PREPARATION AND CHARACTERIZATION OF POLYANILINE/NATURAL RUBBER COMPOSITE FIBERS

.

Panu Sukitpaneenit

.

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University and Institut Français du Pétrole 2007

502029

Thesis Title:	Preparation and Characterization of	
	Polyaniline/Natural Rubber Composite Fibers	
By:	Panu Sukitpaneenit	
Program:	Polymer Science	
Thesis Advisors:	Asst. Prof. Ratana Rujiravanit	
	Assoc. Prof. Christoph Weder	

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

Nantayo Yanunet College Director

(Assoc. Prof. Nantaya Yanumet)

Thesis Committee:

Ratana Rujimmanit

(Asst. Prof. Ratana Rujiravanit)

Alle

(Assoc. Prof. Christoph Weder)

Anunational

(Assoc. Prof. Anuvat Sirivat)

Simple?

(Assoc. Prof. Pitt Supaphol)

ABSTRACT

4872013063: Polymer Science Program
Panu Sukitpaneenit: Preparation and Characterization of
Polyaniline/Natural Rubber Composite Fibers.
Thesis Advisors: Asst. Prof. Ratana Rujiravanit, Assoc. Prof.
Christoph Weder 116 pp.
Keywords: Conducting polymer/ Natural rubber/ Polyaniline/ Composites/

Fibers

Polyaniline/natural rubber composite fibers were fabricated by a wet spinning method. Latex dopes for spinning contained three components, i.e. natural rubber (NR) latex, polyaniline (PANI) and sodium alginate (viscosity controller). PANI content in the composite fibers was varied from 0 to 10% (w/w). After extrusion through a spinneret, the neat fiber bundles were passed into two coagulation baths containing calcium chloride/methanol and methanol, respectively. The composite fiber bundles were immersed into an HCl solution to achieve the PANI emeraldine salt form (ES), the conducting state form. The effects of PANI content on the electrical conductivity and mechanical properties of the bundles of composite fibers were investigated. SEM micrographs of the cross-sectional morphology of the composite fiber bundles revealed that PANI particles were inhomogeneously distributed in the natural rubber matrix. When PANI content increased from 0 to 10% (w/w), the electrical conductivity of the fibers increased from 10^{-10} to 10^{-3} S/cm, whereas the tensile property decreased from to 1 to 0.35 cN/tex. However, the elongation at break decreased from 820 to 600%, indicating that these composite fibers still retained the elastomeric property of the natural rubber for all compositions. The electrical conductivity of bundles of the composite fiber was preserved upon elongational deformation even if strains as large as 600% were applied. The bending deformation of the composite fiber under electric field demonstrated that the composite fibers can be further developed for soft actuator application.

บทคัดย่อ

ภาณุ สุกิจปาณีนิจ: การเครียมและวิเคราะห์คุณสมบัติของเส้นใยคอมโพสิทระหว่างยาง ธรรมชาติและพอลิอะนิลีน (Preparation and Characterization of Polyaniline/Natural Rubber Composite Fibers) อ. ที่ปรึกษา: ผศ. ดร. รัตนา รุจิรวนิช และ รศ. ดร. คริสซอฟ เวเดอร์ 116 หน้า

เส้นใยคอมโพสิทระหว่างขางธรรมชาติและพอลิอะนิลีนสามารถเตรียมผ่านเทคนิค กระบวนการปั่นเส้นใยแบบเปียก โดยการอัคสารผสมระหว่าง น้ำยางธรรมชาติ สารละลาย (สารเพิ่มความหนืด) และผงพอลิอะนิลีนในรูปสภาวะอิเมอรอสคืนเบส โซเคียมอัลจีเนต (สภาวะที่ไม่นำไฟฟ้าของพอลิอะนิลีน) ผ่านหัวรีดซึ่งประกอบด้วยรูฉีดเส้นใยจำนวน 30 รู ซึ่ง แต่ละรูมีขนาดเส้นผ่านศูนย์กลาง 0.2 มิลลิเมตร และผ่านอ่างน้ำยาเคมีซึ่งประกอบด้วยสารละลาย อิ่มตัวของแคลเซียมในเมทานอลเข้มขันร้อยละ 5 และอ่างน้ำยาเคมีซึ่งประกอบด้วยเมทานอล หลังจากนั้นจึงนำเส้นใยที่ได้ไปผ่านกระบวนการโด๊ปโดยใช้สารละลายกรดไฮโดรคลอริก เพื่อ เปลี่ยนสภาวะอิเมอรอลดีนเบสของพอลิอะนิลีนให้เป็นสภาวะอิเมอรอลดีนซอลท์ (สภาวะที่นำ ไฟฟ้าของพอลิอะนิลีน) ทั้งนี้ได้ทำการเตรียมเส้นใยที่มีปริมาณพอลิอะนิลีนร้อยละ 0, 0.5, 1, 2, 5, และ 10 โดยน้ำหนัก จากงานวิจัยนี้พบว่า เมื่อสัดส่วนปริมาณพอลิอะนิลีนภายในเส้นใยเพิ่มขึ้น ทำให้สมบัติการนำไฟฟ้าของเส้นใยคอมโพสิทเพิ่มขึ้น ในขณะเดียวกันก็ส่งผลให้สมบัติเชิงกล ของเส้นใย กล่าวคือ ค่าความทนแรงดึงและค่าการยึดตัว ณ จุดขาดของเส้นใยมีแนวโน้ว ลดลง ้เส้นใยที่ผ่านกระบวนการโค๊ปจะมีสมบัติการนำไฟฟ้าที่สูงขึ้นอยู่ในระคับ 10⁻³ ซีเมนต์ต่อตาราง เซนติเมตรและสมบัติเชิงกลที่ดีขึ้น จากการศึกษาเพิ่มเติมพบว่า ค่าสมบัติการนำไฟฟ้าของเส้นใย เพิ่มขึ้น เมื่อเส้นใยถูกคึงยืดออกภายใต้ระยะยืดตัวที่ร้อยละ 600 นอกจากนี้ยังได้นำเส้นใยคอมโพ-สิทคังกล่าวไปศึกษาสมบัติเชิงกลภายใต้สนามไฟฟ้า ผลการทดลองแสดงให้เห็นว่า เส้นใยคอมโพ สิทระหว่างขางธรรมชาติและพอลิอะนิลีน สามารถแสดงการโค้งงอตอบสนองต่อสนามไฟฟ้าได้

ACKNOWLEDGEMENTS

The author is grateful for the partial scholarship and partial funding of the thesis work provided by the Petroleum and Petrochemical College; and the National Excellence Center for Petroleum, Petrochemicals, and Advanced Materials, Thailand.

The author would like to express most appreciation to his advisor, Asst. Prof. Ratana Rujiravanit and Assoc. Prof. Christoph Weder for all supports, their invaluable suggestion, constructive guidance and encouragement throughout this thesis work.

The author would like to thank Assoc. Prof. Anuvat Sirivat and Assoc. Prof. Pitt Supaphol for useful suggestion and discussion including for being his thesis committee.

The author is gratefully appreciative to Dr. Alan Vasantakron, Asst. Prof. Chanchai Thongpin and all instructors at the Department of Material Science and Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, his previous academic institute, for not only giving his the basic knowledge in polymers, but kindly allowing his to use the Lloyd universal testing machine in this thesis work as well.

The author appreciates to thank Mr. Sanit Prinakorn, the technicians at The Petroleum and Petrochemical College, for helping in fabrication of electronic device for the experiment.

The author would like to thank all his friends for their friendship, helpfulness, cheerfulness, suggestion and encouragement.

Ultimately, the author would like to express greatly indebted to his beloved parents and his family for their love, care and understanding him at all times.

TABLE OF CONTENTS

		PAGE
Titl	e Page	i
Abs	stract (in English)	iii
Abs	stract (in Thai)	iv
Ack	nowledgements	v
List	of Tables	x
List	of Figures	xi
List	of Schemes	xiv
СНАРТИ	ER	
I	INTRODUCTION	1
П	LITERATURE REVIEW	3
	2.1 Conductive Polymer	3
	2.2 Polyaniline	4
	2.2.1 Polyaniline Synthesis	5
	2.2.2 Doping of Polyaniline	7
	2.3 Polyaniline Fiber	8
	2.4 Natural Rubber Latex	11
	2.4.1 The Composition of Natural Rubber Latex	11
	2.4.2 Viscosity of Natural Rubber Latex	13
	2.4.3 Stability of Natural Rubber Latex	13
	2.4.4 Concentrated Natural Rubber Latex	14
	2.5 Electrically Conductive Composites and Blends	
	based on Polyaniline	17
	2.6 Electrically Conductive Composite Fiber	19
	2.7 Composites for Artificial Muscle or Actuator	20

.

III	EXPERIMENTAL	22	2
	3.1 Materials	22	2
	3.2 Equipment	22	2
	3.2.1 Fourier-Transformed	Infrared Spectrophotometer 22	2
	3.2.2 Particle Size Analyze	er 22	2
	3.2.3 Thermo-Gravimetric	Dynamic Temperature Analyzer 22	2
	3.2.4 Scanning Electron M	licroscope 23	3
	3.2.5 Universal Testing M	achine 23	3
	3.2.6 Electrometer	23	3
	3.2.7 Custom-built Electro	mechanical Tester 23	3
	3.3 Methodology	23	3
	3.3.1 Polyaniline Synthesis	23	3
	3.3.2 Polyaniline/Natural F	Rubber Composite Fiber Spinning 24	4
	3.3.3 Doping of Polyanilin	e/Natural Rubber Composite	
	Fiber	25	5
	3.3.4 Polyaniline/Natural F	Rubber CompositeFiber	
	Characterization	25	5
	3.3.4.1 Strutural Cha	aracterization 25	5
	3.3.4.2 Morphology	2:	5
	3.3.4.3 Thermogravi	metric Analysis 25	5
	3.3.4.4 Linear Densi	ty 2:	5
	3.3.4.5 Mechanical I	Properties 20	6
	3.3.4.6 Electrical Co	nductivity Measurement 20	6
	3.3.4.7 Electromech	anical Testing 2'	7
IV	RESULTS AND DISCUSSIO	N 29	9
	1.1 Characterization of Raw M	aterials 29	9
	4.1.1 Structural Character	ization of Natural Rubber Latex 29	9
	4.1.2 Structural Characteri	zation of Sodium Alginate 30	0

 \mathbf{V}

PAGE

÷.

4.1.3 Characterization of Synthesized Polyaniline	31
4.1.3.1 Structural Characterization	31
4.1.3.2 Thermal Stability	32
4.1.3.3 Particle Size Analysis	33
4.1.3.4 Scanning Electron Microscope	34
4.2 Preparation and Characterization of	
Polyaniline/Natural Rubber Composite Fiber	34
4.2.1 Polyaniline/Natural Rubber Composite Fiber Spinning	34
4.2.2 Structural Characterization	36
4.2.3 Thermal Stability	38
4.2.4 Morphology	40
4.2.5 Mechanical Properties	43
4.2.6 Electrical Conductivity	45
4.2.6.1 Effect of Polyaniline Content and HCl-doping	45
4.2.6.2 Effect of Strain Dependent Electrical	
Conductivity	46
4.2.7 Electromechanical Actuation	47
CONCLUSIONS	
REFERENCES	
APPENDICES	57
Appendix A Determination of Particle Size of	
Undoped Polyaniline	57
Appendix B Diameter Measurement of PANI/NR	
Composite Fiber	62
Appendix C Diameter Measurement of PANI/NR Composite	
Fiber Doped with 1 M HCl for 24 h	68

CHAPTER

.

Appendix D	Mechanical Properties of PANI/NR	
	Composite Fiber	74
Appendix E	Mechanical Properties of PANI/NR Composite	
	Fiber Doped with 1 M HCl for 24 h	80
Appendix F	Conductivity Measurement of PANI/NR	
	Composite Fiber	86
Appendix G	Conductivity Measurement of PANI/NR Composite	
	Fiber Doped with 1 M HCl for 24 h	92
Appendix H	Strain-dependent Conductivity Measurement of	
	PANI/NR Composite Fiber Doped with 1 M HCl	
	for 24 h	98
Appendix I	Diameter Measurement of PANI/NR Composite	
	Fiber in Strain-dependent Conductivity	
	Measurement	109
Appendix J	Electromechanical Actuation Measurement of	
	PANI/NR Composite Fiber	112

CURRICULUM VITAE 116

LIST OF TABLES

TABLE

2.1	Typical composition of natarul rubber latex	12
2.2	Types of preservative system used in centrifuged natural	
	rubber concentrated latex	15
4.1	Characteristic adsorption peaks of NR latex	30
4.2	Characteristic adsorption peaks of sodium alginate	31
4.3	Characteristic adsorption peaks of synthesized polyaniline	
	emeraldine base	32
4.4	The mean particle diameter of undoped polyaniline	33
4.5	The average diameter of polyaniline/natural rubber composite	
	fiber	35
4.6	Wavenumbers (cm ⁻¹) as observed in the FTIR spectra of NR,	
	Alginate, undoped PANI and NR/PANI composite fibers	37

LIST OF FIGURES

FIGURE

2.1	Examples of intrinsically conducitve polymers	3
2.2	The general formula structure of polyaniline	5
2.3	The different oxidation states of polyaniline	5
2.4	Collection of natural rubber latex from Hevea tree by tapping	11
2.5	Representation of rubber particle	12
2.6	The general formula structure of cis-1,4-polyisoprene in	
	natural rubber	13
2.7	A schematic layout of centrifuged latex concentrated plant	16
3.1	Equipments for electrical conductivity measurement; (a)	
	Electrometer Keithley model 6517A (b) Two-point grip	
	probe arrangement	26
3.2	Two-point grip probe method for strain-dependent	
	conductivity measurement.	27
3.3	Experiment set-up for the electromechanical Testing	28
4.1	FTIR spectrum of natural rubber latex	29
4.2	FTIR spectrum of Sodium alginate	30
4.3	FTIR spectrum of polyaniline emeraldine base form	31
4.4	Thermal gravimetric analysis (TGA) thermogram of	
	emeraldine base form (undoped) and emeraldine salt form	
	(doped) of polyaniline	33
4.5	SEM micrographs of polymer powder at different	
	magnification (a) x 350 (b) x 1000 (c) x 5000 and (d) x 7500	34
4.6	Scanning electron microscopy (SEM) image of the cross-	
	section of a bundle of a PANI/NR composite fiber	
	comprising 5% w/w PANI	35

FIGURE

4.7	ATR-FTIR spectra of natural rubber (a); undoped NR/PANI	
	composite fibers containing (b) 0.5, (c) 1, (d) 2, (e) 5, and (f)	
	10 % w/w of PANI; and undoped PANI (g)	36
4.8	Thermogavimetric analysic (TGA) traces of bundles of neat	
	NR fiber (comprising sodium alginate but no PANI) and the	
	series of undoped PANI-EB/NR composite fibers	38
4.9	Thermogravimetric analysis (TGA) traces of bundles of neat	
	NR fiber (comprising sodium alginate but no PANI) and the	
	series of HCl-doped PANI-ES/NR composite fibers	39
4.10	Scanning electron microscopy (SEM) images of the surface	
	of bundles of undoped and HCl-doped NR/PANI composite	
	fibers with PANI contents of (a) 0, (b) 5, and (c) 10% w/w;	
	left column: undoped, right column: doped	41
4.11	Scanning electron microscopy (SEM) images of cross-	
	section of bundles of fractured, undoped and HCl-doped	
	PANI/NR composite fibers with PANI contents of (a) 0, (b)	
	5, and (c) 10% w/w; left column: undoped, right column:	
	doped	42
4.12	Tenacity of bundles of undoped and HCl-doped PANI/NR	
	composite fibers with PANI contents of between 0 and 10 $\%$	
	w/w	44
4.13	Elongation at break of bundles of undoped and HCl-doped	
	NR/PANI composite fibers with PANI contents of between 0	
	and 10% w/w	44
4.14	Electrical conductivity of undoped and HCl-doped PANI/NR	
	composite fiber bundles as function of PANI content	45

FIGURE

PAGE

4.15	Electrical conductivity of HCl-doped PANI/NR composite	
	fiber bundles comprising 5 % w/w PANI as a function of	
	uniaxial strain	46
4.16	Captured digital camera images of bending of neat NR fiber	
	bundle (without PANI but comprising sodium alginate)	48
4.17	Captured digital camera images of bending of 5% w/w HCl-	
	doped PANI/NR composite fiber bundle	48
4.18	The deflection and required electrical field of neat natural	
	rubber fiber bundle	48
4.19	The deflection and required electric field of 5% w/w HCl-	
	doped PANI/NR composite fiber bundle	49

...

LIST OF SCHEMES

SCHEME

2.1	Mechanism of chemical oxidation polymerization of	6
	polyaniline	
2.2	Protonic acid doping (non-redox) of polyaniline	7
2.3	A reaction diagram consistent with the interconversion of	
	different oxidation and protonation states of polyaniline	8
2.4	The zwitterions of amino acids on natural rubber latex	
	particles	14
4.1	Schematic drawn the electrostatic interaction between PANI	
	chains and alginate network	43