DEVELOPMENT OF INDUSTRIALIZED Ru/MCM-48 AND Ru/HMOR-BASED CATALYSTS FOR WASTE TIRE PYROLYSIS

Chaiyaporn Witpathomwong

1.00

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University, and Institut Français du Pétrole 2011

123375051

Thesis Title:	Development of Industrialized Ru/MCM-48 and Ru/HMOR-	
	Based Catalysts for Waste Tire Pyrolysis	
By:	Chaiyaporn Witpathomwong	
Program:	Petrochemical Technology	
Thesis Advisor:	Assoc. Prof. Sirirat Jitkarnka	
	Assoc. Prof. Sujitra Wongkasemjit	

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

..... College Dean (Asst. Prof. Pomthong Malakul)

Thesis Committee:

(Assoc. Prof. Sirirat Jitkarnka)

(Assoc. Prof. Sujitra Wongkasemjit)

.

(Asst. Prof. Thammanoon Sreethawong)

KODI M

(Dr. Kosin Wuttichareonwong)

ABSTRACT

5271005063: Petrochemical Technology Program Chaiyaporn Witpathomwong: Development of Industrialized Ru/MCM-48 and Ru/HMOR-Based Catalyst for Waste Tire Pyrolysis Thesis Advisor: Assoc. Prof. Sirirat Jitkarnka and Assoc. Prof. Sujitra Wongkasemjit 148 pp.
Keywords: Pyrolysis/ Waste Tires/ Light Olefins/ Ruthenium/ HMOR/ MCM-48/ Matrix/ Binder

The demands of light olefins are continuously increased because each of them is one of the Seven Sisters, which are the major raw materials of petrochemical industry. The light olefins can be produced by the oxidative dehydrogenation of alkane, the steam cracking of parafinic hydrocarbon, and the fluid catalytic cracking of heavy oils. This work developed an industrial catalyst of catalytic pyrolysis waste tire for producing light olefins. The industrial catalysts consisted of various combinations of (1) the active component, either Ru/MCM-48 or Ru/HMOR, (2) matrixes such as kaolin, bentonite, montmorillonite, or talcum, and (3) the binder (α alumina). The study on Ru/MCM-48 based extrudates revealed that the combination; 15% of Ru/MCM-48, 75% of the matrix, and 10% of the binder, was the appropriate composition to produce the highest amount of light olefins. For Ru/HMOR based extrudates, the appropriate composition was 10% of Ru/HMOR, 80% of kaolin, and 10% of α -alumina. The particles of an active component usually generate heat which causes over-cracking. A matrix in the catalyst then helps to spread the heat from the active component in order to prevent over-cracking. In addition, the study of various types of matrix found that bentonite and talc were the best matrixes and heat dissipaters. They help improving the selectivity of light olefins in the gas product.

บทคัดย่อ

ชัยพร วิทย์ปฐมวงส์ : การพัฒนาตัวเร่งปฏิกิริยารูทีเนียมบนวัสคุรูพรุนขนาดกลางเอ็ม ซีเอ็มสี่สิบแปคและรูทิเนียมบนมอร์คีไนท์ซีโอไลท์เพื่อการอุตสาหกรรมไพโรไรซิสยางหมด สภาพ (Development of Industrialized Ru/MCM-48 and Ru/HMOR-Based Catalyst for Waste Tires Pyrolysis) อ. ที่ปรึกษา : รศ. คร. ศิริรัตน์ จิตการค้า และ รศ. คร. สุจิตรา วงศ์เกษมจิตต์ 148 หน้า

ความต้องการของโอเลฟินส์เบาในปัจจุบันเพิ่มขึ้นอย่างต่อเนื่องเพราะว่าเป็น 1 ใน 7 ้วัตถุคิบหลักของอุตสาหกรรมปีโตรเกมี งานวิจัยชิ้นนี้เป็นการพัฒนาตัวเร่งปฏิกิริยาอุตสาหกรรม ในการไพโรไลซิสยางหมดสภาพเพื่อผลิตโอเลฟินส์เบา ตัวเร่งปฏิกิริยาสำหรับใช้ในอุตสาหกรรม มักจะประกอบไปค้วย (1) ตัวว่องไว ซึ่งในงานวิจัยนี้ได้แก่ โลหะรูธีเนียมบนตัวรองรับสองชนิด ้ คือ วัสคุรูที่มีพรุนขนาคกลางที่เรียกว่าเอ็มซีเอ็มสี่สิบแปคหรือมอร์คีไนท์ซีโอไลท์ (2) ตัวเมทริกซ์ ซึ่งได้แก่ ดินเกาลิน, ดินเบนโทไนท์, ดินมอนมอริลโลไนท์ และ ดินแทลคัม และ (3) ตัวประสาน ้ได้แก่ แอลฟาอลูมินา จากการศึกษาเพื่อหาส่วนประกอบที่เหมาะสมของตัวเร่งปฏิกิริยาโลหะรูธี เนียมบนตัวรองรับวัสคุรูพรุนขนาคกลาง เอ็มซีเอ็มสี่สิบแปคพบว่า 15% ของรูธีเนียมบนวัสคุรู พรุนขนาคกลาง เอ็มซีเอ็มสี่สิบแปค, 75% ของตัวเมทริกซ์, และ 10% ของตัวประสาน เป็น ้ส่วนผสมที่เหมาะสมในการผลิตโอเลฟีนส์เบาได้มากที่สุด สำหรับโละหะรูธีเนียมบนตัวรองรับ มอร์ดีในท์ซีโอไลท์ ส่วนประกอบที่เหมาะสมคือ 10% ของรูธิเนียมบนมอร์ดีในท์ซีโอไลท์, 80% ของตัวเมทริกซ์, และ 10% ของตัวประสาน ตัวรองรับในตัวเร่งปฏิกิริยาจะช่วยกระจายความร้อน ้ที่เกิดขึ้นในปฏิกิริยาจากตัวว่องไว ทำให้ไม่เกิดจากแตกตัวต่อ และจากการศึกษาหาประเภทของตัว เมทริกซ์ที่เหมาะสมได้พบว่าดินเบนโทไนท์และดินแทลคัมเป็นตัวเมทริกซ์ที่เหมาะสมและที่สุด การที่มีตัวเมทริกซ์ที่เหมาะสมจะช่วยทำให้เพิ่มการเลือกสรรค์ต่อการเกิดโอเลฟินส์เบาใน ผลิตภัณฑ์แก๊ส

ACKNOWLEDGEMENTS

First of all, I need to thank god for his blessing, inspiration, and power to do everything.

Moreover, I would like to thank Assoc. Prof. Sirirat Jitkarnka, my advisor, who created this thesis, recommended, forced, and guided to the successful work. For the other, I will not forget Assoc. Prof. Sujitra Wongkasemjit for her suggestions on the synthesis of materials and supports.

I am thankful to Ms. Rujirat Longloilert, a Ph.D. student for her suggestions on synthesizing substances and MCM-48 for me.

I would like to thank Mr. Udomsak and Compound Clay Co,Ltd. for supporting clays used.

I am proud to be a student at the Petroleum and Petrochemical College, and thank for the funding agents for in the research, including Thailand Research Fund, the Commissions on Higher Education and the National Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials, Chulalongkorn University, Thailand. In addition, all PPC's staff helps to teach and maintain the machinery instrument.

Finally, I would like to thank all my friends and Ph.D. students for their friendly cheerful, creative suggestions and useful assistance. Also, I would like to gratitude to my parents for their care, love, an78 understanding all supports to me all the time.

TABLE OF CONTENTS

			PAGE
	Title	Page	i
	Abst	ract (in English)	iii
	Abst	ract (in Thai)	iv
	Ackr	nowledgements	v
	Table	e of Contents	vi
	List o	of Tables	ix
	List	of Figures	xvi
CH	APTE	R	
	Ι	INTRODUCTION	1
	II	LITERATURE REVIEW	3
		2.1 The Process Conditions	3
		2.2 Catalytic Pyrolysis	4
		2.3 The Mesoporous Silica Materials	6
		2.4 Supported Ruthenium Catalysts	9
		2.5 The Applications of Clay Minerals	10
	111	EXPERIMENTAL	15
		3.1 Materials	15
		3.2 Equipment	15
		3.3 Chemicals and Solvents	15
		3.4 Methodology	16
		3.4.1 Catalyst Preparation	16
		3.4.2 Pyrolysis Experiment	18
		3.4.3 Oil Analysis	19
		3.4.4 Gas Analysis Catalyst	21
		3.4.5 Characterization	21

VI	RE	CSULTS AND DISCUSSION	23
	4.1	Effect of Each Component on Pyrolysis Products	23
		4.1.1 Characterization of Component	23
		4.1.2 Pyrolysis Results	27
		4.1.3 Discussion: Activity of Each Component	35
	4.2	Ru/MCM-48-Based Extrudates	37
		4.2.1 Product Yield from Using Ru/MCM-48-based	
		Extrudate	38
		4.2.2 Light Olefins Production from Using	
		Ru/MCM-48-Based Extrudates	39
		4.2.3 Molecular Compositions, Asphalentene, Sulfur	
		in Pyrolytic Oil, and Coke and Sulfur Deposition	
		on Spent Extrudates from Using Ru/MCM-48	
		Based Extrudates	40
		4.2.4 Petroleum Fractions from Using Ru/MCM-48 Based	ł
		Extrudates	42
		4.2.5 Discussion: Ru/MCM-48 Based Extrudates	43
	4.3	Ru/HMOR-Based Extrudates	44
		4.3.1 Product Yields from Using Ru/HMOR-Based	
		Extrudates	45
		4.3.2 Light Olefins Production from Using Ru/HMOR-Ba	ised
		Extrudates	46
		4.3.3 Pyrolytic Oils from Using Ru/HMOR Based Extrud	ates 47
		4.3.4 Petroleum Fractions from Using Ru/HMOR Based	
		Extrudates	49
		4.3.5 Discussion: Ru/HMOR Based Extrudates	50
	4.4	The Effect Matrix Type	51
		4.4.1 Characterization of Matrixes	51

V

4.4.2 Product Yields from Using Various Different		
Matrixes in Extrudates	54	
4.4.3 Light Olefins Production from Using Different		
Matrixes in the Extrudates	54	
4.4.4 Pyrolytic Oils from Using Different Matrixes in the		
Extrudates	55	
4.4.5 Petroleum Fractions from Using the Different		
Matrixes in the Extrudates	57	
4.4.6 Discussion: The Effect of Matrix Types	58	
CONCLUSIONS AND RECOMMENDATIONS	61	
REFERENCES		
APPENDICES	68	
Appendix A Operating Temperature	68	
Appendix B Yields of Pyrolysis Products	90	
Appendix C The Pyrolysis Gas Compositions	91	
Appendix D Amount of Asphaltene in Pyrolysis Oil	94	
Appendix E Chemical Compositions of Maltenes	94	
Appendix F True Boiling Point of Maltenes	97	
Appendix G True Boiling Point of Maltenes, Saturated		
Hydrocarbons, Mono-, Di-, Poly-, and Polar		
-Aromatics in Maltenes	101	
Appendix H Carbon Number Distributions	122	
Appendix I Petroleum Fraction of Derived Oils	146	

CURRICULUM VITAE

148

LIST OF TABLES

TABLE		PAGE
2.1	The properties of the purified sample clays	11
3.1	The optimized compositions and volumes of mobile phases	
	for preparative separation of petroleum maltenes using the	
	chromatographic column	20
4.1	Physical properties of individual catalysts from BET method	25
4.2	Nomenclatures of Ru/MCM-48-based extrudates	38
4.3	Relative ratio of saturated and mono-aromatic hydrocarbons	
	to total aromatics obtained from using the Ru/MCM-48-	
	based extrudates	41
4.4	Percentage of asphaltene, sulfur in oils, sulfur on spent ex-	
	trudates and coke deposition from using Ru/MCM-48 based	
	extrudates	42
4.5	Nomenclatures for Ru/HMOR-based catalysts	45
4.6	Relative ratio of saturated and mono-aromatic hydrocarbons	
	to total aromatic from using the Ru/HMOR-based extrudates	48
4.7	Percentage of asphaltene, sulfur in oils, and sulfur and coke	
	on spent extrudates from using Ru/HMOR based extrudates	49
4.8	Nomenclature of the extrudates compounded from various	
	clay matrixes	51
4.9	Physical properties of each component in the extrudated	
	catalysts	52
4.10	Relative ratio of saturated and mono-aromatic hydrocarbons	
	to total aromatic from using the extrudates composed of dif-	
	ferent matrixes	56

4.11	Percentage of asphaltene, sulfur in oils, and sulfur and coke		
	on spent extrudates content from using matrixes extrudates		
	composed of different matrixes	57	
4.12	Thermal conductivity of each component used in the extru-		
	dates	60	
Al	Temperature profiles: Batch 1 (no Cat)	68	
A2	Temperature profiles: Batch 2 (HMOR)	69	
A3	Temperature profiles: Batch 3 (Ru/HMOR)	70	
A4	Temperature profiles: Batch 4 (Kaolin)	71	
A5	Temperature profiles: Batch 5 (Alumina)	72	
A6	Temperature profiles: Batch 6 (5-7RMOR)	73	
A7	Temperature profiles: Batch 7 (10-7RMOR)	74	
A8	Temperature profiles: Batch 8 (15-7RMOR)	75	
A9	Temperature profiles: Batch 9 (20-7RMOR)	76	
A10	Temperature profiles: Batch 10 (non-cat 10)	77	
A11	Temperature profiles :Batch 11 (MCM-48)	78	
A12	Temperature profiles :Batch 12 (Ru/MCM-48)	79	
A13	Temperature profiles :Batch 13 (5-7RM48)	80	
A14	Temperature profiles :Batch 14 (10-7RM48)	81	
A15	Temperature profiles :Batch 15 (15-7RM48)	82	
A16	Temperature profiles :Batch 16 (20-7RM48)	83	
A17	Temperature profiles :Batch 17 (Bentonite)	84	
A18	Temperature profiles :Batch 18 (Montmorillonite)	85	
A19	Temperature profiles :Batch 19 (Talc)	86	
A20	Temperature profiles :Batch 20 (5-7RM-ben)	87	
A21	Temperature profiles :Batch 21 (5-7RM-mont)	88	
A22	Temperature profiles :Batch 22 (5-7RM-talc)	89	

B1	Weight percentage of pyrolysis products obtained from indi-	
	vidual catalysts	90
B2	Weight percentage of pyrolysis products bbtained from the	
	Ru/MCM-48 based extrudates	90
B3	Weight percentage of pyrolysis products obtained from the	
	Ru/HMOR-based extrudates	90
B4	Weight percentage of pyrolysis products from using various	
	matrixes	91
Cl	Weight percentage of gas product obtained from individual	
	catalysts	91
C2	Weight Percentage of gas productoObtained from the 0.7%	
	Ru/MCM-48 based extrudates	92
C3	Weight percentage of gas products obtained from the 0.7%	
	Ru/HMOR-based extrudates	92
C4	Weight percentage of gas products from the using various	
	matrixes	93
Dl	Amount of asphaltene in pyrolysis oils	94
El	Molecular compositions of maltenes obtained from each	
	component	94
E2	Molecular compositions of maltenes obtained from the	
	Ru/MCM-48 based extrudates	95
E3	Molecular compositions of maltenes obtained from the	
	Ru/HMOR-based extrudates	95
E4	Molecular compositions of maltenes from using various ma-	
	trixes	96
Fl	True boiling point curve of maltenes obtained from each	
	component	97

Are a first server of an its

F2	True boiling point curve of maltenes obtained from the	
	Ru/MCM-48 based extrudates	98
F3	True boiling point curve of maltenes obtained from the	
	Ru/HMOR-based extrudates	99
F4	True boiling point curve of maltenes from using various	
	matrixes	100
Gl	Batch 1 (no Cat)	101
G2	Batch 2 (MCM-48)	102
G3	Batch 3 (Ru/HMOR)	103
G4	Batch 4 (Kaolin)	104
G5	Batch 5 (Alumina)	105
G6	Batch 6 (5-7RM48)	106
G7	Batch7 (10-7RM48)	107
G8	Batch8 (15-7RM48)	108
G9	Batch9 (20-7RM48)	109
G10	Batch 10 (HMOR)	110
G11	Batch 11 (Ru/HMOR)	111
G12	Batch 12 (5-7RMOR)	112
G13	Batch 13 (10-7RMOR)	113
G14	Batch 14 (15-7RMOR)	114
G15	Batch 15 (20-7RMOR)	115
G16	Batch 16 (Bentonite)	116
G17	Batch 17 (Montmorillonite)	117
G18	Batch 18 (Talc)	118
G19	Batch 19 (5-7RM-ben)	119
G20	Batch 20 (5-7RM-mon)	120
G21	Batch 21 (5-7RM-talc)	121

Hl	Carbon number distribution of maltenes obtained from	
	each component	122
H2	Carbon number distribution of maltenes obtained from the	
	Ru/MCM-48 based extrudates	123
H3	Carbon number distribution of maltenes obtained from the	
	Ru/HMOR extrudates	124
H4	Carbon number distribution of maltenes from using vari-	
	ous matrixes	125
H5	Carbon number distribution of saturated hydrocarbons ob-	
	tained from each component	126
H6	Carbon number distribution of saturated hydrocarbons ob-	
	tained from the Ru/MCM-48 extrudates	127
H7	Carbon number distribution of saturated hydrocarbons ob-	
	tained from the Ru/HMOR extrudates	128
H8	Carbon number distribution of saturated hydrocarbons	
	from using various matrixes	129
H9	Carbon number distribution of mono-aromatic hydrocar-	
	bons obtained from each component	130
H10	Carbon number distribution of mono-aromatic hydrocar-	
	bons obtained from the Ru/MCM-48 extrudates	131
H11	Carbon number distribution of mono-aromatic hydrocar-	
	bons obtained from the Ru/HMOR extrudates	132
H12	Carbon number distribution of mono-aromatic hydrocar-	
	bons from using various mtrixes	133
H13	Carbon number distribution of di-aromatic hydrocarbons	
	obtained from each component	134

H14	Carbon number distribution of di-aromatic hydrocarbons	
	obtained from the Ru/MCM-48 extrudates	135
H15	Carbon number distribution of di-aromatic hydrocarbons	
	obtained from the Ru/HMOR extrudates	136
H16	Carbon number distribution of di-aromatic hydrocarbons	
	from using various matrixes	137
H17	Carbon number distribution of poly-aromatic hydrocarbons	
	obtained from each component	138
H18	Carbon number distribution of poly-aromatic hydrocarbons	
	obtained from the Ru/MCM-48 extrudates	139
H19	Carbon number distribution of poly-aromatic hydrocarbons	
	obtained from the Ru/HMOR extrudates	140
H20	Carbon number distribution of poly-aromatic hydrocarbons	
	from using various matrixes	141
H21	Carbon number distribution of polar-aromatic hydrocar-	
	bons obtained from each component	142
H22	Carbon number distribution of polar-aromatic hydrocar-	
	bons obtained from the Ru/MCM-48 extrudates	143
H23	Carbon number distribution of polar-aromatic hydrocar-	
	bons obtained from the Ru/HMOR extrudates	144
H24	Carbon number distribution of polar-aromatic hydrocar-	
	bons from the using various matrixes	145
I1	Petroleum fractions of derived oils obtained from each	
	component	146
I2	Petroleum fractions of derived oils obtained from the	
	Ru/MCM-48 based extrudates	146

I3	Petroleum fractions of derived oils obtained from the	
	Ru/HMOR based extrudates	146
I4	Petroleum fractions of derived oils from using various ma-	
	trixes	147

LIST OF FIGURES

FIGU	JRE		PAGE
2.1	The pore structure of the Mobil composition of		
	matter or MCM: (a) MCM-41 (1-D) and (b) MCM-48		
	(3-D)		7
2.2	XRD results of MCM-41 and MCM-48 with and		
	without platinum loaded		8
3.1	An autoclave reactor used in the experiment		18
3.2	Schematic of the pyrolysis process		19
4.1	Variation of the pore size distribution of the		
	individual catalysts		26
4.2	XRD patterns of (a) HMOR zeolite, and (b) MCM-48		
	mesoporous material		27
4.3	Gas and oil production from the catalytic pyrolysis of		
	scrap tire using each component		32
4.4	Gas compositions from the catalytic pyrolysis of		
	scrap tire using each component		32
4.5	Light olefins yield in the gas products from using		
	each component		33
4.6	Ratio of saturated hydrocarbon to total aromatic		
	compound of the oil from the catalytic pyrolysis of		
	scrap tire using each component		33
4.7	Ratio of mono-aromatic hydrocarbon to total		
	aromatic compound in the oils from using each com-		
	ponent		34
4.8	Petroleum fractions in the derived oils from each		
	component		34
	FIGU 2.1 2.2 3.1 3.2 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8	 FIGURE 2.1 The pore structure of the Mobil composition of matter or MCM: (a) MCM-41 (1-D) and (b) MCM-48 (3-D) 2.2 XRD results of MCM-41 and MCM-48 with and without platinum loaded 3.1 An autoclave reactor used in the experiment 3.2 Schematic of the pyrolysis process 4.1 Variation of the pore size distribution of the individual catalysts 4.2 XRD patterns of (a) HMOR zeolite, and (b) MCM-48 mesoporous material 4.3 Gas and oil production from the catalytic pyrolysis of scrap tire using each component 4.4 Gas compositions from the catalytic pyrolysis of scrap tire using each component 4.5 Light olefins yield in the gas products from using each component 4.6 Ratio of saturated hydrocarbon to total aromatic compound of the oil from the catalytic pyrolysis of scrap tire using each component 4.7 Ratio of mono-aromatic hydrocarbon to total aromatic compound in the oils from using each component 4.8 Petroleum fractions in the derived oils from each component 	 FIGURE 2.1 The pore structure of the Mobil composition of matter or MCM: (a) MCM-41 (1-D) and (b) MCM-48 (3-D) 2.2 XRD results of MCM-41 and MCM-48 with and without platinum loaded 3.1 An autoclave reactor used in the experiment 3.2 Schematic of the pyrolysis process 4.1 Variation of the pore size distribution of the individual catalysts 4.2 XRD patterns of (a) HMOR zeolite, and (b) MCM-48 mesoporous material 4.3 Gas and oil production from the catalytic pyrolysis of scrap tire using each component 4.4 Gas compositions from the catalytic pyrolysis of scrap tire using each component 4.5 Light olefins yield in the gas products from using each component 4.6 Ratio of saturated hydrocarbon to total aromatic compound of the oil from the catalytic pyrolysis of scrap tire using each component 4.7 Ratio of mono-aromatic hydrocarbon to total aromatic compound in the oils from using each component 4.8 Petroleum fractions in the derived oils from each component

FIGUREPAGE4.9Asphaltene in the derived oils from using each com-

	popept	35
4 10	Product Violds from using the Pu/MCM 48 based	55
4.10	entroducer i fields from using the Rumicini-48-based	20
		39
4.11	Light olefins production from Using the Ru/MCM-48-	
	based extrudates	40
4.12	Petroleum fractions in the derived oils from using	
	Ru/MCM-48 based extrudates	43
4.13	Product Yields from using the Ru/HMOR-based ex-	
	trudates	46
4.14	Light olefins production using the Ru/HMOR-based	
	extrudates	47
4.15	Petroleum fractions from using Ru/HMOR based ex-	
	trudates	50
4.16	Variation of the pore sizes of the studied clays and α -	
	alumina	53
4.17	Gas and oil yields from using different matrixes in the	
	extrudates	54
4.18	Light olefins production from using different matrixes	
	in the extrudates	55
4.19	Petroleum fractions from using the extrudates com-	
	posed of different matrixes	58
Al	Temperature profile Bacth 1 (no cat)	66
A2	Temperature profiles: Batch 2 (HMOR)	69
A3	Temperature profiles: Batch 3 (Ru/HMOR)	70
A4	Temperature profiles: Batch 4 (Kaolin)	71
A5	Temperature profiles: Batch 5 (Alumina)	72
A6	Temperature profiles: Batch 6 (5-7RMOR)	73

FIGURE

A7	Temperature profiles: Batch 7 (10-7RMO	74
A8	Temperature profiles: Batch 8 (15-7RMOR)	75
A9	Temperature profiles: Batch 9 (20-7RMOR)	76
A10	Temperature profiles: Batch 10 (non-cat 10)	77
A11	Temperature profiles :Batch 11 (MCM-48)	78
A12	Temperature profiles :Batch 12 (Ru/MCM-48)	79
A13	Temperature profiles :Batch 13 (5-7RM48)	80
A14	Temperature profiles :Batch 14 (10-7RM48)	81
A15	Temperature profiles :Batch 15 (15-7RM48)	82
A16	Temperature profiles :Batch 16 (20-7RM48)	83
A17	Temperature profiles :Batch 17 (Bentonite)	84
A18	Temperature profiles :Batch 18 (Montmorillonite)	85
A19	Temperature profiles :Batch 19 (Talc)	86
A20	Temperature profiles :Batch 20 (5-7RM-ben	87
A21	Temperature profiles :Batch 21 (5-7RM-mont)	88
A22	Temperature profiles :Batch 22 (5-7RM-talc	89