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ABSTRACT

4582001063:  Polymer Science Program
Piyanoot Hiamtup: Development of Conductive Polymer
for Actuator Applications
Thesis Advisors: Assoc. Prof. Anuvat Sirivat and Prof. Alexander M.
Jamieson, 150 pp.
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In this study, polyaniline (PANI) was synthesized via oxidative coupling
polymerization in acid conditions and its conductivity was controlled by doping in
camphorsulfonic acid (CSA) solution and de-doping in solution of ammonia. Under
oscillatory shear, the dynamic moduli, G* and G”, dramatically increase and the
suspensions of PANI/silicone oil reach liquid to solid transition occurs at a critical
electric field strength, whose value depends on particle concentration and host fluid
viscosity as well as the shearing amplitude and the shearing frequency. The critical
dimensionless parameter, the Mason number (Mn), varies with Peclet number (Pe) at
the critical point according to a scaling relation Mn ~ Pe0CBL The formation structure
has a static yield strength X, whose value scales with electric field strength as X/~
E 188 When the field is switched off a residual structure remains, whose yield stress
increases with the strength of the applied field and particle concentration.The creep
response of the suspensions was also studied. Creep resistance of the suspensions
generally increases with the effects of electric field strength, particle concentration,
and operating temperature. Electromechanical response of camphorsulfonic acid
(CSA) - doped polyaniline (PANI) particles embedded in an elastic cross-linked
PDMS matrix on the effects of electric field strength, particle concentration, and
operating temperature was finally studied.
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