc + λ2L̂
αQ̂βD̂c

]
+ λ3Û

cD̂cD̂c

+
2∑

α,β=1

µ̃εαβĤ
α
2 L̂

β, (3.109)

where the SU(2) indices (α, β) and the family indices (i, j) have been displayed

for convenience. However, some of the contractions over SU (2), SU (3), and

family indices were not displayed explicitly. In particular, the couplings λi and

µ̃ actually contain family indices so that, for example, the explicit form of the

term λ3Û
cD̂cD̂c is (λ3)ijk εABC(Û c)iA(D̂c)jB(D̂c)kC with i, j, k and A,B,C being
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respectively family and SU(3) indices, and εabc being the totally antisymmetric

SU(3) invariant tensor with ε123 = 1.

It is not difficult to see that the interactions in the last two lines in

(3.109) cause some problems phenomenologically, since they generally result in the

violations of lepton or baryon numbers. A popular way to eliminate these terms is

to impose a conservation of a multiplicative quantum number called R parity. The

R parity is assigned to be +1 for the SM particles and −1 for their superpartners

[10]. Requiring the R parity conservation, the MSSM superpotential becomes

W =
2∑

α,β=1

µεαβĤ
α
1 Ĥ

β
2 +

3∑
i,j=1

(λE)ij Ĥ2L̂iÊ
c
j

+
3∑

i,j=1

(λD)ij Ĥ2Q̂iD̂
c
j +

3∑
i,j=1

(λU)ij Ĥ1Q̂iÛ
c
j . (3.110)

This form of the superpotential will be used from now on.

In the discussion of the super Poincaré algebra, it was found that P 2 =

PµP
µ is a Casimir operator. An important consequence of this is that(

QP 2 − P 2Q
)
|boson〉 =

(
m2
boson −m2

fermion

)
|fermion〉 = 0, (3.111)

so all particles in the same supermultiplet have the same masses. However, since

the existing experiments have so far failed to find the evidence for the superpart-

ners of all known particles, supersymmetry must be broken in the realistic model

so as to make the masses of all superpartners larger than the highest energy scale

of all existing experiments.

To discuss supersymmetry breaking, one should not forget that the equal-

ity of masses within a supermultiplet was an important ingredient for solving the

hierarchy problem. Thus to have a model with supersymmetry breaking, one

begins with a fully supersymmetric Lagrangian and then adds extra terms into

it to explicitly break supersymmetry. The forms of such extra terms have to

be restricted so that they will not introduce quadratic divergences to the parti-

cle masses via loop diagrams. These terms are called the “soft supersymmetry
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breaking” terms. It was found that the acceptable soft supersymmetry breaking

part of the Lagrangian takes the form

Lsoft = m2
q̃ |q̃L|

2 +m2
ũ |ũcR|

2 +m2
d̃

∣∣∣d̃cR∣∣∣2 +m2
l̃

∣∣∣l̃L∣∣∣2 +m2
ẽ |ẽcR|

2

+
(
λEAEHl̃Lẽ

c
R + λDADHq̃Ld̃

c
R + λUAUHq̃Lũ

c
R +BµH1H2 + h.c

)
+m2

H1
|H1|2 +m2

H2
|H2|2 +

1

2
M1B̃B̃ +

1

2
M2W̃W̃ +

1

2
M3g̃g̃ (3.112)

where m2
q̃, m

2
ũ, m

2
d̃
, m2

l̃
and m2

ẽ are general hermitian 3× 3 matrices in the family

space, and λEAE, λDAD and λUAU are general 3× 3 matrices also in the family

space. If these parameters are complex, then (3.112) contains more than 100

unknown real parameters [11]. However, most processes are sensitive to only

some (small) subset of these parameters at least at the classical level. Now the

construction of all parts of the MSSM Lagrangian is completed.

In the next chapter, one of the MSSM phenomenology, the Higgs phe-

nomenology, will be considered.



CHAPTER IV

ELECTROWEAK SYMMETRY BREAKING AND

HIGGS PHENOMENOLOGY IN THE MSSM

Having defined the Minimal Supersymmetric Standard Model (MSSM)

in the previous chapter, we now turn to the electroweak symmetry breaking and

Higgs particles in this model. Unlike the Standard Model in which only one

Higgs doublet is required to break the electroweak symmetry and give masses to

all quarks and charged leptons, two Higgs doublets are required in the case of

the MSSM. As will be seen, there are five physical Higgs states, which include

three neutral Higgs bosons and two charged Higgs bosons. Among these five

Higgs particles, the lightest one, h0, is electrically neutral and has its tree-level

mass less than that of the Z0 boson (mZ ≈ 91 GeV), which is within the energy

range that the Large Electron-Positron Collider (LEP) can detect (< 104 GeV).

Unfortunately, there has been no experimental evidence of such Higgs particle

from LEP. So if the tree-level calculation gives the correct value of h0 mass, then

the MSSM should have been ruled out by now. However, as we shall see, the h0

mass acquires large radiative corrections proportional to the fourth power of the

top quark mass, and this makes its upper bound well beyond the highest energy

that LEP can reach [13]. This gives us some hope that the MSSM could survive

as a phenomenologically viable theory.

In this chapter, we start with a review of the electroweak symmetry break-

ing in the MSSM in Section 4.1. We then go on to calculate all the Higgs masses

at tree level in Section 4.2. In Section 4.3, the radiative corrections to the lightest

Higgs mass mh0 , using the method of effective potential [13], will be obtained and

the upper bound of the lightest Higgs boson mass will be analyzed.



82

4.1 The Tree-Level Scalar Potential and the Con-

ditions for Electroweak Symmetry Breaking

To spontaneously break the SU (2)L × U (1)Y symmetry, the scalar potential

should have the absolute minimum away from the origin (in the space of the

Higgs scalars). Therefore, in this section, only the part of the MSSM potential

that depends on the Higgs fields will be focused. This part of the potential is

comprised of three types of contributions:

1. The supersymmetric “F-terms” of the form
∑
i

∣∣∣∂W∂φi

∣∣∣2 in (3.108). With the

superpotential in (3.110), they contribute the mass terms:

µ
(
|H1|2 + |H2|2

)
. (4.1)

2. The soft SUSY breaking part (3.112) of the Lagrangian gives the additional

mass and mixing terms:

m2
H1
|H1|2 +m2

H2
|H2|2 (4.2)

and

BµH1H2 + h.c. = Bµ
(
H+

1 H
−
2 −H0

1H
0
2

)
+ h.c. . (4.3)

3. The supersymmetric “D-terms” of the form −1
2

∑
a

∣∣∣∣∣∑i,j gφi∗T aijφi
∣∣∣∣∣
2

give rise

to the quadratic interactions which, after the electroweak symmetry break-

ing, result in the mass terms. The SU(2)L contributes the terms
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∑
α

[
H†
u (τα/2)Hu +H†

d (τα/2)Hd

] [
H†
u (τα/2)Hu +H†

d (τα/2)Hd

]
=
∑
α

(
H†
u (τα/2)Hu

)
·
(
H†
u (τα/2)Hu

)
+
∑
α

(
H†
d (τα/2)Hd

)
·
(
H†
d (τα/2)Hd

)
+ 2

∑
α

(
H†
u (τα/2)Hu

)
·
(
H†
d (τα/2)Hd

)
=

1

4

[(∣∣H+
1

∣∣2 +
∣∣H0

1

∣∣2)− (∣∣H0
2

∣∣2 +
∣∣H−

2

∣∣2)]2
+
(
H+

1

(
H0

2

)∗
+H0

1

(
H−

2

)∗) ((
H+

1

)∗
H0

2 +
(
H0

1

)∗
H−

2

)
, (4.4)

while the part corresponding to U(1)Y is

1

2
(g′/2)

2
[
H†

1H1 −H†
2H2

]2
=

g′2

8

[(∣∣H+
1

∣∣2 +
∣∣H0

1

∣∣2)
−
(∣∣H0

2

∣∣2 +
∣∣H−

2

∣∣2)]2 . (4.5)

Thus the complete potential for the Higgs fields in the MSSM is

VH =
(
|µ|2 +m2

H1

) (∣∣H+
1

∣∣2 +
∣∣H0

1

∣∣2)+
(
|µ|2 +m2

H2

) (∣∣H0
2

∣∣2 +
∣∣H−

2

∣∣2)
+
[
b
(
H+

1 H
−
2 −H0

1H
0
2

)
+ h.c.

]
+

(g2 + g′2)

8

(∣∣H+
1

∣∣2 +
∣∣H0

1

∣∣2 − ∣∣H0
2

∣∣2 − ∣∣H−
2

∣∣2)2

+
g2

2

∣∣∣H+
1

(
H0

2

)†
+H0

1

(
H−

2

)†∣∣∣2 , (4.6)

where b = Bµ. Note that the terms proportional to |µ|2 came from the supersym-

metric invariant part of the Lagrangian, and hence is necessarily positive, while

the factors of m2
H1

and m2
H2

originated from the soft-supersymmetry breaking

terms, and have the possibility of being negative via the renormalization group

running.

To find the minima of the above Higgs potential after the breaking of

SU (2)L × U (1)Y down to U (1)EM, one employs the SU (2)L degrees of freedom
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to choose the appropriate vacuum expectation values (VEVs) of H1 and H2. Thus

one may choose H+
1 = 0 at the minimum of the potential, which implies that

∂V

∂H+
1

∣∣∣∣
H+

1 =0

=

[
b+

g2

2

(
H0

2

)† (
H0

1

)†]
H−

2 = 0. (4.7)

This equation implies that either

H−
2 = 0 (4.8)

or [
b+

g2

2

(
H0

2

)† (
H0

1

)†]
= 0 (4.9)

must hold. The second choice implies that the b terms in (4.6) become

g2
∣∣H0

1

∣∣2 ∣∣H0
2

∣∣2 (4.10)

which is positive, and hence unfavorable to symmetry breaking. Thus the proper

solution for which the b terms can be negative is (4.8). Surprisingly, the fact that

the choice H+
1 = 0 forces H−

2 to become zero implies that the electromagnetism

is not spontaneously broken. Thus to find the minima of the potential away

from the origin, one can now completely ignore the charged components, and

just considers the potential for the neutral fields:

Vn =
(
|µ|2 +m2

H1

) ∣∣H0
1

∣∣2 +
(
|µ|2 +m2

H2

) ∣∣H0
2

∣∣2
−
(
bH0

1H
0
2 + h.c.

)
+

(
g2 + g′2

8

)(∣∣H0
1

∣∣2 − ∣∣H0
2

∣∣2)2

. (4.11)

Note that the coefficient of the quartic terms is not a free parameter, but is de-

termined from the known electroweak couplings
(
g2+g′2

8
= 0.065

)
[12]. This is in

contrast to the case of the Standard model in which the quartic coupling constant

λ/4 is a free parameter. With a relatively small quartic coupling constant in the

MSSM, one suspects the possibility of having a relatively light Higgs particle in

the MSSM, at least at the tree level.
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To proceed to find the potential minima, consider the b terms in (4.11)

which depend on the phases of the fields. One can set b to be real and positive

by absorbing its phase into the product H0
1H

0
2 . As the terms other than the b

terms are non-negative, then the minimization of V at the points away from the

origin is possible if the product H0
1H

0
2 is real and positive, this implies that the

VEVs of H0
1 and H0

2 have the opposite phases. Because these two Higgs fields

have opposite hypercharges, one can use a U(1)Y gauge transformation to set

both their phases to zero. So all VEVs and couplings can be chosen to be real,

which means that the breaking of CP symmetry is not caused by the 2-Higgs

potential in the MSSM.

To simplify the calculation, H0
1 and H0

2 , which are now regarded as real,

are rewritten as

x =
∣∣H0

1

∣∣ and y =
∣∣H0

2

∣∣ . (4.12)

Therefore the potential for neutral fields can be rewritten as

Vn =
(
|µ|2 +m2

H1

)
x2 +

(
|µ|2 +m2

H2

)
y2

−2bxy +

(
g2 + g′2

8

)(
x2 − y2

)2
. (4.13)

To identify the minimum conditions of Vn occurring at non-zero values of x and

y, one first considers a special direction x = y in which the potential becomes

Vn =
[(
|µ|2 +m2

H1

)
+
(
|µ|2 +m2

H2

)
− 2b

]
x2. (4.14)

One sees that Vn is bounded from below (i.e., the theory does not have any

instability) only if

2 |µ|2 +m2
H1

+m2
H2
> 2b > 0. (4.15)

With the above condition, the origin x = y = 0 is the minimum point of the

potential along the direction x = y. Since it is required that the minimum of the
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potential must be away from the origin for the symmetry breaking to take place,

then the origin must be a saddle point. For the origin to be a saddle point, the

following condition must be satisfied:[(
∂2Vn
∂x2

)(
∂2Vn
∂y2

)
−
(
∂2Vn
∂x∂y

)2
]∣∣∣∣∣
x=y=0

< 0 (4.16)

or

(
|µ|2 +m2

H1

) (
|µ|2 +m2

H2

)
< b2. (4.17)

One of the possible situations that satisfies (4.17) is that either
(
|µ|2 +m2

H1

)
or
(
|µ|2 +m2

H2

)
is negative. In the supergravity inspired model, the soft-SUSY

breaking parameters m2
H1

and m2
H2

are equal and positive at the grand unification

scale of about 1016 GeV. Their values at the electroweak symmetry breaking scale,

however, decrease via the renormalization group running, and one can show that

the parameter m2
H1

decreases much faster than m2
H2

and becomes so negative

that
(
|µ|2 +m2

H1

)
< 0 at the electroweak symmetry breaking scale (while m2

H2
is

still positive) [12]; this makes the electroweak symmetry breaking possible. Note

that, with the conditions (4.15) and (4.17), the situation in which
(
|µ|2 +m2

H1

)
=(

|µ|2 +m2
H2

)
is impossible.

Having established the necessary conditions (4.15) and (4.17) for |H0
1 |

and |H0
2 | to get non-zero VEVs, says ν1 and ν2 respectively, one can determine

the VEVs by using the minimization conditions:

∂Vn

∂x

∣∣∣∣
x=ν1,y=ν2

=
∂Vn

∂y

∣∣∣∣
x=ν1,y=ν2

= 0 (4.18)

which yield

(
|µ|2 +m2

H1

)
ν1 = bν2 −

1

4

(
g2 + g′2

) (
ν2

2 − ν2
1

)
ν1 (4.19)

and

(
|µ|2 +m2

H2

)
ν2 = bν1 +

1

4

(
g2 + g′2

) (
ν2

2 − ν2
1

)
ν2. (4.20)
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Even though ν1 and ν2 are individually undetermined, a certain combination of

ν1 and ν2 is fixed by the mass of the W bosons. To show this, consider the Higgs

kinetic terms

(DµH1)
† (DµH1) + (DµH2)

† (DµH2) (4.21)

where Dµ = Dµ = ∂µ + ig
(
τa

2

)
W a
µ + i

(
g′

2

)
yBµ. Analogous to the determination

of the masses of the vector bosons in the SM, one inserts the VEVs of H1 and H2

into the non-derivative terms above. Defining

Zµ =
(−g′Bµ + gW µ

3 )

(g2 + g′2)1/2
(4.22)

one finds that

m2
Z =

1

2

(
g2 + g′2

) (
ν2

1 + ν2
2

)
(4.23)

and also

m2
W =

1

2
g2
(
ν2

1 + ν2
2

)
. (4.24)

With the knowledge of m2
W and g2, one can determine

√
ν2

1 + ν2
2 =

√
2m2

W

g2
= 174 GeV. (4.25)

Thus the minimization conditions (4.19) and (4.20) can be rewritten as

(
|µ|2 +m2

H1

)
= b cot (β) +

m2
Z

2
cos (2β) (4.26)

and

(
|µ|2 +m2

H2

)
= b tan (β)− m2

Z

2
cos (2β) , (4.27)

where tan (β) = ν1/ν2. The angle β lies between 0 and π/2 since both ν1 and ν2

are positive real numbers. Moreover, one can eliminate the parameter |µ| and b

in terms of tan (β), but the phase of µ is still undetermined.
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4.2 The Tree-Level Masses of the Scalar Higgs

Bosons in the MSSM

In the SM, there are four real scalar degrees of freedom in the scalar doublet.

After the electroweak symmetry breaking, three of them become the longitudinal

modes of the massive vector bosonsW± and Z0, while the other becomes a neutral

Higgs boson, the mass of which is determined from the terms quadratic in the

fluctuations about the potential minimum.

In the MSSM with two Higgs doublets, there are 8 real scalar degrees

of freedom. Three of them are eaten by the massive vector bosons W± and Z0

as in the SM. The masses of the others are again determined by expanding the

potential about the minimum, up to the second order in the field fluctuations.

Though straightforward, the work is complicated by the fact that the quadratic

terms are not diagonal in the fields. So one needs to diagonalize these terms in

order to determine the physical Higgs masses. The general procedure is that, for

any potential V of scalar fields φi, one defines the mass matrix

M2
ij =

1

2

∂2V

∂φi∂φj
(4.28)

evaluated at the minimum of V . Then the mass terms take the form −ξiM2
ijξj/2,

where ξi ≡ φi − vi is the fluctuation of φi about its VEV vi. Note that the mass

matrix M2
ij is symmetric. By diagonalizing the mass matrix, one obtains the

physical masses and physical fields as its eigenvalues and eigenvectors respectively.

Even though the procedure just described might be complicated in prac-

tice, the situation is not that terrible in the case of the MSSM, as the mass matrix

is block diagonal in this case. Indeed, the MSSM Higgs mass matrix is a direct

sum of four 2× 2 blocks. The first independent block in the mass matrix corre-

sponds to the pair of fields (ImH0
1 , ImH0

2 ). The part of the scalar potential in
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(4.6) involving this pair is

VA =
(
|µ|2 +m2

H1

) (
ImH0

1

)2
+
(
|µ|2 +m2

H2

) (
ImH0

2

)2
+ 2b

(
ImH0

1

) (
ImH0

2

)
+

(g2 + g′2)

8

[(
ReH0

1

)2
+
(
ImH0

1

)2 − (ReH0
2

)2 − (ImH0
2

)2]2
. (4.29)

Using the VEVs

〈H1〉 =

(
H+

1 = 0
H0

1 = ν1

)
and 〈H2〉 =

(
H0

2 = ν2

H−
2 = 0

)
, (4.30)

one finds the matrix elements M2
ij of this block as follows:

M2
11 = |µ|2 +m2

H1
+

(g2 + g′2)

4

(
ν2

1 − ν2
2

)
= b cot(β), (4.31)

and

M2
12 = b, M2

22 = b tan(β). (4.32)

It can be easily checked that the eigenstates corresponding to the eigenvalues of

this 2× 2 block of the mass matrix are

√
2
[(

ImH0
1

)
sin β +

(
ImH0

2

)
cos β

]
(4.33)

and

√
2
[(

ImH0
1

)
cos β +

(
ImH0

2

)
sin β

]
. (4.34)

The eigenstate in (4.33) is a massless eigenstate and eaten by the longitudinal

mode of the Z0. On the contrary, the eigenstate in (4.34) corresponds to a scalar

particle A0 of mass

mA0 =

√
2b

sin 2β
. (4.35)

The next 2 × 2 block of the mass matrix is due to the charged pair(
H+

1 ,
(
H−

2

)†)
. As these fields are complex, their mass matrix is defined by

M2
charged =

(
∂2V/∂

(
H+

1

)†
∂H+

1 ∂2V/∂
(
H+

1

)†
∂
(
H−

2

)†
∂2V/∂

(
H−

2

)
∂H+

1 ∂2V/∂
(
H−

2

)†
∂H−

2

)
, (4.36)
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where V is the potential in (4.6). Performing the differentiations and evaluating

the results at the VEVs (4.30), one obtains

M2
charged =

(
b cot β + g2

2
ν2

2 b+ g2

2
ν1ν2

b+ g2

2
ν1ν2 b tan β + g2

2
ν2

1

)
. (4.37)

The matrixM2
charged has eigenvalues 0 andm2

W+m2
A0 . The corresponding massless

state

G+ = H+
1 sin β −

(
H−

2

)†
cos β (4.38)

is eaten to become the longitudinal mode of the W+ boson, while the one of mass

m2
W +m2

A0

H+ = H+
1 cos β −

(
H−

2

)†
sin β (4.39)

becomes a physical positively charged Higgs particle.

The hermitian conjugate of the above pair
(
H−

2 ,
(
H+

1

)†)
gives another

2 × 2 block of the mass matrix with the same eigenvalues. The corresponding

massless state G− = (G+)
†
eaten by the W−, while the massive one H− = (H+)

†

of mass
(
m2
W +m2

A0

)1/2
becomes a physical negatively charged Higgs particle.

The last block of the mass matrix comes from the last pair (ReH0
1 − ν1,

ReH0
2 − ν2), analogous to the case of (ImH0

1 , ImH0
2 ). The corresponding mass

matrix is

M2
h,H =

(
b cot β +m2

Z sin2 β −bβ − 1
2
m2
Z sin 2β

−bβ − 1
2
m2
Z sin 2β b tan β +m2

Z cos2 β

)
(4.40)

which has two eigenstates: h0 corresponding to the eigenvalue

m2
h0 =

1

2

{
m2
A0 +m2

Z −
√(

m2
A0 +m2

Z

)2 − 4m2
A0m2

Z cos2 2β

}
(4.41)

and H0 corresponding to the eigenvalue

m2
H0 =

1

2

{
m2
A0 +m2

Z +

√(
m2
A0 +m2

Z

)2 − 4m2
A0m2

Z cos2 2β

}
(4.42)
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are both physical massive neutral particles.

Thus there are totally five Higgs particles in the MSSM. By examining

the masses above, one observes that even though the masses mA0 , mH0 and mH±

are unconstrained (since they grow as b/sin β which are arbitrary in principle),

the mass mh0 has an upper bound.

To find the upper bound of mh0 in a simple way, one rewrites m2
A0 and

m2
Z as

m2
A0 = x and m2

Z = a.

Thus m2
A0 becomes

m2
h0 =

1

2

{
x+ a−

√
(x+ a)2 − 4ax cos2 2β

}
. (4.43)

It is easy to see that m2
h0 is a strictly-increasing function of x for fixed a. For

small x (x� a), one finds that

m2
h0 =

1

2

x+ a− a

[
(x+ a)2

a2
− 4x

a
cos2 2β

]1/2


=
1

2

{
x+ a− a

[
1 +

2x

a
+
x2

a2
− 4x

a
cos2 2β

]1/2
}

=
1

2

[
x+ a− a

(
1 +

x

a
+

x2

2a2
− 2x

a
cos2 2β

)]
≈ x cos2 2β, (4.44)

while for large x (x� a),

m2
h0 =

1

2

x+ a− x

[
(x+ a)2

x2
− 4a

x
cos2 2β

]1/2


=
1

2

[
x+ a− x

(
1 +

a

x
+

a2

2x2
− 2a

x
cos2 2β

)]
≈ a cos2 2β. (4.45)

Thus m2
h0 has its upper bound of about a cos2 2β. From (4.42) and (4.45), one

can summarize that

mh0 6 mZ |cos 2β| 6 mZ < m0
H . (4.46)
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This gives the upper bound on the mass of the lightest Higgs boson in the MSSM,

h0, at the tree-level. The MSSM seems to predict that one of the neutral Higgs

scalars must be lighter than the Z boson. However, the above tree-level masses of

the Higgses receive significant one loop corrections, which will be discussed in the

next section. Further, according to (4.46), the mass of h0 vanishes for β = π/4. It

is important to realize that, at tree-level, all Higgs masses and couplings depend

on only two parameters, mA0 and tan β.

Before going on to the next section, we summarize the spectrum of the

MSSM Higgses. In terms of the original gauge-eigenstate fields, the mass eigen-

states, including the ones eaten by the vector bosons, are given by(
G0

A0

)
=

√
2

(
sin β − cos β
cos β sin β

)(
ImH0

1

ImH0
2

)
, (4.47)

(
G+

A+

)
=

√
2

(
sin β − cos β
cos β sin β

)(
H+

1

H−∗
2

)
, (4.48)

with G− = G+∗ and G− = G+∗, and(
h0

H0

)
=
√

2

(
cosα − sinα
sinα cosα

)(
ReH0

1 − ν1

ReH0
2 − ν2

)
(4.49)

which defines a mixing angle α. The tree-level masses of these fields are

m2
A0 = 2b/sin 2β (4.50)

m2
H± = m2

A0 +m2
W (4.51)

m2
h0 =

1

2

{
m2
A0 +m2

Z −
√(

m2
A0 +m2

Z

)2 − 4m2
A0m2

Z cos2 2β

}
(4.52)

m2
H0 =

1

2

{
m2
A0 +m2

Z +

√(
m2
A0 +m2

Z

)2 − 4m2
A0m2

Z cos2 2β

}
. (4.53)

In terms of these masses, the mixing angle α in (4.49) is determined at the tree-

level by

sin 2α = −
m2
A0 +m2

Z

m2
H0 +m2

h0

sin 2β, cos 2α = −
m2
A0 −m2

Z

m2
H0 −m2

h0

cos 2β. (4.54)
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Notice that, once the value of ν2
1 +ν2

2 has been fixed by the mass of the W bosons,

the supersymmetric Higgs boson masses (actually for the whole Higgs sector) are

then described by two additional parameters, the usual choice being tan β and

mA0 .

4.3 Radiative Corrections to the Mass of the

Lightest Supersymmetric Higgs Boson

The search for Higgs bosons which are related to the origin of masses is one of the

extremely important research projects in experimental particle physics. Accord-

ing to the last section, the neutral Higgs boson, h0, is the lightest supersymmetric

Higgs boson, and has its mass at the tree-level less than that of the Z. The upper

bound of mh0 , which is reached when the mass of A0 is very much larger than MZ

(i.e., when |cos 2β| ≈ 1), implies the large value of tan β (tan β ≈ tan π
2
). So if

the tree-level calculation really gives the correct value of mh0 , the MSSM should

have been ruled out by now as there has been no signal of Higgs bosons from

LEP, the maximum energy of which exceeds MZ . So one might ask if there is any

possibility that the upper bound of mh0 could be pushed up so that it exceeds

the maximum energy available at LEP. If the answer to this question turns out

to be yes, then the fact that the Higgs boson has not been found at LEP cannot

be used to rule out the MSSM.

Indeed, if one includes the radiative corrections to the Higgs masses, the

upper bound on mh0 can be substantially increased. The calculations of such

corrections are the main purpose of this section. As will be justified later on, in a

model with unbroken supersymmetry, the corrections to the Higgs masses due to

fermions and their superpartners cancel. But since the supersymmetry has been

broken by splitting the masses of the fermions and their scalar superpartners,

the corrections to the neutral Higgs masses do not vanish at one-loop level. The

radiative corrections can be very large if one considers the loop diagrams due to
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heavy particles such as top quarks and squarks. Thus the lightest Higgs boson

mass has a chance of being heavier than the mass of the Z boson.

In this section, we give a review of the radiative corrections to mh0 and

show that the radiative corrections can shift the maximal value of mh0 from

mZ to about m ' 130 GeV. As the nicest method for calculating the radiative

corrections to the Higgs masses is the method of effective potential, we start with

a review of the effective potential and then go on to give some examples of the

effective potential calculations at the one-loop level. The calculational method is

finally applied to the calculation of the radiative corrections to the Higgs masses,

thereby showing the effects of top quarks and squarks on the Higgs masses via

the loop diagrams.

4.3.1 The Effective Potential

To discuss the effective potential formalism in a simple way, we consider the case

of a scalar field; the generalization to the case of many scalar fields is straight-

forward. The dynamics of a scalar field φ coupled to an external source J(x) is

described by the Lagrangian

L = L0 + J (x)φ (x) . (4.55)

In quantum field theory, the generating functional corresponding to the above

Lagrangian is given by

W [J ] =

∫
[dφ] exp

{
i

∫
d4x [L(φ(x)) + J(x)φ(x)]

}
(4.56)

which represents the vacuum-to-vacuum transition amplitude in the presence of

the external source J (x):

W [J ] = 〈0|0〉J . (4.57)

If the logarithm of W [J ] is expanded as a functional Taylor series in J (x):

lnW [J ] =
∑
n

1

n!

∫
d4x1 · · · d4xnG

(n)(x1, . . . , xn)J(x1) · · · J(xn), (4.58)
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then it can be shown that the “Taylor coefficients” G(n), known as the connected

Green’s functions, can be calculated by summing over all connected Feynman

diagrams with n external lines.

Define a “classical field,” φc(x), as the vacuum expectation value (VEV)

of the field φ in the presence of the external source J (x),

φc(x) =

[
〈0|φ(x)|0〉
〈0|0〉

]
J

= G(1) (x) =
δ lnW

δJ(x)
. (4.59)

With the above definition of W [J ], one can perform a Legendre transformation

to obtain a functional Γ of φc as

Γ[φc] = lnW [J ]−
∫
d4xJ(x)φc(x) (4.60)

which clearly satisfies δΓ[φc]/δJ = 0. From this definition, one obtains

δΓ[φc]

δφc(x)
= −J(x) (4.61)

which reduces to δΓ[φc]/δφc = 0 in the absence of the source J . The importance

of this equation is as follows: Recall the definition of the classical field φc(x) as the

VEV of φ(x) in the presence of the source J . If J is set to zero, then the classical

field is indeed the VEV of φ(x) with all quantum corrections included, hence

the true ground state of the theory.1 However, despite this formal definition,

one still does not know what exactly the ground state φc(x) of a given theory

really is; it may or may not be zero, or even it is non-zero it still has a chance of

being either a constant or some specific function of spacetime. What the equation

δΓ[φc]/δφc|J=0 = 0 tells us is that, suppose one could find a way to calculate Γ[φc],

then the ground state of the theory can be obtained by solving this equation.

A beautiful way to calculate Γ[φc] is as follows. Just like the case of

lnW [J ], one expands Γ[φc] in powers of φc:

Γ[φc] =
∑
n

1

n!

∫
d4x1 · · · d4xnΓ

(n)(x1, . . . , xn)φc(x1) · · ·φc(xn). (4.62)

1This is in contrast to the conventional way of finding a tree-level VEV by minimizing the
classical potential in the Lagrangian, where it was inherently assumed that the VEV of a scalar
field is a constant and not a function of spacetime.
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It can be shown that the coefficient Γ(n)(x1 . . . xn) can be calculated by summing

over all the one-particle irreducible (or 1PI) Feynman diagrams with n external

lines.2 Thus one is able to calculate Γ[φc] by calculating the 1PI diagrams using

the standard perturbation theory. In general, Γ[φc] takes the form

Γ[φc] =

∫
d4x

[
−V (φc) +

1

2
(∂µφc)

2 Z(φc) + . . .

]
(4.63)

where (. . .) indicates terms with higher numbers of derivatives. Γ[φc] is called

an effective action while V (φc) is called an effective potential. In most cases

of interest in which the ground state φc is spacetime independent (hence its

spacetime derivatives vanish), the derivative terms disappear and so one is left

with only the effective potential term on the right-hand side of (4.63).

The calculation of V (φc) goes as the following. One considers Γ(n) in the

momentum space

Γ(n)(x1, . . . , xn) =

∫
d4k1

(2π)4
· · · d

4kn
(2π)4

(2π)4δ4(k1 + · · ·+ kn)

× exp[i(k1 · x1 + · · ·+ kn · xn)]Γ(n)(k1, . . . , kn) (4.64)

where the delta function inside the integral came from the conservation of total

momentum. To calculate each term in (4.63), one expands Γ(n)(k1, . . . , kn) as a

power series in the momenta ki about ki = 0 and rewrites the delta function as a

Fourier integral:

Γ[φc] =
∑
n

1

n!

∫
d4x1 · · · d4xn

∫
d4k1

(2π)4 · · ·
d4kn

(2π)4

×
∫
d4x exp [−i (k1 + · · ·+ kn) · x] exp [i (k1 · x1 + · · ·+ kn · xn)]

×Γ(n) (k1, . . . , kn)φc(x1) · · ·φc(xn)
2A 1PI diagram is the Feynman diagram which cannot be divided into two disconnected

diagrams by cutting just one internal line.
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=
∑
n

1

n!

∫
d4x1 · · · d4xn

∫
d4k1

(2π)4
· · · d

4kn
(2π)4

×
∫
d4x exp [−i(k1 + · · ·+ kn) · x] exp [i(k1 · x1 + · · ·+ kn · xn)]

×
[
Γ(n)(0, . . . , 0)φc(x1) · · ·φc(xn) + . . .

]

=
∑
n

1

n!

∫
d4x1 · · · d4xn

∫
d4k1

(2π)4
· · · d

4kn
(2π)4

×
∫
d4x× exp [−i (k1 · (x+ x1) + · · ·+ kn · (x+ xn))]

×
[
Γ(n)(0, . . . , 0)φc(x1) · · ·φc(xn) + . . .

]

=

∫
d4x

∑
n

1

n!

{
Γ(n)(0, . . . , 0)[φc(x)]

n . . .
}
. (4.65)

Comparing (4.63) and (4.65), one sees that the effective potential can be obtained

by calculating the 1PI diagrams with zero external momenta:

V (φc) = −
∑
n

1

n!
Γ(n)(0, . . . , 0)[φc(x)]

n. (4.66)

In the calculations of the 1PI diagrams, infinities generally arise and one has

to add counter terms to cancel these infinities, thereby introducing the “mass

scale” (i.e., the renormalization point) into the theory. In doing this, the typical

procedure is to impose the renormalization conditions on the derivatives of V .

For example in λφ4 theory, the mass squared can be defined as the value of the

inverse propagator at zero momentum

Γ(2)(0) = −µ2 (4.67)

which in turn results in the condition on the second derivative of V ,

µ2 =
d2V

dφ2
c

∣∣∣∣
φc=0

. (4.68)

Similarly, the definition of the coupling constant as the four-point function at

zero external momenta,

Γ(4)(0) = −λ, (4.69)
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results in the condition

λ =
d4V

dφ4
c

∣∣∣∣
φc=0

. (4.70)

Note that the definitions of mass and coupling constant in the above example

originated from the assumption that the ground state of the theory is at φc = 0,

or in other words, the symmetry of the theory is not spontaneously broken.

When the spontaneous symmetry breaking occurs, the VEV of the scalar

field no longer vanishes and so (4.61) (for J = 0)

δΓ[φc]

δφc
= 0 (4.71)

admits a non-zero solution φc 6= 0 corresponding to the ground state of the theory.

If, moreover, the VEV is translational invariant, then (4.71) reduces to

δV (φc)

δφc
= 0 with the solution φc 6= 0, (4.72)

which is analogous to the typical condition for spontaneous symmetry breaking,

except that the potential being minimized is now an effective potential which

includes the radiative corrections to the classical potential. An immediate conse-

quence of this is that there is a possibility that radiative corrections can induce

spontaneous symmetry breaking even though the VEVs of the scalar fields vanish

at the tree level. Such a situation is indeed possible and is called the Coleman-

Weinberg mechanism [15].

In the case of the spontaneous symmetry breaking, the definition of the

mass squared is almost the same as (4.68) except that the derivative of the ef-

fective potential is evaluated at the solution φc 6= 0 of (4.72). To see this, it is

appropriate to reformulate the whole thing using the so-called “background field”

technique [16] as follows. Expressing φ(x) as a sum of a classical background field

υ(x) and the field fluctuation η(x), i.e., φ(x) = η(x) + υ(x), and treating η(x) as
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a quantum field, one finds that the corresponding generating functional W̃ [J, υ]

is related to the one in (4.56) by

W̃ [J, υ] = W [J ] exp

{
−i
∫
d4x J(x)υ(x)

}
. (4.73)

Let ηc be the classical field of η, which is related to φc defined in (4.59) by

φc = ηc + υ, then it is easy to verify that the effective potential Γ̃ [ηc, υ] =

ln W̃ [J, υ]−
∫
d4xJ(x)ηc(x) is equal to the one defined in (4.60), i.e.,

Γ̃ [ηc, υ] = Γ [φc] . (4.74)

By setting ηc = 0 (and hence υ = φc), one obtains an important relation:

Γ̃ [0, φc] = Γ [φc] . (4.75)

To see how this relation may be used in practical calculations, one expands the

effective action Γ̃ [ηc, υ] as

Γ̃ [ηc, υ] =
∑
n

1

n!

∫
d4x1 · · · d4xnΓ̃

(n)(x1, . . . , xn; υ)ηc(x1) · · · ηc(xn) (4.76)

where Γ̃(n)(x1, . . . , xn; υ) is the sum of all 1PI diagrams with n external lines

(of “η particles”) whose vertices may depend on the background field υ and

its derivatives. With this expansion, the relation (4.75) implies that Γ[φc] can be

calculated by summing over all “vacuum-to-vacuum” diagrams (i.e., the diagrams

with no external lines) in the theory with the background field υ = φc:

Γ[φc] = Γ̃(0)(φc). (4.77)

This result will be used in the next subsection.

To obtain the mass spectrum of the theory, one chooses the background

field υ such that Γ̃(1)(x; υ) = 0. With this choice of the background field, the

effective potential has its extremum point at ηc = 0, which in turn implies that

the ground state is at η(x) = 0. Thus η is the quantum field which generates the



100

particle spectrum of the theory, and its mass µ is obtained from the coefficient

Γ̃(2)(k1, k2) in momentum space as µ2 = −Γ̃(2)(0, 0) (see (4.67)).3 To determine

what this choice of the background field really is, consider

δΓ̃ [ηc, υ]

δηc(x)
=

δΓ[φc]

δφc(x)

=
δΓ̃ [ηc, υ]

δυ(x)
(4.78)

where we have used (4.74) and the fact that, since φc(x) = ηc(x) + υ(x), the

functional derivative with respect to φc is equivalent to the one with respect to

either ηc (with υ fixed) or υ (with ηc fixed). Then the extremal condition

δΓ̃ [ηc, υ]

δηc(x)

∣∣∣∣∣
ηc=0

= 0 (4.79)

and the relation (4.75) imply that such a choice of the background field is nothing

but the true ground state of the original theory with the field φ(x) (i.e., the

function φ̃c(x) that extremizes Γ[φc]).

To obtain the mass in terms of the effective potential, it is convenient to

assume that φ̃c that extremizes the effective action is translational invariant, that

is, it is a constant. Then, with the specific choice of υ = φ̃c, one has

Γ̃[ηc, φ̃c] =

∫
d4x

[
−Ṽ (ηc; φ̃c) +

1

2
(∂µηc)

2Z̃(ηc; φ̃c) + . . .

]
(4.80)

where

Ṽ
(
ηc; φ̃c

)
= −

∑
n6=1

1

n!
Γ̃(n)(0, . . . , 0; φ̃c)[ηc(x)]

n. (4.81)

Expressing ηc = φc − φ̃c in (4.80) and (4.81), and using (4.74), one gets the

effective action of the original action as

Γ[φc] =

∫
d4x

[
−V (φc) +

1

2
(∂µφc)

2Z̃(φc − φ̃c; φ̃c) + . . .

]
(4.82)

3This comes from the fact that Γ(2)(k,−k) is the inverse of the propagator of the particle.
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with

V (φc) = −
∑
n6=1

1

n!
Γ̃(n)(0, . . . , 0; φ̃c)[φc(x)− φ̃c]

n

≡ −
∑
n6=1

1

n!
Γ(n)(0, . . . , 0)[φc(x)]

n (4.83)

where the second line is the usual form of the effective potential. The equal-

ity (4.74) implies that V (φc) = Ṽ (ηc; φ̃c), so that the renormalization condition

d2Ṽ /dη2
c |ηc=0 = µ2 (used to determine the mass µ) becomes d2V/dφ2

c |φc=φ̃c
= µ2.

This means that the mass of the particle is obtained by evaluating the second

derivative of the effective potential at its extremum point φ̃c.

Although, in principle, the effective potential can be calculated using

perturbation theory but the calculation involves a double sum: a sum over all

1PI Green’s functions, and for each 1PI Green’s function there is an expansion

in powers of the coupling constant. A nice way to organize the double sum is

known as the loop expansion. It is an expansion with respect to the number of

independent loops of the connected Feynman diagrams. Thus the lowest order

graphs are all diagrams with no closed loops (tree graphs). The next order consists

of the one-loop diagrams which have one integration over the internal momentum.

The usual classical potential is typically identified with the tree-level terms of

V (φc) in the loop expansion. In fact the loop expansion is indeed an expansion

in powers of the Planck’s constant ~. This can be seen as follows. For a given

graph, one can define the quantities:

I = the number of internal lines;

L = the number of independent loops;

V = the number of vertices in a given Feynman diagram.

Then the number of independent loops L is equal to the number of independent

internal momenta after the momentum conservation at each vertex is taken into



102

account. Since one combination of these momentum conservations corresponds to

the overall conservation of external momenta, the number of independent loops

in a given Feynman diagram is given by

L = I − (V − 1). (4.84)

To understand how the number of loops relates to the power of ~, one restores

the Planck’s constant to the Lagrangian via the relation:

L (φ, ∂µφ, ~) ≡ ~−1L (φ, ∂µφ) (4.85)

where L (φ, ∂µφ) is the Lagrangian in the unit ~ = 1. Thus every vertex carries

a factor of ~−1. Since the propagator is the inverse of the differential operator

occurring in the quadratic terms in L, the propagator carries a factor of ~. Then

it is easy to see that

P = I − V = L− 1, (4.86)

where P is the power of ~ associated with any graph.

Because ~ is a parameter that multiplies the total Lagrangian, it is unaf-

fected by shifts of the fields and by the redefinition or division of L into free and

interacting parts associated with such shifts. In short, it allows us to compute

V (φc) before the shifts. This is the advantage of the loop expansion since one

can investigate the theory even the radiative corrections qualitatively change the

structure of the theory (e.g., by turning the minima of a classical potential into

the maxima of the resulting effective potential). In other formalisms, it is much

more difficult to detect the occurrence of such phenomena.

4.3.2 Effective Potential Calculations

To illustrate the calculations of the effective potential, we start with the sim-

plest case, the λφ4 theory, which contains only scalar fields. The result is then
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generalized to include vertices involving fermions and gauge bosons. In the calcu-

lations below, we employ the background field technique described in the previous

subsection, so that the effective action is obtained by summing all the vacuum-

to-vacuum diagrams with the classical field φc as the background field.

The Effective Potential of the λφ4 Theory

The Lagrangian of the λφ4 theory takes the form

L =
1

2
(∂µφ)2 − U(φ)

−1

2
Bφ2 − 1

4!
Cφ4, (4.87)

where the B and C terms on the second line have been included to take into

account of the wave function, mass and coupling constant renormalization, and

the classical potential takes the form

U(φ) =
1

2
µ2φ2 +

λ

4!
φ4. (4.88)

To make the result valid for any value of µ, the potential U in (4.87) is treated

as a perturbation. After the splitting φ = φc + η, there are two vertices with two

lines: µ2 and 1
2
λφ2

c as shown in Fig. 4.1. Their combination is just the second

derivative U ′′ evaluated at φ = φc. Thus one can define

m2
s (φc) = U ′′ = µ2 +

1

2
λφ2

c . (4.89)

To calculate the effective potential, the tree-level terms come from the classical

potential itself, with φ being replaced by φc:

V0 =
1

2
µ2φ2

c +
λ

4!
φ4
c . (4.90)

The one-loop corrections to the effective potential are obtained by summing up

the diagrams in Fig. 4.2, with massless propagators and m2
s (φc) vertices. At
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Figure 4.1: The combination of vertices µ2 and λφ2
c/2.

Figure 4.2: One-loop diagrams which contribute to the effective potential.

one-loop, the effective potential is thus

V (φc) =
1

2
µ2φ2

c +
λ

4!
φ4
c −

1

2
Bφ2

c −
1

4
Cφ4

c

+i

∫
d4k

(2π)4

∞∑
n=1

1

2n

[
m2
s(φc)

k2 + iε

]n
=

1

2
µ2φ2

c +
λ

4!
φ4
c −

1

2
Bφ2

c −
1

4
Cφ4

c

+
i

2

∫
d4k

(2π)4
ln

[
1− m2

s(φc)

k2 + iε

]
(4.91)

where the counterterms with parameters B and C have been included so as to

make to renormalization conditions satisfied.

The integral in the last line is divergent. If the cutoff at some large

momentum k2 = Λ2 is used to regularize the integral, one obtains

V (φc) =
1

2
µ2φ2

c +
λ

4!
φ4
c −

1

2
Bφ2

c −
1

4
Cφ4

c +
Λ2

32π2
m2
s(φc)

+
1

64π2
m4
s(φc)

[
ln
m2
s(φc)

Λ2
− 1

2

]
. (4.92)

By imposing the renormalization conditions on the renormalized mass and cou-

pling constant, the parameters in the renormalization counterterms (B and C)

can be determined. A convenient choice for µ2 6= 0 case is the conditions (4.68)

and (4.70):

d2V

dφ2
c

∣∣∣∣
φc=0

= µ2 (4.93)

d4V

dφ4
c

∣∣∣∣
φc=0

= λ (4.94)
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which lead to the effective potential

V (φc) =
1

2
µ2φ2

c +
λ

4!
φ4
c +

m2
s (φc)

64π2

[
ln
m2
s (φc)

µ
+ . . .

]
. (4.95)

With this result, the last term does not seriously affect our classical intuition.

For the case µ2 = 0, things are different. To obtain the effective potential

for this case, one cannot just take the limit µ2 → 0 in (4.95), because of the

infrared singularity. To get around this difficulty, one comes back to start with

(4.92) and chooses a new renormalization condition for the coupling constant at

the mass scale M 6= 0:

λ =
d4V

dφ4
c

∣∣∣∣
φc=M

. (4.96)

The appearance of M should not be a surprise: In the absence of µ, the classical

Lagrangian no longer contains an intrinsic mass scale. However, the renormaliza-

tion process involves a large momentum cutoff, thereby introducing a mass scale

into the theory. This destroys the scale invariance of the theory, and this is how

the mass scale M comes to play the role in the theory.

With the above condition and restoring m2
s (φc) = µ2 + 1

2
λφ2

c , the effective

potential becomes

V (φc) =
1

2
µ2φ2

c +
λ

4!
φ4
c

+
1

64π2

{(
µ2 +

λ

2
φ2
c

)2

ln

[
µ2 + 1

2
λφ2

c

µ2

]
−1

2
λµ2φ2

c −
25

24
λ2φ4

c +
1

4
λ2φ4

c ln

(
2µ2

λM2

)}
. (4.97)

Taking the limit µ2 → 0, one obtains

V (φc) =
λφ4

c

4!
+

λ2φ4
c

256π2

[
ln

φ2
c

M2
− 25

6

]
. (4.98)

It can be seen that the one-loop radiative corrections turn the potential minimum

at the origin φ = 0 into a maximum, and generate a new minimum at

λ ln

(
φ2
c

M2

)
= −32

3
π2 +O(λ). (4.99)
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This results in a spontaneous symmetry breaking induced by radiative correc-

tions mentioned earlier. However, this new minimum lies outside of validity of

perturbation theory since the higher order calculations will give the higher power

of λ ln
(
φ2

c

M2

)
which is bigger than one.

The General One-Loop Calculations of the Effective Potential

Having considered the special case of the φ4 theory which contains only

the scalar vertices, we now turn to the more general cases which involve scalar,

fermion, and gauge boson loops. Again, we confine our calculations at one-loop

level. The notations are as follows. The real scalar fields are denoted by φa, the

fermionic fields are denoted by ψa, and the vector bosons are denoted by Aaµ. The

index a is typically a group index; it runs over the appropriate range for each

representation of group.

The one-loop approximation to the effective potential can be written as

V (Φc) = V0 + Vs + Vf + Vg + Vc, (4.100)

where V0 is the tree-level approximation; Vs, Vf and Vg are respectively the con-

tributions from scalar loops, fermion loops and gauge loops; and Vc is the con-

tribution from the renormalization counterterms. Note that V0 is just a classical

potential.

To compute Vs, one needs to know every vertex of the scalar loops. Anal-

ogous to (4.89), the vertex connecting two scalar fields of types a and b is given

by

M2
ab (Φc) =

∂2V0

∂φa∂φb
(4.101)

evaluated at Φc. Consider the loop with n vertices as shown in Fig. 4.3. As each

internal line is constructed by connecting the same type of scalar fields, then this

loop contains a factor

M2
a1a2

M2
a2a3

M2
a3a4

· · ·M2
an−1an

M2
ana1

(4.102)
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Figure 4.3: A one-loop diagram with n vertices.

apart from the scalar propagators. After summing over all types of the scalar

fields, the above factor becomes the trace of the nth power of M2:

∑
a1...an

M2
a1a2

M2
a2a3

M2
a3a4

· · ·M2
an−1an

M2
ana1

=
∑
a1

(

n times︷ ︸︸ ︷
M2 · · ·M2 )a1a1

= Tr
[(
M2
)n]

. (4.103)

Since there are n propagators with the same momentum k, each factor of M2

has to be multiplied by a propagator before integrating over the loop momen-

tum. As Vs is obtained by summing over all scalar one-loop diagrams, then it is

proportional to∫
d4k

∑
n

1

2n
Tr

[
(M2)

n

(k2 + iε)n

]
=

∫
d4kTr

[∑
n

1

2n

(M2)
n

(k2 + iε)n

]

= Tr

∫
d4k

∑
n

1

2n

(M2)
n

(k2 + iε)n
. (4.104)

Repeating the process in the case of λφ4 theory, one arrives at

Vs =
1

64π2
Tr
[(
M2
)2

lnM2
]
, (4.105)

plus cutoff-dependent quadratic terms, which are absorbed in Vc.

http://www.pdffactory.com


108

We next consider the fermion loops. The calculation is similar to the

previous case. One defines a generalized mass matrix m (Φ) whose dependence

on the scalar fields arises from the Yukawa couplings:

L = . . .−
∑
ab

Ψamab (Φ) Ψb + . . . . (4.106)

With Φ replaced by the VEV Φc, one obtains mab (Φc) as a vertex with two

fermion legs, a and b. Note that the matrix m is a matrix in the spinor space as

well as the internal space.

The calculations go as follows. One first notes that since the trace of an

odd number of Dirac γ matrices is zero, there can be only an even number of

fermion propagators in each loop diagram. Thus each diagram is proportional to

some power of mm†:

· · ·m 1

γµkµ
m† 1

γµkµ
· · · = · · · 1

k2
mm† · · · . (4.107)

Then the rest of the calculations are exactly the same as the scalar case except

for the overall minus sign for the fermion loops. The result is

Vf = − 1

64π2
Tr
[(
m (Φc)m

† (Φc)
)2

ln
(
m (Φc)m

† (Φc)
)]

(4.108)

plus some quadratic terms which can be absorbed into Vc. Note that in this

equation the trace runs over spinor indices as well as internal indices. Typically

Mf ≡ mm† is already diagonal, and m (φ) = m† (φ). If the spinors are all

Majorana spinors as in the supersymmetric theory, then

Vf = − 2

64π2

[∑
α

m4
α lnm2

α

]
(4.109)

with mα being the eigenvalues of the mass matrix. The factor of 2 on the right-

hand side comes from the trace over Majorana indices.

Finally, the contribution Vg from the gauge fields is considered. At the

one-loop level there are two types of diagrams containing gauge fields. The sim-

plest ones have only gauge fields traveling around the loops. The others are
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gauge mixed loops, shown in Fig. 4.4. However, if one quantizes the theory in

the Landau gauge, where the gauge propagator is

i∆µν (k) = −i
gµν − kµkν

k2

k2 + iε
, (4.110)

then, as the momentum of the internal scalar field is the same as that of the

internal gauge boson (since the external momentum is zero) and the vertex is

proportional to the momentum of the scalar field, all the gauge mixed loops

vanish due to the fact that they contain a factor

∼ kµ∆µν = −ikµ (gµν − kµkν/k
2)

k2

= −i(k
µgµν − kµkµkν/k

2)

k2

= −i(kν − kνk
2/k2)

k2

= 0. (4.111)

Thus the contributions from gauge fields come from the sum over pure gauge

loops. Defining a gauge field mass matrix in terms of the nonderivative couplings

of gauge fields to the scalar fields:

L = . . .+
1

2

∑
ab

M2
g (Φ)AµaA

µ
b + . . . , (4.112)

then the vertex is just the mass matrix M2
g (Φc) evaluated at the VEV Φc. The

calculation of Vg is then analogous to the previous cases, with the result

Vg =
3

64π2
Tr
[(
M2

g

)2
(Φc) lnM2

g (Φc)
]

(4.113)

apart from quadratic terms which are absorbed in Vc. The extra factor of 3 comes

from the trace of the Landau gauge propagator.

4.3.3 Bounds on the Mass of the Lightest Supersymmetric
Higgs Boson

Equipped with the general one-loop results for the effective potential, we are ready

to calculate the radiative corrections to the mass of the lightest supersymmetric
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Figure 4.4: An example of gauge mixed loop.

Higgs boson, h0. This is done by first finding the effective potential of the Higgs

fields at one-loop level in terms of the classical fields (of all components of the

Higgs doublets). Once the VEVs of all components of the Higgs doublets are

found by minimizing the effective potential,4 the Higgs mass matrix is obtained

by evaluating the second order derivatives with respect to the classical fields of the

effective potential at the VEVs. After diagonalizing the mass matrix, the masses

(with radiative corrections included) of all Higgs particles are finally obtained.

We now begin the calculation. As we are interested only in the mass of

h0 which is a linear combination of ReH0
1 and ReH0

2 , it is sufficient to consider

only the part of the tree-level effective potential that contains ReH0
1 and ReH0

2 :

V0 = m2
1A

2 +m2
2B

2 + 2m2
3AB +

g2 + g′2

8

(
A2 −B2

)2
, (4.114)

where we have defined

A = ReH0
1 , B = ReH0

2

m2
1 =

(
|µ|2 +mH1

)
, m2

2 =
(
|µ|2 +mH2

)
, m2

3 = b.

To find the one-loop corrections of the above potential, one notes that if all vector

fields in the MSSM are quantized in the Landau gauge and since all fermions in

the MSSM are Majorana fermions, then one can write the one-loop corrections

to the Higgs potential, V1, as the sum over scalar, fermion, and gauge loops:

V1 =
1

64π2
Tr

[(
M2
)2(

ln
M2

Λ2

)]
+

3

64π2
Tr

[(
M2

v

)2(
ln
M2

v

Λ2

)]
− 2

64π2
Tr

[(
mm†)2(ln

mm†

Λ2

)]
, (4.115)

4Like the tree-level case, the only non-zero VEVs are of Re H0
1 and Re H0

2 .
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whereM2, M2
v andm are mass matrices of scalar fields, vector fields and fermionic

fields, respectively, and Λ is a cutoff scale as usual. Note that (4.115) is the

corrections to the effective potential before the renomalization conditions are

taken into account (see (4.92)). If one observes that the coefficient of each term

in (4.115) is the number of spin degrees of freedom of the fields in each loop

diagram (the spin degrees of freedom of a spin-J particle is 2J +1), then one can

rewrite (4.115) as

V1 =
1

64π2

∑
J

(−1)2J (2J + 1) Tr

[(
M2

J

)2(
ln
M2

J

Λ2

)]
, (4.116)

where M2
J is the mass matrix of the fields with spin J (for spin-1

2
fields, M2

1
2

=

mm†). Since the trace over M2
J , TrM2

J , results in the summation over all mass

eigenvalues of the fields with spin-J , one can write V1 as a supertrace,

V1 =
1

64π2
Str

[(
M2

)2(
log

M2

Λ

)]
, (4.117)

Str f
(
M2

)
≡

∑
i

(−1)2Ji (2Ji + 1) f
(
m2
i

)
, (4.118)

where mi is the mass of the i-th particle of spin Ji. After imposing the renormal-

ization conditions, the effective potential V becomes

V (Q) = V0(Q) + V1(Q)

= m2
1A

2 +m2
2B

2 + 2m2
3AB +

g2 + g′2

8

(
A2 −B2

)2
+

1

64π2
Str

[(
M2

)2(
ln
M2

Q2
− 1

2

)]
, (4.119)

where Q is the renormalization scale. Note that the factor −1
2

in the logarithmic

term in (4.119) has been restored (compared with (4.92)) for convenience even

though it could have been absorbed into the polynomial terms.

We are now at the point to show that one-loop diagrams involving the

top-quark supermultiplet induce a finite, non-negligible contribution to the Higgs

potential as the top-quark mass is fairly large, mt ' 170 GeV. Consider the
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interactions between the Higgs fields and other fields in the MSSM. Although

the Higgs fields interact with lots of fields, the major contributions to the Higgs

effective potential come from their interactions with the top-quark supermultiplet

due to the large value of the corresponding Yukawa coupling λt. According to

(3.110), only the H1 Higgs doublet interacts with the top-quark supermultiplet.

So it is sufficient to consider only the interactions coming from the term

λtΦt̃R
Φq3L

ΦH1 (4.120)

in the superpotential, where Φt̃R
and Φq3L

are chiral superfields associated with the

right-handed top-quark and the left-handed quark doublet in the third generation,

respectively. This term implies the interactions ofH1 with top quarks and squarks

with the strengths proportional to the Yukawa coupling λt.

To calculate the one-loop diagrams, one simplifies the calculation by tak-

ing the large tan β limit, which is equivalent to taking the VEVs ν1 6= 0 and

ν2 ≈ 0 (so that tan β = ν1/ν2 � 1). That this limit simplifies the calculation

can be understood as follows. Since the tree-level mass m2
A0 = 2b/ sin 2β must

be finite, then the limit of large tan β (or small sin 2β) corresponds to the situ-

ation in which b → 0, so one neglects the bilinear term 2m2
3AB in (4.114). Also

as the quartic terms containing B (which come from the (A2 − B2)2 term in

(4.114)) give the mass matrix elements proportional to at least one factor of the

VEV of B (which is ν2 ≈ 0 in the large tan β limit), then one can neglect these

terms as well. Thus in this situation, the lightest supersymmetric Higgs boson is

h0 ≡ h ≈
√

2 ReH0
1 =

√
2A (compare this with the form of h0 at the end of the

last chapter). Let m1 → m, ν1 → ν, the tree-level effective potential becomes

V0 = m2A2 +
g2 + g′2

8
A4 (4.121)
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so that

∂V0

∂A
= 2m2A+

g2 + g′2

2
A3

∂2V0

∂A2
= 2m2 +

3(g2 + g′2)

2
A2. (4.122)

Thus the tree-level minimization gives

m2 = −g
2 + g′2

4
ν2 = −m

2
Z

2
(4.123)

and so the tree-level mass of h is

m2
h =

[
1

2

∂2V0

∂A2

]
A=ν

= m2
Z . (4.124)

If one assumes in addition that the two stop squarks have the same mass

and do not mix with each other, and that m2
q̃,m

2
t � m2

Z , the dominant field

masses are those of the top quark t and the stop squarks t̃:

m2
t = λ2

tA
2, m2

t̃ = λ2
tA

2 +m2
q̃ (4.125)

where mq̃ came from the stop mass term in the soft-SUSY breaking part of the

Lagrangian, and D-terms which give an additional contribution to the stop mass

have been neglected due to the smallness of the gauge couplings. Thus one can

approximate the one-loop correction V1 by including only the contributions from

top quark t and stop squark t̃ loops. The result is

V1 =
3

16π2

[
m4
t̃

(
ln
m4
t̃

Q2
− 1

2

)
−m4

t

(
ln
m4
t

Q2
− 1

2

)]
(4.126)

where the factor of 3 on the right-hand side is the number of colors of quarks.

The minimization of V = V0 + V1 (i.e.,
[
∂V
∂A

]
= 0 at A = ν) gives[

∂V0

∂A
+

3

8π2

∂m2
t

∂A

[
m2
t̃

(
ln
m2
t̃

Q2

)
−m2

t

(
ln
m2
t

Q2

)]]
A=ν

= 0 (4.127)

where we have used the fact that
∂m2

t

∂A
=

∂m2
t̃

∂A
after neglecting the D-terms. It is

convenient to choose a renormalization scale Q such that the log terms in (4.127)

sum up to zero. Thus, the above minimization condition becomes

∂V0

∂A
= 0 (4.128)
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and [
m2
t̃

(
ln
m2
t̃

Q2

)
−m2

t

(
ln
m2
t

Q2

)]
A=ν

= 0. (4.129)

The first condition in (4.128) has already been considered and gives the result in

(4.123), while the second one in (4.129) allows us to evaluate the renormalization

scale Q. Thus one finally obtains the mass of the lightest supersymmetric Higgs

boson h0 as

m2
h0 =

[
1

2

∂2V

∂A2

]
A=ν

= m2
h0 |tree +

3

8π2

(
4λ4

tν
2 ln

m2
t̃

m2
t

)
, (4.130)

where m2
h0|tree = m2

Z is the mass of h0 at tree level.

Since the condition (4.128) is exactly the same as the tree-level minimiza-

tion condition, then the relation between the VEVs and the mass of W boson

still holds at one-loop order. Thus, in this limit, one can still use the relation

ν =
(√

2GF

) 1
2

(4.131)

where GF is the Fermi coupling constant. With this identification and using

(4.125), the result (4.130) becomes

m2
h0 = m2

h0|tree +
3GF√
2π2

m4
t ln

m2
t̃

m2
t

. (4.132)

Thus one can see that, in the limit of tan β � 1, the correction to the mass of h0

grows quartically with top mass and logarithmically with the stop mass. Thus

the one-loop effective potential gives a significant improvement to the mass of the

lightest supersymmetric Higgs boson if the top quark is sufficiently heavy. This

is indeed the case as we know nowadays that the top quark mass is about 170

GeV.

In general, one needs to compute the upper bound of mh0 for given values

of tan β and the squark masses. In doing so, one has to keep the terms involving
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B = ReH0
2 in the tree-level effective potential. The one-loop correction (unrenor-

malized) sufficient for determining the corrections to mh0 is still the same:

V1 =
3

16π2

[(
m2
q̃ + λ2

tA
2
)2(

ln
m2
q̃ + λ2

tA
2

Λ2
− 1

2

)
−
(
λ2
tA

2
)2(

ln
λ2
tA

2

Λ2
− 1

2

)]
, (4.133)

where the top quark mass and the stop mass have been expressed in their original

forms as in (4.125).5 If m2
q̃ � m2

t (= λ2
tA

2), then one can approximate (4.133) as

V1 ≈ 3

16π2

[
−2m2

q̃λ
2
t

(
A2
)
ln

Λ2

m2
q̃

+
3

2
λ4
t

(
A2
)2

−λ4
t

(
A2
)2

ln
λ2
tA

2

m2
q̃ + λ2

tA
2

]
. (4.134)

After the renormalization is performed, the divergent mass term in (4.134) can

be absorbed by the tree-level potential.

The rest of the calculation is straightforward: One just adds the one-loop

correction V1 to the tree-level effective potential, and evaluates the second order

derivatives of the total effective potential at A = ν1, B = ν2 to obtain the mass

matrix for the Higgs fields h0 and H0. It can be shown that the mass of the

lightest supersymmetric Higgs boson has an upper bound:

mh0 6

√
m2
Z0 cos2 2β +

3GF√
2π2

m4
t ln

m2
t̃

m2
t

, (4.135)

which is higher than the one obtained in the previous chapter. Fig. 4.5 shows the

upper bound on the lightest Higgs mass as a function of tan β for several choices

of mt. With the supersymmetry breaking scale mq̃ = 1 TeV, one sees that the

upper bound of mh0 can reach 130−150 GeV in the range of mt = 150−200 GeV.

This explains why the h0 boson has not been seen at LEP: the upper bound on

mh0 in the MSSM, when the one-loop radiative corrections are included, is such

that the h0 boson can be kinematically not accessible at LEP energies (≈ 104

GeV).

5Actually, A2 in (4.133) should be replaced by (Re H0
1 )2 + (Im H0

1 )2. But since the VEV
of Im H0

1 is zero, then Im H0
1 does not contribute anything to the mass of mh0 and so can be

ignored.
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Figure 4.5: The mass of the lightest neutral Higgs boson as a function of tan β
for various top quark masses [14]. This figure includes radiative corrections to
the Higgs mass, assuming the supersymmetry breaking scale mq̃ = 1 TeV. (This
figure is taken from [14]).



CHAPTER V

CONCLUSIONS

In this thesis, we have reviewed the Higgs sector of the MSSM and some

aspects of the MSSM Higgs bosons. The Higgs sector of the MSSM consists of

two Higgs doublets with opposite hypercharges. The tree-level potential for these

scalar doublets was determined from three types of contributions:

1. The supersymmetric F-terms which give the quadratic terms involving the

µ parameter, µ2 (|H2
1 |+ |H2

2 |).

2. The supersymmetric D-terms which give the Higgs self-interactions of which

coupling constants are completely determined by the SU(2)L and U(1)Y

gauge coupling constants.

3. The soft-supersymmetry breaking terms which give additional mass and

mixing terms, mH1 |H1|2 +mH2 |H2|2 and b
(
H+

1 H
−
2 −H0

1H
0
2

)
.

Such the Higgs potential allowed us to break the electroweak symmetry if the

VEVs of their electrically neutral components, ν1 and ν2, are non-zero. After the

electroweak symmetry breaking, the physical Higgs states include three neutral

Higgs bosons (h0, H0 and A0) of different masses, and one pair of charged Higgs

bosons (H±) of equal masses. Once ν2
1 + ν2

2 has been fixed by the experimental

values of the mass of the W bosons and the weak coupling, the MSSM Higgs

sector can be described in terms of two independent parameters: the ratio of

MSSM VEVs, tan β = ν1/ν2, and the mass of the A0 Higgs boson.

A remarkable consequence of the tree-level Higgs potential is the mass of

the lightest supersymmetric Higgs boson, h0, which is always smaller than the Z0

boson mass. However, it is a nature of the theory that mh0 receives the radiative
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corrections, so its upper bound can be raised substantially. Indeed, by comput-

ing the one-loop corrections due to the top quark and its scalar superpartner,

stop squark, it was found that the correction to mh0 (in the theory with soft-

supersymmetry breaking terms) is proportional to the fourth power of the top

quark mass, but vanishes if supersymmetry is unbroken. It was moreover found

that the upper bound on mh0 is changed by one-loop corrections into

mh0 6

√
m2
Z0 cos2 2β +

3GF√
2π2

m4
t ln

m2
t̃

m2
t

, (5.1)

where one assumed that all squarks have equal masses. Thus the upper bound

on mh0 , in the case of the large top quark mass mt, can exceed the highest energy

accessible at LEP. For mt = 175 GeV and mt̃ = 1 TeV, the upper bound of mh0

varies from 130− 150 GeV.

As there have been more sophisticated analyses which include a variety

of two-loop effects, renormalization group effects, etc., this bound can, of course,

be changed. However, there is no model which has the mass upper bound larger

than 150 GeV for the lightest supesymmetric Higgs boson. Such a mass scale will

be accessible at LEP II or the Large Hadron Collider (LHC), so the experiments

to be performed in the near future will provide a definitive test of the MSSM.
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