MODIFICATION OF HYBRID ORGANIC-INORGANIC POROUS CLAY HETEROSTRUCTURES FOR THE APPLICATION IN ENTRAPPING SYSTEM

Kasinee Prakobna

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University and Institute Français du Pétrole 2007

. .

502034

Thesis Title:	Modification of Hybrid Organic-Inorganic Porous Clay
	Heterostructures for the Application in Entrapping System
By:	Kasinee Prakobna
Program:	Polymer Science
Thesis Advisors:	Dr. Hathaikarn Manuspiya
	Assoc. Prof. Rathanawan Magaraphan

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Master of Science

Nantayo Jenunit College Director

(Assoc. Prof. Nantaya Yanumet)

Thesis Committee:

Hothaiharn M

(Dr. Hathaikarn Manuspiya)

Mayhigh

(Assoc. Prof. Rathanawan Magaraphan)

(Asst. Prof. Manu Nithitanakul) Kattena Tank the rahm

(Dr. Rattana Tantatherdtum)

ABSTRACT

4872006063: Polymer Science Program
Kasinee Prakobna: Modification of Hybrid Organic-Inorganic
Porous Clay Heterostructures for the Application in Entrapping
System.
Thesis Advisors: Dr. Hathaikarn Manuspiya and Assoc. Prof.
Rathanawan Magaraphan 90 pp.
Keywords: Porous clay heterostructures/ Ethylene adsorption/ Polypropylene/
Nanocomposites/ Ethylene permeability

Porous clay heterostructures (PCHs) and hybrid organic-inorganic PCHs (HPCHs) were prepared through surfactant-directed assembly of tetraethoxysilane (TEOS) and TEOS/methyltetraethoxysilane (MTS) into the galleries of Na-bentonite clay, respectively. The reaction carried out in the presence of intragallery surfactant templates (cetyltrimethylammonium ion and dedecylamine). Before the synthesis, pH of the bentonite clay was adjusted to 4 conditions including pH 9, 7, 5 and 3. To investigate the formation of porous structures, the products were characterized by N₂ adsorption-desorption, XRD, SEM, TEM and FTIR techniques. The results reveal that PCHs have surface areas of 501-668 m²/g, an average pore diameter in the supermicropore to small mesopore range of 3.01-3.85 nm, and a pore volume of 0.43-0.64 cc/g, while HPCHs have a result of 469-582 m²/g, 3.19-3.88 nm, and 0.33-0.49 cc/g, respectively. New applications of the PCHs and HPCHs materials are expected in active packaging for ethylene entrapping system. The ethylene adsorption capacity of these porous clays was investigated using GC. The results reveal that the enhancemence of the hydrophobicity on HPCHs play an important role in ethylene adsorption. Polypropylene/porous clay nanocomposites films were fabricated to thin film by blow film extrusion machine. The nanocomposites were characterized by using XRD, DSC and TG-DTA. To investigate gas permeability of PP/PCHs and PP/HPCHs nanocomposite films, these films were measured ethylene permeability and they revealed the possibility of finding a new application for ethylene scavenger films in active packaging.

บทคัดย่อ

เกศินี ประกอบนา : การคัคแปลงโครงสร้างของคินให้มีรูพรุนพร้อมทั้งการคัคแปลง ด้วยสารอินทรีย์เพื่อการนำไปใช้ประโยชน์ในการทำหน้าที่เป็นตัวคักจับ (Modification of hybrid organic-inorganic porous clay heterostructures for the application in entrapping system) อ. ที่ปรึกษา : คร. หทัยกานต์ มนัสปียะ และ รศ.คร. รัตนวรรณ มกรพันธุ์ 90 หน้า

ดินที่มีการดัดแปลงโครงสร้างให้มีรูพรุนพร้อมทั้งการดัดแปลงโครงสร้างด้วยสาร อินทรีย์ถูกเตรียมขึ้นจากการรวมตัวกันของสารผสมระหว่างเตตระเอธอกซีไซเลนและเมธิลเอธอก ซีไซเลนระหว่างชั้นดินโซเดียม-เบนโทไนต์ การคัดแปลงโครงสร้างคัวกล่าวเกิดขึ้นโดยมีการใช้ สารถคแรงตึงผิว (เซธิลไตรเมธิลแอมโมเนียม และ โคเคคซิลามีน) เป็นแม่แบบของรูพรุน โคยก่อน การคัคแปลงโครงสร้างคินคัวกล่าวได้มีการปรับก่ากวามเป็นกรค-ค่างของคินเป็น 4 ก่า คือ 9, 7, 5 และ 3 จากการศึกษาการเกิดโครงสร้างรูพรุนด้วยเทคนิคการดูดซับก๊าซในโตรเจนพบว่าดินที่มี การคัดแปลงโครงสร้างรูพรุนมีพื้นที่ผิว 501-668 เมตร²/กรัม, ขนาครูพรุน 3.01-3.85 นาโน เมตร, และปริมาตรรูพรุน 0.43-0.64 เซนติเมตร³/กรัม ขณะที่ดินที่มีรูพรุนและถูกดัดแปลง โครงสร้างด้วยสารอินทรีย์มีค่าเท่ากับ 469-582 เมตร²/กรัม, 3.19-3.88 นาโนเมตร, และ 0.33-0.49 เซนติเมตร³/กรัม ตามลำคับ คินที่ถูกคัคแปลงโครงสร้างคังกล่าวถูกนำมาใช้ประโยชน์เป็น ้ตัวดูดจับก๊าซเอธิลืนในบรรจุภัณฑ์ฉลาด โดยเมื่อวัดก่าการดูดจับก๊าซเอธิลืนด้วยเทคนิกแก๊สโคร มาโทกราฟีพบว่าการเพิ่มความชอบสารอินทรีย์ด้วยการคัดแปลงโครงสร้างให้มีหมู่แทนที่เป็นสาร อินทรีย์สามารถเพิ่มค่าการดูดจับก๊าซเอธิลีนได้เพิ่มขึ้นดินดังกล่าวนี้ถูกนำมาเตรียมเป็นแผ่นฟิล์ม นาโนคอมโพสิตของพอลีพรอพิลีนกับดินที่มีการดัดแปลงโครงสร้างโคยใช้เครื่องเป่าฟิล์มแล้ว ศึกษาสมบัติด้วยเทคนิคต่าง ๆ โดยเฉพาะการศึกษาการซึมผ่านของก๊าซเอธิลึนบนแผ่นฟิล์ม ดังกล่าว ซึ่งพบว่ามีความเป็นไปได้ที่จะนำฟิล์มนาโนคอมสิตนี้มาใช้เป็นแผ่นฟิล์มดักจับก๊าซเอธิ ลินในบรรจุภัณฑ์ฉลาด

ACKNOWLEDGEMENTS

This work would not have been possible without the assistance of the following individuals.

First of all, the author would like to gratefully give special thanks to her advisors, Dr. Hathaikarn Manuspiya and Assoc. Prof. Rathanawan Magaraphan for their intensive suggestions, valuable guidance and vital help throughout this research. In addition, the author deeply thanks to Asst. Manit Nithitanakul and Dr. Rattana Tuntatherdtum for serving on her thesis committee.

The author is grateful for the partial scholarship and partial funding of the thesis work provided by the Petroleum and Petrochemical College; the National Excellence Center for Petroleum, Petrochemicals, and Advanced Materials, Thailand; Thailand Research Fund (TRF); and also National Research Council of Thailand (NRCT).

Special thanks go to all of the Petroleum and Petrochemical College's faculties who have tendered invaluable knowledge and to the college staff who willingly gave support and encouragement.

Finally, the author would like to take this opportunity to thank PPC Ph.D. students and all her PPC friends for their friendly assistance, cheerfulness, creative suggestions, and encouragement. Also, the author is greatly indebted to her parents and her family for their support, love and understanding

TABLE OF CONTENTS

		PAGE
Title	e Page	i
Abs	tract (in English)	iii
Abs	tract (in Thai)	iv
Ack	nowledgements	v
Tab	le of Contents	vi
List	of Tables	viii
List	List of Figures	
Abb	reviations	xi
СНАРТЕ	R	
Ι	INTRODUCTION	1
II	LITERATURE REVIEW	4
III	EXPERIMENTAL	17
IV	MODIFICATION OF POROUS CLAY	
	HETEROSTRUCTURES (PCHs) AND	
	HYBRID ORGANIC-INORGANIC PCHs (HPCHs)	
	FOR ETHYLENE ENTRAPPING SYSTEM	23
	4.1 Abstract	23
	4.2 Introduction	23
	4.3 Experimental	25
	4.4 Results and Discussion	28
	4.5 Conclusions	41
	4.6 Acknowledgements	41
	4.7 References	41

CHAPTER

V	MODIFICATION OF POROUS CLAY		
	HETEROSTRUCTURES (PCHs) AND HYBRID ORGANIC-INORGANIC PCHs (HPCHs)		
	FOR ETHYLENE ENTRAPPING SYSTEM	43	
	5.1 Abstract	43	
	5.2 Introduction	43	
	5.3 Experimental	46	
	5.4 Results and Discussion	49	
	5.5 Conclusions	63	
	5.6 Acknowledgements	64	
	5.7 References	64	
VI	CONCLUSION AND RECOMMENDATIONS	66	
	REFERENCES	68	
	APPENDICES	73	
	Appendix A	73	
	Appendix B	84	
	CURRICULUM VITAE	90	

PAGE

LIST OF TABLES

TABLE

÷.

PAGE

- -

CHAPTER IV

4.1	Comparison of the basal spacing of BTN and pH-adjusted BTN	30
4.2	Comparison of the basal spacing of BTN and organoclay of BTN	30
4.3	Porosity characteristics of BTN, PCHs and HPCHs obtained	
	from various pH-adjusted BTN	37

CHAPTER V

5.1	Porosity characteristics of BTN, PCHs and HPCHs obtained	
	From various pH-adjusted BTN	53
5.2	Element percentage of representative porous clay	
	nanocomposite films	54
5.3	Crystallization behavior of PP and porous clay nanocomposites	59
5.4	Thermal properties of PP and porous clay nanocomposites	62
5.5	Ethylene permeability of PP and porous clay nanocomposite films	63

LIST OF FIGURES

FIGURE

.

PAGE

CHAPTER II

2.1	Structure of montmorillonite	4
2.2	TEM images of saponite heterostructures	7
2.3	Schematic illustration of mechanism for formation of	
	hybrid porous clay heterostructure (HPCH) through	
	surfactant-directed assembly of organosilica in the galleries of clay	9
2.4	Schematically illustration of three different types of	
	thermodynamically achievable polymer/layered silicate	
	nanocomposites	11
2.5	Grafting of mercaptopropylsilane groups to the inner and outer	
	walls of mesostructural silica intercalated in smectite clay	14

CHAPTER IV

4.1	XRD patterns of BTN and pH-adjusted BTN	28
4.2	XRD patterns of BTN and organo BTN	29
4.3	XRD patterns of as-synthesized PCHs and HPCHs	31
4.4	TEM images of PCH-9 and HPCH-9	33
4.5	SEM images of BTN, PCH-9, and HPCH-9	35
4.6	N2 adsorption-desorption isotherms of BTN and PCHs	36
4.7	N ₂ adsorption-desorption isotherms of BTN and HPCHs	36
4.8	FTIR spectra of BTN, organoclay-9, as-synthesized HPCH-9,	
	HPCH-9 before and after dried under vacuum	38
4.9	FTIR spectra of BTN, PCH-9, PCH-7, PCH-5 and PCH-3	39
4.10	FTIR spectra of BTN, HPCH-9, HPCH-7, HPCH-5 and HPCH-3	39
4.11	Ethylene adsorption capacity of various PCHs and HPCHs	40

FIGURE

PAGE

÷.

CHAPTER V

5.1	SEM images of BTN, PCH-9, and HPCH-9	50
5.2	TEM images of PCH-9 and HPCH-9	51
5.3	N_2 adsorption-desorption isotherms of BTN, PCHs and HPCHs	52
5.4	SEM image and consistent EDX micrographs of 1% PCH-9/Surlyn/	
	PP including SEM image, Si mapping, Al mapping and O mapping	55
5.5	SEM image and consistent EDX micrographs of 1% HPCH-9/	
	Surlyn/PP including SEM image, Si mapping, Al mapping and	
	O mapping	56
5.6	XRD patterns of PP and various porous clay nanocmoposite films	57
5.7	DSC cooling scan thermograms of pure PP and various porous clay	
	nanocomposites	58
5.8	DSC heating scan thermograms of pure PP and various porous clay	
	nanocomposites	60
5.9	TG-DTA curves of pure PP and various PCH nanocomposites	61
5.10	TG-DTA curves of pure PP and various HPCH nanocomposites	61

ABBREVIATIONS

BTN	Na-bentonite
PCHs	Porous clay heterostructures
HPCHs	Hybrid organic-inorganic porous clay heterostructures
PCH-n	pH adjusted porous clay heterostructures (n denotes pH condition)
HPCH-n	pH adjusted hybrid organic-inorganic porous clay heterostructures
	(n denotes pH condition)
CTAB	Cetyltrimethylammonium bromide
PP	Polypropylene