DEACTIVATION MODELING FOR THE ADSORPTION ISOTHERM OF DEACTIVATED ADSORBENTS USED IN NATURAL GAS DEHYDRATION PROCESS

1

Ms. Wanaporn Khaikham

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University and Institut Français du Pétrole 2007

502039

Thesis Title:	Deactivation	Modeling	for	the	Adsorp	tion	Isotherm	of
	Deactivated	Adsorbents	used	in	Natural	Gas	Dehydrat	ion
	Process							
By:	Ms. Wanapo	rn Khaikham	n					
Program:	Petrochemical	Technology						
Thesis Advisors:	Asst. Prof. S	irirat Jitkarnl	ka					
	Asst. Prof. K	itipat Siema	nond					
	Dr. Thana So	ornchamni						
	Mr. Sudhibh	umi Pumhira	n					

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

Nantaya Janumet College Director

(Assoc. Prof. Nantaya Yanumet)

Thesis Committee:

And Amu (Asst. Prof. Sirirat Jitkarnka)

(Dr. Thana Sornchamni)

amoch R

(Assoc. Prof. Pramoch Rungsanvigit)

itipat Siemanord T. Spetter

(Asst. Prof. Kitipat Siemanond) (Dr. Thammanoon Sreethawong)

tim

(Mr. Sudhibhumi Pumhiran)

ABSTRACT

4871028063: PETROCHEMICAL TECHNOLOGY PROGRAM Wanaporn Khaikham: Deactivation Modeling for the Adsorption Isotherm of Deactivated Adsorbents used in Natural Gas Dehydration Process. Thesis Advisors: Asst. Prof. Sirirat Jitkarnka, Asst. Prof. Kitipat Siemanond, Dr. Thana Sornchamni and Mr. Sudhibhumi Pumhiran 94 pp. Keywords: Adsorption/ Activated alumina/ Molecular sieve zeolite 4A/

Hydrothermal steaming/ Deactivation/ Adsorption isotherm/ Breakthrough Curve/ Natural gas dehydration

Two types of adsorbents, activated alumina and molecular sieve zeolite 4A, used in the natural gas dehydration process were studied for their adsorption behaviour, both static and dynamic along the adsorption process. Deactivation by hydrothermal steaming was employed for deactivating the adsorbents. The effect of the deactivated adsorbents on the adsorption capacity was then studied. The results showed a decrease in the specific surface area of activated alumina, when hydrothermally steamed at 300 to 550°C, from 200.2 to 124.0 m²/g. The adsorption capacity of the activated alumina decreased linearly with surface area. The adsorption capacity of the molecular sieve zeolite was also decreased by steaming, but not in a linear fashion. SEM analysis indicated a decrease in average crystal size from about 2 to 1 microns with the increase of steaming time. The adsorption isotherms of fresh and deactivated adsorbents were examined at 25°C, 1atm, and it was found that Freundlich model gave good agreement for alumina, and Aranovich and Donohue (A-D) for Toth model fitted the data of molecular sieve zeolite. Also, the adsorption isotherms are used in a previously developed mathematical model to predict the breakthrough time of the multi-layered adsorber. From the dynamic adsorption of a packed column with the fresh and deactivated adsorbents, it was found the breakthrough time of the deactivated bed was shorter than the fresh one. The predicted breakthrough time agrees well with the experimental one.

บทคัดย่อ

วรรณพร ค่ายคำ : การศึกษาการเสื่อมสภาพของตัวดูดซับและการสร้างแบบจำลอง ทางคณิตศาสตร์สำหรับไอโซเทอร์มของตัวดูดซับที่เกิดการเสื่อมสภาพในกระบวนการกำจัดน้ำ จากก๊าซธรรมชาติโดยใช้ตัวดูดซับ (Deactivation Modeling for the Adsorption Isotherm of Deactivated Adsorbents used in Natural Gas Dehydration Process) อ. ที่ปรึกษา : ผศ. คร. ศิริรัตน์ จิตการค้า, ผศ. คร. กิติพัฒน์ สีมานนด์, คร. ธนา ศรชำนิ และนายสุทธิภูมิ พุ่มหิรัญ 94 หน้า

การศึกษาการดูคซับน้ำออกจากก๊าซธรรมชาติโคยใช้ตัวดูคซับสองชนิค คือ อลูมินา และ 4A ซีโอไลท์ ในขณะที่ตัวดูดซับเกิดการเสื่อมสภาพเนื่องมาจากกระบวนการผ่านความร้อนและไอ น้ำ (Hydrothermal Steaming) โดยได้ศึกษาเชิงกายภาพถึงผลของการเสื่อมสภาพของตัวดูดซับที่มี จากการศึกษาพบว่าตัวดูดซับอลูมินาเมื่อผ่านความร้อนและไอน้ำในช่วง ต่อค่าการคคซับน้ำ อุณหภูมิ 300 ถึง 550 องศาเซลเซียส จะส่งผลให้พื้นที่ผิวลคลงจาก 200.2 เหลือเพียง 124.0 ตาราง เมตรต่อกรัมตามลำคับ และค่าการคูคซับน้ำก็ลคลงเป็นความสัมพันธ์แบบเส้นตรงตามจำนวน พื้นที่ผิวที่ลคลงนี้ด้วย สำหรับตัวดูดซับ 4A ซีโอไลท์ จากการศึกษาพบว่าตัวดูดซับชนิดนี้เกิดการ เสื่อมสภาพจากกระบวนการผ่านความร้อนและไอน้ำเช่นเคียวกัน แต่ความสัมพันธ์ระหว่างค่าการ เสื่อมสภาพต่อค่าการดูคซับของตัวดูคซับชนิคนี้ไม่เป็นแบบเส้นตรง ทั้งนี้ผลการวิเคราะห์โดย เครื่องสแกนนิ่งอิเล็คตรอนไมโครสโคป (SEM) ชี้ให้เห็นว่าขนาดของผลึกซีโอไลท์ 4A ที่ เสื่อมสภาพมีขนาคลคลงจากประมาณ 2 เป็น 1 ไมครอน นอกจากนี้ยังได้ทำการศึกษาหาไอโซเท อร์มของการดูดซับน้ำที่อุณหภูมิ 25 องศาเซลเซียส ความดัน 1 บรรยากาศ ของตัวดูดซับแต่ละ ชนิดทั้งยังไม่ได้เสื่อมสภาพและเมื่อเสื่อมสภาพแล้ว พบว่าสมการ Freundlich สามารถอธิบาย ไอโซเทอร์มของอลูมินาได้อย่างแม่นยำ และในส่วนของซีโอไลท์สมการของ Aranovich-Donohue ที่ปรับปรุงใช้กับสมการของ Toth นั้นสามารถอธิบายไอโซเทอร์มได้เป็นอย่างคีด้วย ซึ่งค่าคงที่ ้งองไอโซเทอร์มที่ได้จะถูกนำมาใช้ในแบบจำลองทางคณิตศาสตร์สำหรับหอดูคซับน้ำที่บรรจุตัว

ของ เอ เซเพอรมท เดงะถูกนามาเข เนแบบงาถองกางคณตศาลตรถาหรบทอดูดขบนาทบรรงุตร ดูดซับหลายชนิดอยู่ภายใน (หอดูดซับแบบมัลติเลเยอร์) ที่ถูกสร้างและพัฒนามาแล้วในงานก่อน หน้านี้ เพื่อนำมาใช้ในการทำนายเวลาเบรคทรูในเชิงทฤษฎีได้ และจากการทคลองพบว่า คุณลักษณะและแนวโน้มของกราฟเบรคทรูในทางทฤษฎีที่ได้จากการทำนายโดยแบบจำลองทาง คณิตศาสตร์สามารถทำนายความสามารถในการดูดซับน้ำได้อย่างแม่นยำ

ACKNOWLEDGEMENTS

This thesis could not be successful without the participation and support from the following individuals and organizations.

Firstly, I would like to express my deepest gratitude to Asst. Prof. Sirirat Jitkarnka, Asst. Prof. Kitipat Siemanond, and Dr. Thana Sornchamni for all of their special guidance and assistance through my work.

Also, it is a pleasure to acknowledge the PTT Public Co., Ltd. for providing the natural gas for my experimental study.

Thanks are also expressed to the faculty members and staffs of the Petroleum and Petrochemical College for their precious assistance. And I am grateful for the scholarship and funding of the thesis work provided by the Petroleum and Petrochemical College; and the National Excellence Center for Petroleum, Petrochemicals, and Advance Materials, Thailand.

Finally, I would like to give my thankfulness to Assoc. Prof. Pramoch Ruangsanvigit and Dr. Thammanoon Sreethawong for being my thesis committee. And also, I would like to extend my whole hearted gratitude to my family and my friends for their encouragement and measureless support.

TABLE OF CONTENTS

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	x
List of Figures	xiii
List of Symbols	xvii

CHAPTER

- •

Ι	INTRODUCTION	1
II	BACKGROUND AND LITERATURE SURVEY	3
	2.1 Background	3
	2.1.1 Natural Gas Components	3
	2.1.2 Natural Gas Dehydration	4
	2.1.3 Adsorption Dehydration	4
	2.1.4 Adsorption Equipment	5
	2.1.5 Adsorption Isotherms	7
	2.1.6 Adsorbents	10
	2.1.7 Deactivation	12
	2.1.8 Mathematical Model	13
	2.2 Literature Survey	14
III	EXPERIMENTAL	18
	3.1 Materials and Equipments	18
	3.1.1 Equipment	18
	3.1.2 Software	18

CHAPTER

1.2

	3.1.3 Chemicals	18
	3.2 Experimental Procedures	19
	3.2.1 Adsorbents Preparation	19
	3.2.2 Adsorbents Characterization	19
	3.2.3 Adsorption Isotherm	20
IV	MATHEMATICAL SOLVING METHOD	24
	4.1 Adsorption Isotherm Equations	24
	4.2 Mass Balance for Adsorber	24
	4.3 Deactivation Modeling Approaches	27
V	RESULTS AND DISCUSSION	31
	5.1 Adsorbent Preparation for Deactivation	31
	5.2 Adsorbent Characterization	32
	5.2.1 Fresh Adsorbent Characterization	32
	5.2.1.1 Static Adsorption Capacity	32
	5.2.1.2 Scanning Electron Microscopy	35
	5.2.1.3 Surface Area	37
	5.2.1.4 X-Ray Diffraction Patterns	37
	5.2.2 Deactivated Adsorbent Characterization	39
	5.2.2.1 Deactivated Alumina Characterization	39
	A. Static Adsorption Capacity	40
	B. Specific Surface Area	40
	C. Scanning Electron Microscopy	42
	D. X-Ray Diffraction Pattern	42
	5.2.2.2 Deactivated Molecular Sieve Zeolite	
	Characterization	44
	A. Static Adsorption Capacity	44
	B. Specific Surface Area	44

	C.	Average Crystal Size	45
	D.	X-Ray Diffraction Pattern	47
5.3 E	quilibrium	Adsorption Isotherm Development	49
5.	3.1 The E	Equilibrium Adsorption Isotherm	
	of Fre	esh Adsorbents	49
	5.3.1.1	Fresh Alumina	49
	5.3.1.2	Fresh Molecular Sieve Zeolite	49
	А.	Fresh 1/8" Molecular Sieve Zeolite	50
	B.	Fresh 1/16" Molecular Sieve Zeolite	51
5.	3.2 The E	Equilibrium Adsorption isotherms of Deactivated	
	Adsor	rbents	52
	5.3.2.1	Deactivated Alumina	52
	5.3.2.2	Deactivated Molecular Sieve Zeolite	53
	Α.	Deactivated 1/8" Molecular Sieve Zeolite	54
	B.	Deactivated 1/16" Molecular Sieve Zeolite	55
5.	3.3 Corre	lation of Constants in Equilibrium Adsorption	
	Isothe	erm with Degree of Deactivation	56
	5.3.3.1	Activated Alumina	56
1	5.3.3.2	Molecular Sieve Zeolite	57
5.4 E	xperimenta	al Breakthrough Curves	59
5.	4.1 Exper	rimental Breakthrough Curve of Fresh Fixed-bed	
	Adsor	ber packed with All Fresh Adsorbents	60
5.	4.2 Exper	imental Breakthrough Curve of Fixed-bed	
	Adsorl	ber packed with Deactivated Adsorbents	60
5.5 T	heoretical	Breakthrough Curve	61
5.	5.1 Comp	arison of Experimental and Theoretical	
	Breakt	hrough Curves of Fixed-bed packed with	
	Fresh .	Adsorbents	62
5.	5.2 Comp	arison of Experimental and Theoretical	
	Breakt	hrough Curves of Fixed-bed packed with	
	Deacti	vated Adsorbent	63

	5.6	Predicted Bre	eakthrough Time of Multi-Layer	
		Deactivated A	Adsorbers	63
V		CONCLUSI	ONS AND RECOMMENDATIONS	69
	6.1	Conclusions		69
	6.2	Recommenda	tions	70
		REFERENC	ES	71
		APPENDICI	ES	73
		Appendix A	Crystal size data from SEM analysis	73
		Appendix B	Crystal Size Distribution Plot of Molecular	
			Sieve Zeolite of size 1/8" and 1/16"	74
		Appendix C	Conditions for Adsorption experiment	79
		Appendix D	Conditions for breakthrough curve experiments	80
		Appendix E	Parameters Applied in Mathematical Model	81
		Appendix F	Bed void fraction of each adsorbent	83
		Appendix G	The Study of Sensitivity of Overall Mass	
			Transfer Coefficient (k) to the Shape of	
			the Breakthrough Curve	84
		Appendix H	The Study of Effect of the Bed Voidage to the	
			Breakthrough Time of Deactivated Adsorbents	85
		Appendix I	Hydrothermal steaming apparatus	87
		Appendix J	Simulation Program	88

CURRICULUM VITAE

.

....

94

LIST OF TABLES

TABL	Æ	PAGE	
2.1	Typical composition of natural gas	3	
2.2	Names and equations of applied conventional adsorption		
	isotherm models	8	
2.3	Properties and applications of zeolites	11	
2.4	Representative properties of commercial porous adsorbents	12	
5.1	Static adsorption capacity of fresh adsorbents at 100%RH		
	and 25°C	32	
5.2	Desorption temperature of fresh adsorbents at 100%RH and		
	25°C	34	
5.3	Scanning Electron microscopy images of fresh adsorbents	35	
5.4	Surface area of the general commercial adsorbents	37	
5.5	The specific surface area, pore volume, and monolayer		
	volume of fresh activated alumina from BET analysis	37	
5.6	The adsorption capacity analysis of fresh and deactivated		
	alumina	40	
5.7	The specific surface area analysis of fresh and deactivated		
	alumina	40	
5.8	Scanning Electron microscopy images of activated alumina		
	at several deactivation conditions	43	
5.9	Adsorption capacity at several aging conditions and		
	percentage of deactivation due to the loss of adsorption		
	capacity	44	
5.10	Average crystal size of molecular sieve zeolite and		
	the %deactivation at several aging conditions	45	
5.11	Comparison of the equilibrium adsorption isotherm		
	equations for fresh molecular sieve zeolite of size 1/8"	51	

5.12	Comparison of the equilibrium adsorption isotherm	
	equations for fresh molecular sieve zeolite of size 1/16"	52
5.13	Equilibrium adsorption isotherm equations of fresh and	
	deactivated alumina	53
5.14	Equilibrium adsorption isotherm equations of fresh and	
	deactivated 1/8" molecular sieve zeolite	54
5.15	Equilibrium adsorption isotherm equations of fresh and	
	deactivated 1/16" molecular sieve zeolite	55
5.16	Values of all constants in the equilibrium adsorption	
	isotherm equations of fresh and deactivated alumina	56
5.17	Values of all constants in the A-D equations of the fresh and	
	deactivated molecular sieve zeolite	58
5.18	Notation for adsorbents at various degrees of deactivation	64
5.19	The theoretically predicted breakthrough time of several sets	
	of deactivated beds	65
5.20	Predicted breakthrough time of the adsorber packed with	
	42.5% deactivated alumina (D_{1A}) on the top and Molsiv	
	adsorbents with various degrees of deactivation in the	
	bottom	66
5.21	Predicted breakthrough time of the adsorber packed with	
	88.3% deactivated alumina (D_{2A}) on the top and Molsiv	
	adsorbents with various degrees of deactivation in the	67
	bottom	
6.1	The deactivation range studied in this work	69
6.2	The differences of the experimental and theoretical	
	breakthrough times of fresh and deactivated bed	70
Al	Crystal size data of Molecular Sieve Zeolite of size 1/8"	73
A2	Crystal size data of Molecular Sieve Zeolite of size 1/16"	73
B1	Crystal Size Distribution of Molecular Sieve Zeolite of size	
	1/8"	74
	140	

B2	Crystal Size Distribution of Molecular Sieve Zeolite of size		
	1/16"	76	
C1	Conditions for Adsorption Experiments	79	
D1	Multi-layer adsorber	80	
El	Parameters applied in mathematical model	81	
Gl	The comparison of breakthrough time predicted from several		
	k value	84	
Hl	The bed void fraction provided in theoretical breakthrough		
	model for 88.3% deactivated alumina, 15.13% deactivated		
	1/8" molsiv, and 14.10% deactivated molsiv at the contact		
	time of 9.83 sec and the feed humidity of 30%RH	85	

xii

LIST OF FIGURES

FIGURE

2.1	Pressure-swing adsorption for the dehydration process	6
2.2	IUPAC classifications of gas adsorption isotherms	7
4.1	Change of the breakthrough time upon degree of	
	deactivation in a packed bed adsorber	28
4.2	Activity as a function of process time	28
4.3	Relationship between the breakthrough time ratio and	
	deactivation ratio of the deactivated adsorbents in various	
	expected manners	30
5.1	Weight loss of water saturated on fresh adsorbents from	
	TG/DTA experiments	33
5.2	Weight loss derivative of water saturated on fresh adsorbents	
	from TG/DTA experiments	34
5.3	The size distribution of molecular sieve zeolite of size 1/8"	36
5.4	The size distribution of molecular sieve zeolite of size 1/16"	36
5.5°	X-Ray Diffraction pattern of fresh activated alumina	38
5.6	X-Ray Diffraction pattern of fresh molecular sieve zeolite of	
	size 1/8"	38
5.7	X-Ray Diffraction pattern of fresh molecular sieve zeolite of	
	size 1/16"	39
5.8	Specific surface area and the adsorption capacity of the	
	activated alumina at several aging conditions	41
5.9	Relationship between the loss of adsorption capacity and the	
	reduction of specific surface area of deactivated alumina	42
5.10	The XRD patterns of fresh alumina: (a) fresh, (b) 67.92%	
	deactivation, and (c) 88.30% deactivation	42

PAGE

5.11	Adsorption capacity and the average crystal size of the	
	deactivated 1/8" molecular sieve zeolite at various numbers	
	of batches	46
5.12	Adsorption capacity and the average crystal size of the	
	deactivated 1/16" molecular sieve zeolite at various numbers	
	of batches	46
5.13	The relationship of the loss of adsorption capacity and the	
	reduction of average crystal size of 1/8" molecular sieve	
	zeolite	47
5.14	The relationship of the loss of adsorption capacity and the	
	reduction of average crystal size of 1/16" molecular sieve	
	zeolite	47
5.15	The XRD patterns of 1/8" Molecular sieve: (a) fresh,	
	(b)10.81% deactivation, and (c) 15.13% deactivation	48
5.16	The XRD patterns of 1/16" Molecular sieve: (a) fresh, (b)	
	5.79% deactivation, and (c) 14.10% deactivation	48
5.17	Adsorption Isotherm of fresh alumina	49
5.18	Equilibrium adsorption isotherm of fresh 1/8" molecular	
	sieve zeolite	50
5.19	Equilibrium dsorption isotherm of fresh 1/16" molecular	
	sieve zeolite	51
5.20	The equilibrium adsorption isotherms of activated alumina	
	of fresh, 42.46, 67.92, 77.97, and 88.30% deactivated due to	
	loss of their adsorption capacities	53
5.21	The equilibrium adsorption isotherms of 1/8" molecular	
	sieve zeolite at several percentages of deactivation by the	
	loss of their adsorption capacity	54
5.22	The equilibrium adsorption isotherms of 1/16" molecular	
	sieve zeolite at several percentages of deactivation by the	
	loss of their adsorption capacity	56

5.23	Relationship between constants a and b in the Freundlich	
	equations and degree of deactivation of the alumina	57
5.24	Relationship between constant b in A-D for Toth equations	
	of the 1/8" and 1/16" molecular sieve zeolite and degree of	
	deactivation	58
5.25	Relationship between constant t in A-D for Toth equations of	
	the 1/8" and 1/16" molecular sieve zeolite and degree of	
	deactivation	59
5.26	Relationship between constant d in A-D for Toth equations	
	of the 1/8" and 1/16" molecular sieve zeolite and degree of	
	deactivation	59
5.27	Experimental breakthrough curve of the fresh bed packed	
	with the fresh adsorbents (the inlet water concentration of	
	30%RH and the contact time of 9.83s)	60
5.28	Experimental breakthrough curve of the bed packed with	
	88.3% deactivated alumina, 15.13% deactivated 1/8" mol siv,	
	and 14.10% deactivated molsiv (inlet water concentration of	
	30%RH, and the contact time of 9.83s)	61
5.29	Comparison between the experimental and theoretical	
	breakthrough curves at the contact time of 9.83 sec and the	
	feed humidity of 30%RH	62
5.30	Comparison between experimental and theoretical	
	breakthrough curves of fixed-bed adsorber packed with	
	88.3% deactivated alumina, 15.13% deactivated 1/8" molsiv,	
	and 14.10% deactivated molsiv at the contact time of 9.83	
	sec and the feed humidity of 30%RH	63
5.31	Relationship of deactivation ratio and theoretical	
	breakthrough time ratio for each adsorbents	65

5.32	Predicted breakthrough time of the adsorber packed with		
	42.5% deactivated alumina (D_{1A}) on the top and Molsiv		
	adsorbents with various degrees of deactivation in the		
	bottom	67	
5.33	Predicted breakthrough time of the adsorber packed with		
	88.3% deactivated alumina (D_{2A}) on the top and Molsiv		
	adsorbents with various degrees of deactivation in the		
	bottom	68	
F1	The porosity as a function of the ratio of particle diameter to		
	bed diameter	83	
Gl	Comparison between the experimental and theoretical		
	breakthrough curves with influence of the overall mass		
	transfer coefficient at the contact time of 9.83 sec and the		
	feed humidity of 30%RH	84	
H1	Comparison between the experimental and theoretical		
	breakthrough curves of deactivated adsorbents at the contact		
	time of 9.83 sec and the feed humidity of 30%RH	86	
I1	Hydrothermal steaming apparatus	87	
	19-10 C		

xvi

LIST OF SYMBOLS

SYMBOL

a, b, t, d	adsorption constant
c	adsorbate concentration in fluid phase, (mol/l)
С	total concentration, (mol/l)
D_L	axial dispersion coefficient, (cm ² /s)
К	overall mass transfer coefficient, (l/s)
Р	water vapor pressure, (kP)
q*	equilibrium value of q
t	time, (s)
Т	temperature, (K)
v	interstitial velocity of fluid, (cm/s)
Z	distance measure from column inlet, (cm)

GREEK LETTERS

ε	bed void fraction
ρ	density of mixing gas, (g/cm.s)
$\sigma_{\scriptscriptstyle AB}$	collision diameter from Lennard-Jones potential
$\Omega_{_{AB}}$	collision integral