REFERENCES

- Aboul-Gheit, A.K., Aboul-Fotouh, S.M., and Aboul-Gheit, N.A.K., (2005). Hydroconversion of cycloexene using catalysts containing Pt, Pd, Ir and Re supported on H-ZSM-5 zeolite. <u>Applied Catalysis A: General</u>, 283, 157-164.
- Aboul-Gheit, A.K., Aboul-Fotouh, S.M., and Aboul-Gheit, N.A.K., (2005). Effect of combining palladium, iridium or rhenium with platinum supported on H-ZSM-5 zeolite on their cyclohexene hydroconversion activites. <u>Applied Catalysis A: General</u>, 292, 144-153.
- Arabiourrutia, M., Olazar, M., Aguado, R., López, G., Barona, A., and Bilbao, J. (2008). HZSM-5 and HY Zeolite Catalyst Performance in the Pyrolysis of Tires in a Conical Spouted Bed Reactor. <u>Industrial & Enginerring Chemistry Research</u>, 47, 7600-7609.
- Aunziata, O.A., Eimer, G.A., and Liliana, L.B. (1999). Ethane conversion into aromatic hydrocarbon over molybdenum-containing MEL zeolites. <u>Applied</u> <u>Catalysis A: General</u>, 182, 267-247.
- Barbooti, M.M., Mohamed, T.J., Hussain, A.A., and Abas, F.O. (2004) Optimization of pyrolysis conditions of scrap tires under inert gas atmosphere. Journal of Analytical and Applied Pyrolysis, 72. 165-170.
- Banallal, B., Roy, C., Pakdel, H., and Poirier, A. (1995). Caracterization of pyrolytic light naphtha from vacuum pyrolysis of used tyres Comparison with petroleum naphtha. <u>Fuel</u>, 74, 1589-1594.
- Berrueco, C., Esperanza, E., Mastral, F.J., Ceamanos, J., and Garcia-Bacaicoa, P. (2005). Pyrolysis of waste tyres in an atmospheric static-bed batch reactor: Analysis of gases obtained. Journal of Analytical and Applied Pyrolysis, 74, 245-253.
- Bécue, T., Maldonado-Hodar, F.J., Antunes, A.P., Silva, J.M., Ribeiro, M.F., Massiani, P., and Kermarec, M. (1999). Influence of Cesium in Pt/NaCsβ on the Physico-Chemical and Catalytic Properties of the Pt Clusters in the Aromatization of n-Hexane. Journal of Catalysis, 181, 244-255.

- Brot, F. "Rhenium." Chemical & Engineering News. 19 Oct 2009. 5 April 2010. http://pubs.acs.org/cen/80th/rhenium.html#Anchor-Fre-35594
- Burch, R. and Mitchell, A. J. (1983). The role of tin and rhenium in bimetallic reforming catalysts. <u>Applied Catalysis</u>, 6, 121-128.
- Carter, J.L., McVicker, G.B., Weissman, W., Kmak., W.S., and Sinfelt, J.H. (1982). Bimetallic Catalysts; Application in Catalytic Reforming. <u>Applied</u> <u>Catalysis</u>, 3, 327-346.
- Chaala, A. and Roy, C. (1996). Production of coke from scrap tire vacuum pyrolysis oil. <u>Fuel Processing Technology</u>, 46, 227-239.
- Chen, L., Lin, L., Xu, Z., Li, X., and Zhang, T. (1995). Dehydro-oligomerization of Methane to Ethylene and Aromatics over Molybdenum/HZSM-5 Catalyst. Journal of Catalysis, 157, 190-200.
- Choosuton A. (2007). <u>Development of Waste Tire Pyrolysis for the Production of</u> <u>Commercial Fuels: Effect of Noble Metals and Supports</u> M.S. Thesis, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand.
- Cunliffe, A.M. and Williams, P.T., (1999). Composition of oils derived from the batch pyrolysis of tyres. Journal of Analytical and Applied Pyrolysis, 44, 131-152.
- Dai, X., Yin, X., Wu, C., Zhang, W., and Chen, Y. (2001). Pyrolysis of waste tires in a circulating fluidized-bed reactor. <u>Energy</u>, 26, 385-399.
- Dũng, N.A. (2009). Light Oil Production from Waste Tire Pyrolysis using Noble Metal-Supported Catalysts. Ph.D. Thesis, The Petroleum and Petrochemical college, Chulalongkorn University, Bangkok, Thailand.
- Gao, J., Lou, H., Zhao, H., and Zheng, X. (2005). Dehydrogenation and aromatization of propane over rhenium-modified HZSM-5 catalyst. <u>Journal</u> <u>of Molecular Catalysis</u>, 239, 222-227.
- Galvagno, S., Casu, S., Casabianca, T., Calabrese, A., and Cornacchia, G. (2002)
 Pyrolysis process for the treatment of scrap tyres: preliminary experimental results. <u>Waste Management</u>, 22, 917-923.

- Jan. M.R., J, F., Shah, J., and Mabood, F. (2010). Thermal catalytic conversion of the used isobutyl isoprene rubber into valuable hydrocarbons. <u>Journal of</u> <u>Thermal Analysis and Calorimetry</u>, 101, 303-308.
- Jongpatiwut, S., Sackamdaung, P., and Rirksomboon, T. (2003). n-Octane aromatization on a Pt/KL catalyst prepared by vapor-phase impregnation. Journal of Catalysis, 218, 1-11.
- Jothimurugesan, K., Nayak, A.K., Mehta, G.K., Rai, K.N., Bhatia, S., and Srivastava, R.D. (2004). Role of rhenium in Pt-Re-Al2O3 reforming catalysis- An integrated study. <u>AIChE Journal</u>, 31, 1997-2007.
- Hattori, H. (1995). Heterogeneous Basic Catalysis. <u>Chemical Reviews</u>, 1995, 537-558.
- Krogh, A., Hagen, A., Hansen, T.W., Christensen, C.H., and Schmidt, I. (2003). Re/HZSM-5: a new catalyst for ethane aromatization with improved stability. <u>Catalysis Communications</u>, 4, 627-630.

- Mhodmonthin, A. (2005). <u>Development of Waste Tire Pyrolysis Process for</u> <u>Production of Fuel and Diesel Oils</u>. M.S. Thesis, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand.
- Norberg, V., Hansene. C., and Su, B. (2000). Change in Benzene adsorption properties of KL Zeolite upon Coadsorption of Ammonia and Methylamine. <u>Adsorption Science and Technology</u>, 583-587.
- Phopaisarn, M. (2010). <u>Catalytic Pyrolysis of Waste Tire over KL-Based Catalyst:</u> <u>Bauble beds of KL and Y Zeolites</u> M.S. Thesis, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand.
- Pieck,C.L., Marecot, P., Querini, C.A., and Parera, J.M. (1995) Influence of Pt-Re interaction on activity and selectivity of reforming catalysts. <u>Applied</u> <u>Catalyst A</u>: General, 133, 281-292.
- Rodriguez, I.M., Laresgoiti, M.F., Cabrero, M.A., Torres, A., Chomón, M.J., and Caballero, B. (2001). Pyrolysis of scrap tire. <u>Fuel Processing Technology</u>. 72, 9-22.

- Sato, T., Kunimori, K., and Hayashi, S. (1999). Dynamics of benzene, cyclohexane and n-hexane in KL zeolite studied by H NMR. <u>Physical Chemistry</u> <u>Chemical Physics</u>, 1, 3839-3843.
- Satterfield, C.N. (1991). <u>Heterogeneous Catalysis in Industrial Practice</u>. New York: McGraw-Hill.
- Scheirs, J. and Kamisky, W. (2006). Feedstock Recycling and Pyrolysis of Waste Plastics: Converting Waste Plastics into Diesel and Other Fuels. Chichester, John Wiley.
- Sebor, G., Blažek, J., and Nemer, M.F. (1999). Optimization of the preparative separation of petroleum maltenes by liquid adsorption chromatography. <u>Journal of Chromatography A</u>, 847, 323-330.
- Shah, J., Jan, M.R., and Mabood, F. (2008). Catalytic pyrolysis of waste tyre Rubber into Hydrocarbons via Base Catalysts. <u>Iranian Journal of Chemistry</u> and <u>Chemical Engineering</u>, Vol.27, No.2, 103-109.
- Shen, B., Wu, C., Wang, R., Guo, B., and Liang, C. (2006). Pyrolysis of scrap tyres with zeolite USY. Journal of Hazardous Materials, B137, 1065–1073.
- Shen, B., Wu, C., Cai, L., Binbin, G., and Rui, W. (2007). Pyrolysis of scrap tyres : The influence of USY catalyst/tyre ratio on products. <u>Journal of Analytical</u> and Applied Pyrolysis, 78, 243-249.
- Shu, Y.S., Ohnishi, R., and Ichikawa, M. (2003). Improve methane dehydrocondensation reaction on HMCM-22 and HZSM-5 supported rhenium and molybdenum catalysts. <u>Applied Catalysis A: General</u>, 252, 315-329.
- Shu, Y., Xu, Y.X., Wong, S.T., Wang, L., and Gao, X. (1997). Promotion Effect of Ru on the Dehydrogenation and Aromatization of Methane in the Absence of Oxygen over Mo/HZSM-5 Catalyst. Journal of Catalysis, 170, 11-19.
- Solymosi, F., Erdöhe, A., and Szöke, A. (1995). Dehydrogenation of methane of supported molybdenum oxides. Formation of benzene from methane. <u>Catalysis Letters</u>, 32, 43-53.
- Solymosi, F. and Tolmacsov, P. (2004). Conversion of ethane into benzene on Re/ZSM-5. <u>Catalysis Letters</u>, 93, 2004.

- Stakheev, A.Y. and Shpiro, E.S. (1995). Electronic state and location of Pt metalclusters in KL zeolite: FTIR study of CO Chemisorption. <u>Catalysis</u> <u>Letters</u>, 32, 147-158.
- Trakarnroek, S., Jongpatiwut, S., Rirksomboon, T., Osuwan, S., and Resasco, D.E. (2006). n-Octane aromatization over Pt/KL of varying morphology and channel lengths. <u>Applied Catalysis A: General</u>, 313, 189–199.
- Wang, D.Y., Kan, Q.B., Xu, N., Wu, P., and Wu, T.H. (2004). Study on methane aromatization over MoO₃/HMCM-49 catalyst. <u>Catalyst Today</u>, 93-95, 75-80.
- Wang, D.W., Lunsford, J. H., and Michael, R. (1997). Characterization of a Mo/ZSM-5 Catalyst for the Conversion of Methane to Benzene. <u>Journal of</u> <u>Catalysis</u>, 169, 347-358.
- Williams, P.T. and Brindle, A.J. (2002). Catalytic pyrolysis of tyres: influence of tyres: influence of catalyst temperature. <u>Fuel</u>, 81, 2425-2434.
- Williams, P.T. and Brindle, A.J. (2003). Aromatic chemicals from the catalytic pyrolysis of scrap tyres. Journal of Analytical and Applied Pyrolysis, 67, 143-164.
- Xiao, J. and Puddephatt, J. (1995). Pt-Re cluster and bimetallic catalysts. <u>Coordination Chemistry Reviews</u>, 143, 457-500.
- Xu, Y., Lui, S., Wang, L., Xie, M., and Gao, X. (1995). Methane activation without using oxidants over Mo/HZSM-5 zeolite catalysts. <u>Catalysis Letters</u>, 30, 135-149.
- Zhang, J.Z., Long, M.A., and Howe, R.F. (1998). Molybdenum ZSM-5 zeolite catalysts for the conversion of methane to benzene. <u>Catalysis Today</u>, 44, 293-300.

APPENDICES

APPENDIX A Operating Temperature Profiles (°C)

Table A1 Pyrolysis conditions: Non-catalytic Pyrolysis

Pyrolysis oils	=	12.66	g
Pyrolysis gas	=	3.91	g
Carbon black	=	13.43	g

Time (min)	T1	T2	Time (min)	T1	T2	Time (min)	T1	T2	Time (min)	T1	T2
2	34.6	31.3	32	372.0	507.0	62	352.3	502.2	92	350.1	498.9
4	53.3	49.4	34	373.6	499.9	64	346.7	499.5	94	349.5	507.1
6	82.0	72.0	36	372.1	501.7	66	350.0	504.2	. 96	355.6	500.4
8	119.2	118.0	38	371.7	500.7	68	355.2	498.4	98	354.0	506.2
10	161.1	167.3	40	364.4	489.7	70	355.8	505.9	100	354.3	502.9
12	211.8	224.8	42	371.0	503.6	72	357.4	501.8	102	350.7	502.2
14	255.8	278.9	44	369.2	493.8	74	351.3	492.4	104	353.8	508.7
16	292.1	348.7	46	367.5	507.2	76	348.9	508.9	106	347.8	502.3
18	301.3	419.6	48	366.3	496.9	78	356.7	501.8	108	357.9	507.3
20	_321.0	420.1	50	366.1	505.2	80	355.0	501.7	110	358.7	502.2
22	335.3	452.8	52	364.5	500.7	82	352.3	504.3	112	357.1	494.0
24	351.3	503.3	54	359.7	505.4	84	352.7	502.8	114	354.3	501.8
26	363.0	485.1	56	355.4	503.1	86	353.0	498.4	116	351.3	503.9
28	356.6	490.2	58	355.0	501.8	88	348.2	497.8	118	349.4	502.4
30	364.4	518.4	60	351.0	502.1	90	350.3	507.3	120	355.1	495.2

*T1 = Catalytic temperature

Figure A1 Temperature profiles of non-catalytic pyrolysis.

 Table A2
 Pyrolysis conditions: Catalytic Pyrolysis using KL zeolite

Pyrolysis oils	=	10.40	g
Pyrolysis gas	=	5.63	g
Carbon black	=	13.97	g

*T1 = Catalytic temperature

Time (min)	T1	T2	Time (min)	T1	Т2	Time (min)	Tl	Т2	Time (min)	T1	T2
2	31.3	33.7	32	369.5	505.5	62	354.9	493.3	92	348.8	496.8
4	42.9	48.2	34	372.1	497.9	64	357.7	507.4	94	356.0	506.1
6	64.2	76.8	36	370.2	502.1	66	351.2	498.5	96	354.7	499.8
8	91.7	114.5	38	368.7	492.5	68	348.4	504.1	98	349.9	506.0
10	130.7	170.2	40	364.9	503.3	70	352.7	494.5	100	347.4	499.0
12	168.6	216.3	42	363.0	497.2	72	357.5	507.2	102	358.2	505.4
14	204.4	273.5	44	361.5	502.2	74	354.8	498.4	104	358.6	499.5
16	249.9	339.3	46	357.0	499.5	76	349.7	502.5	106	356.3	502.7
18	306.4	411.1	48	354.4	504.0	78	354.9	493.4	108	353.2	498.6
20	312.2	460.0	50	350.8	499.8	80	352.2	500.0	110	348.7	506.1
22	316.4	507.8	52	355.3	503.8	82	346.2	504.0	112	357.0	499.1
24	324.2	502.1	54	357.8	499.8	84	348.7	496.6	114	351.0	504.1
26	326.8	498.1	56	356.0	499.4	86	359.9	506.6	116	349.3	496.3
28	336.0	505.9	58	355.4	506.3	88	357.5	498.5	118	362.5	503.7
30	362.5	496.4	60	349.1	503.6	90	352.3	504.6	120	359.4	504.7

Figure A2 Temperature profiles of catalytic pyrolysis (KL zeolite).

Table A3 Pyrolysis conditions: Catalytic Pyrolysis using 1%MoO₃/KL

Pyrolysis oils = 12.57 g Pyrolysis gas = 4.61 g Carbon black = 12.82 g

Time (min)	T1	T2	Time (min)	T1	T2	Time (min)	T1	T2	Time (min)	T1	T2
2	32.7	39.1	32	382.1	495.2	62	366.6	501.1	92	353.3	499.9
4	49.3	63.7	34	380.0	505.7	64	365.1	499.1	94	355.5	500.8
6	74.7	103.6	36	381.1	497.5	66	364.3	498.8	96	357.7	501.2
8	108.8	151.1	38	383.8	495.1	68	359.0	499.7	98	354.9	500.5
10	146.0	204.8	40	381.2	498.2	70	358.9	500.3	100	353.8	499.7
12	193.3	264.7	42	380.7	500.6	72	357.4	501.2	102	351.4	498.8
14	238.1	319.4	44	377.9	498.5	74	353.3	501.0	104	350.9	497.7
16	291.7	381.8	46	376.7	500.4	76	353.0	503.7	106	350.8	498.3
18	340.0	447.0	48	373.4	501.1	78	348.8	503.4	108	350.1	500.3
20	376.4	487.3	50	370.0	500.3	80	349.2	502.3	110	349.9	502.5
22	370.0	493.8	52	368.8	499.7	82	350.0	501.1	112	352.8	503.4
24	363.0	501.9	54	367.2	499.1	84	348.4	499.5	114	355.8	500.0
26	367.7	502.1	56	368.7	498.3	86	349.8	498.2	116	353.8	501.7
28	371.0	503.9	58	369.0	499.2	88	349.9	497.3	118	350.9	501.7
30	380.0	500.0	60	367.1	500.4	90	349.2	498.7	120	348.9	498.6

Figure A3 Temperature profiles of catalytic pyrolysis (1%MoO₃/KL).

Table A4 Pyrolysis conditions: Catalytic Pyrolysis using 2%MoO₃/KL

Pyrolysis oils = 12.14 g Pyrolysis gas = 4.66 g Carbon black = 13.20 g

Time (min)	T1	T2									
2	30.0	30.7	32	383.8	505.5	62	352.2	502.3	92	349.6	499.2
4	50.7	60.3	34	383.6	495.1	64	353.0	501.2	94	351.0	498.5
6	70.8	90.8	36	380.0	498.2	66	351.1	502.5	96	349.9	499.9
8	101.7	125.6	38	377.0	500.3	68	350.0	503.7	98	347.4	498.2
10	140.5	185.4	40	373.0	500.0	70	350.3	503.5	100	349.6	501.3
12	190.8	256.7	42	371.1	500.3	72	349.8	502.1	102	348.8	503.4
14	243.3	308.8	44	368.0	499.6	74	348.8	501.3	104	349.7	502.1
16	292.5	368.2	46	366.7	500.1	76	349.7	500.2	106	349.5	502.8
18	357.0	422.0	48	360.5	501.1	78	348.5	499.7	108	349.9	503.0
20	356.6	450.3	50	358.7	499.8	80	349.9	499.2	110	350.0	502.6
22	354.3	469.0	52	357.6	498.9	82	350.0	498.2	112	351.1	501.2
24	352.0	500.8	54	355.2	500.0	84	351.1	498.5	114	350.3	500.8
26	360.5	503.6	56	353.4	499.8	86	350.2	498.6	116	349.6	500.1
28	366.5	504.9	58	351.1	500.7	88	352.3	497.6	118	349.8	500.0
30	373.9	498.2	60	353.7	500.0	90	353.4	499.4	120	349.8	499.7

Figure A4 Temperature profiles of catalytic pyrolysis (2%MoO₃/KL).

Table A5 Pyrolysis conditions: Catalytic Pyrolysis using 3%MoO₃/KL

Pyrolysis oils	=	12.48	g
Pyrolysis gas	=	4.59	g
Carbon black	=	12.93	g

Time (min)	T1	T2	Time (min)	T1	Т2	Time (min)	T 1	T2	Time (min)	T1	T2
2	31.0	31.9	32	363.3	505.1	62	358.7	502.4	92	349.8	501.3
4	49.1	58.6	34	353.1	494.8	64	358.5	503.5	94	349.7	503.0
6	68.7	87.6	36	362.7	500.0	66	358.8	502.6	96	348.8	502.8
8	90.3	122.4	38	363.4	508.1	68	358.7	501.5	98	349.7	503.5
10	114.0	154.2	40	364.7	499.9	70	358.0	502.3	100	348.8	502.8
12	152.4	200.7	42	364.3	500.0	72	357.7	501.6	102	349.7	501.8
14	192.7	264.7	44	364.8	499.6	74	355.7	502.8	104	348.3	502.0
16	240.0	320.6	46	361.9	498.5	76	352.2	501.1	106	348.0	502.9
18	292.4	380.4	48	362.0	500.3	78	351.1	499.3	108	349.6	501.4
20	303.8	405.6	50	361.9	499.0	80	350.0	498.8	110	349.8	499.0
22	317.0	435.6	52	360.5	500.1	82	350.5	498.0	112	350.3	498.7
24	320.5	474.2	54	359.7	501.4	84	351.1	498.9	114	351.1	499.0
26	324.1	503.7	56	359.2	500.0	86	353.0	499.0	116	352.3	500.0
28	340.2	499.9	58	359.0	502.4	88	351.3	500.6	118	351.8	499.7
30	346.8	500.5	60	358.9	503.3	90	350.0	500.9	120	352.4	500.2

Figure A5 Temperature profiles of catalytic pyrolysis (3%MoO₃/KL).

Table A6 Pyrolysis conditions: Catalytic Pyrolysis using 5%MoO₃/KL

Pyrolysis oils	=	10.69	g
Pyrolysis gas	=	6.23	g
Carbon black	=	13.08	g

	Time (min)	T1	T2	Time (min)	T 1	T2	Time (min)	T1	T2	Time (min)	T1	T2
	2	31.4	35.6	32	345.2	492.1	62	353.3	502.0	92	348.9	501.1
•	4	43.4	49.9	34	361.7	500.1	64	353.9	503.2	94	349.6	503.3
1	6	62.5	80.2	36	367.6	501.5	66	352.0	501.3	96	348.7	501.3
•	8	90.1	121.8	38	357.9	498.6	68	351.2	502.1	98	348.9	503.5
	10	128.1	172.3	40	368.7	497.5	70	350.3	503.4	100	349.9	503.3
	12	171.3	231.1	42	369.1	500.2	72	350.1	501.8	102	350.0	499.0
	14	220.3	296.3	44	372.1	499.3	74	350.7	499.9	104	350.2	498.4
	16	275.5	358.7	46	367.2	500.2	76	350.0	498.8	106	350.4	497.9
	18	327.7	425.3	48	365.1	500.6	78	- 351.1	498.3	108	351.6	498.2
	20	345.4	464.9	50	362.6	501.6	80	352.9	499.3	110	352.0	501.1
	22	334.4	499.3	52	361.4	499.8	82	351.3	500.0	112	350.2	500.2
ſ	24	336.0	501.3	54	359.2	499.6	84	350.0	502.2	114	350.5	500.7
	26	339.0	499.6	56	356.2	498.0	86	349.9	501.4	116	351.3	501.4
	2	31.4	35.6	32	345.2	492.1	62	353.3	502.0	92	348.9	501.1
1	4	43.4	49.9	34	361.7	500.1	64	353.9	503.2	94	349.6	503.3

Figure A6 Temperature profiles of catalytic pyrolysis (5%MoO₃/KL).

Table A7 Pyrolysis conditions: Catalytic Pyrolysis using 10%MoO₃/KL

Pyrolysis oils	=	10.71	g
Pyrolysis gas	=	6.21	g
Carbon black	=	13.08	g

*T1 = Catalytic temperature

Time (min)	T1	T2	Time (min)	T 1	T2	Time (min)	TI	T2	Time (min)	T1	T2
2	30.4	30.4	32	355.0	501.4	62	351.0	498.8	92	349.1	500.0
4	38.8	43.4	34	357.5	499.0	64	350.0	498.6	94	348.9	500.3
6	54.5	64.9	36	361.0	499.1	66	350.2	499.4	96	349.5	499.8
8	78.7	106.1	38	363.3	499.5	68	350.1	500.1	98	347.9	498.7
10	109.9	153.4	40	365.4	499.3	70	350.4	500.3	100	350.4	499.2
12	147.9	208.1	42	366.7	498.3	72	349.9	500.7	102	350.0	499.2
14	186.6	264.4	44	365.9	500.0	74	349.2	501.3	104	350.8	500.0
16	234.5	332.7	46	363.1	501.1	76	348.9	503.2	106	350.7	501.4
18	279.6	386.2	.48	360.0	500.3	78	347.5	502.5	108	350.8	502.4
20	335.5	439.1	50	359.1	502.8	80	348.6	503.7	110	351.1	502.3
22	345.5	484.2	52	358.9	502.5	82	349.6	504.0	112	351.9	501.8
24	347.0	510.2	54	357.1	501.6	84	350.0	503.3	114	350.2	503.3
26	346.2	502.0	56	355.0	500.8	86	351.1	502.1	116	350.7	501.3
28	348.2	502.8	58	354.1	499.1	88	351.3	501.6	118	349.7	500.0
30	350.5	506.6	60	353.2	499.7	90	350.1	502.8	120	349.9	500.2

Figure A7 Temperature profiles of catalytic pyrolysis (10%MoO₃/KL).

 Table A8
 Pyrolysis conditions: Catalytic Pyrolysis using 0.25%Re/KL

Pyrolysis oils	=	10.50	g
Pyrolysis gas	=	6.25	g
Carbon black	=	13.25	g

Time (min)	T1	T2	Time (min)	T1	T2	Time (min)	T1	T2	Time (min)	T1	T2
2	30.5	30.6	32	354.9	501.4	62	352.5	500.9	92	350.1	499.2
4	41.2	45.0	34	356.1	499.7	64	350.4	500.3	94	348.6	500.4
6	60.0	70.8	36	360.0	494.7	66	351.3	498.8	96	347.3	499.9
8	89.0	107.4	38	363.7	499.2	68	357.9	500.8	98	347.2	499.8
10	108.9	150.5	40	365.5	500.9	70	357.1	499.1	100	347.5	500.6
12	154.0	195.3	42	367.1	501.2	72	.354.9	499.2	102	348.7	499.2
14	193.0	244.5	44	364.9	500.7	74	352.5	499.5	104	349.2	500.0
16	241.0	291.3	46	362.2	501.1	76	350.9	500.0	106	349.4	500.5
18	288.0	354.4	48	360.0	500.1	78	345.3	499.4	108	349.0	499.9
20	330.0	403.2	50	359.1	499.9	80	358.2	501.0	110	348.2	499.7
22	338.8	448.3	52	355.8	503.3	82	358.0	500.6	112	349.0	500.5
24	341.9	495.1	54	354.4	500.1	84	356.6	501.0	114	349.8	501.2
26	345.9	506.6	56	352.5	500.3	86	. 353.3	499.5	116	349.9	500.6
28	350.7	499.1	58	350.4	501.4	88	352.9	500.4	118	350.3	499.2
30	352.7	504.4	60	351.1	499.4	90	354.4	502.1	120	350.0	500.1

Figure A8 Temperature profiles of catalytic pyrolysis (0.25%Re/KL).

 Table A9
 Pyrolysis conditions: Catalytic Pyrolysis using 0.50%Re/KL

Pyrolysis oils	=	10.32	g
Pyrolysis gas	=	6.47	g
Carbon black	=	13.21	g

Time (min)	TI	Т2	Time (min)	T1	T2	Time (min)	T1	T2	Time (min)	T1	T2
2	30.2	30.9	32	357.7	503.4	62	357.7	501.0	92	350.0	500.0
4	43.2	47.7	34	358.9	502.3	64	355.0	502.9	94	349.9	500.2
6	63.7	78.0	36	360.1	501.0	66	354.0	503.2	96	349.5	500.7
8	91.1	117.5	38	362.3	502.4	68	353.3	502.1	98	350.0	501.3
10	127.1	168.0	40	364.5	501.3	70	352.0	500.2	100	348.7	502.1
12	173.3	231.1	42	365.5	500.0	72	351.1	501.3	102	349.8±	503.3
14	214.4	283.0	44	368.9	501.3	74	352.2	503.4	104	347.9	502.9
16	274.5	351.6	46	368.6	502.3	76	353.8	502.4	106	349.7	499.9
18	328.9	421.2	48	368.5	500.2	78	355.6	501.5	108	350.0	501.0
20	349.9	464.3	50	365.0	500.1	80	354.8	499.2	110	351.1	500.3
22	350.6	499.3	52	361.9	499.2	82	353.2	499.6	112	352.0	500.2
24	357.8	501.3	54	360.4	499.2	84	353.0	498.7	114	350.3	501.5
26	356.6	502.0	56	361.0	498.7	86	352.9	499.2	116	350.1	502.4
28	354.8	505.5	58	359.9	497.5	88	351.0	499.3	118	350.3	502.1
30	355.1	504.3	60	358.7	498.6	90	351.3	500.1	120	349.5	503.1

Figure A9 Temperature profiles of catalytic pyrolysis (0.50%Re/KL).

Table A10 Pyrolysis conditions: Catalytic Pyrolysis using 0.75%Re/KL

Pyrolysis oils = 10.93 g Pyrolysis gas = 6.07 g Carbon black = 13.00g

Time (min)	T 1	T2	Time (min)	TI	T2	Time (min)	T1	T2	Time (min)	T1	T2
2	30.2	30.1	32	361.4	499.5	62	361.2	499.9	92	352.3	503.2
4	41.9	46.3	34	363.9	499.7	64	356.8	499.7	94	353.4	502.5
6	61.4	73.8	36	365.7	500.7	66	352.2	498.9	96	354.9	503.5
8	85.6	114.5	38	364.0	501.5	68	349.3	501.9	98	355.4	501.3
10	129.0	170.0	40	366.6	499.6	70	351.9	498.9	100	353.2	500.3
12	175.5	231.0	42	373.5	500.8	72	350.0	499.9	102	351.2	499.8
14	220.8	288.5	44	367.9	500.1	74	350.2	500.2	104	350.5	498.3
16	273.4	353.9	46	370.3	499.6	76	350.8	500.0	106	349.7	497.9
18	320.0	420.1	48	371.6	500.3	78	349.9	498.9	108	348.7	499.2
20	333.1	503.0	50	371.5	499.5	80	349.7	499.7	110	349.2	500.2
22	334.7	500.6	52	369.5	500.2	82	348.7	499.0	112	349.9	500.4
24	347.9	500.9	54	368.5	501.2	84	349.2	499.2	114	350.2	500.9
26	350.3	499.8	56	366.0	501.2	86	350.5	500.3	116	350.2	502.4
28	355.4	503.2	58	363.2	499.1	88	350.3	501.2	118	350.2	501.9
30	360.5	498.8	60	362.1	500.5	90	351.7	503.4	120	349.9	502.8

Figure A10 Temperature profiles of catalytic pyrolysis (0.75%Re/KL).

 Table A11 Pyrolysis conditions: Catalytic Pyrolysis using 1%Re/KL

Pyrolysis oils=11.06gPyrolysis gas=6.11gCarbon black=12.83g

Time (min)	T 1	T2	Time (min)	TI	T2	Time (min)	T1	T2	Time (min)	T1	Т2
2	29.7	30.4	32	357.8	497.7	62	350.0	499.8	92	350.5	500.4
4	43.6	52.1	34	354.6	500.7	64	349.0	499.2	94	350.7	503.3
6	59.5	78.4	36	357.4	501.9	66	349.7	500.2	96	349.9	500.1
8	88.1	123.8	38	359.1	498.9	68	347.9	499.7	98	350.1	499.3
10	121.5	175.5	40	359.7	501.3	70	349.8	499.9	100	349.7	500.0
12	161.9	239.6	42	359.2	497.8	72	350.0	500.5	102	359.9	499.9
14	201.5	281.4	44	358.2	501.4	74	349.9	501.1	104	350.0	500.2
16	253.5	347.5	46	355.0	499.9	76	350.1	501.7	106	350.1	499.1
18	299.6	410.8	48	352.6	501.4	78	349.0	502.2	108	350.8	498.2
20	331.1	456.9	50	348.9	499.8	80	350.0	502.1	110	357.0	500.2
22	336.1	507.1	52	354.6	501.6	82	350.2	501.1	112	355.9	501.2
24	345.4	503.8	54	360.0	500.5	84	350.4	502.6	-114	351.5	498.6
26	352.7	504.4	56	358.5	498.9	86	349.8	501.8	116	347.1	501.3
28	354.9	502.0	58	354.4	500.0	88	348.6	499.2	118	352.1	502.4
30	356.9	504.9	60	349.1	498.2	90	350.0	499.0	120	350.6	499.9

Figure A11 Temperature profiles of catalytic pyrolysis (1%Re/KL).

 Table A12
 Pyrolysis conditions: Catalytic Pyrolysis using 0.25%Re-1%MoO3/KL

Pyrolysis oils	=	12.22	g
Pyrolysis gas	=	5.13	g
Carbon black	=	12.65	g

Time (min)	Tl	T2	Time (min)	Tl	T2	Time (min)	T1	T2	Time (min)	T1	T2
2	32.7	30.6	32	377.0	502.6	62	354.9	498.6	92	348.6	500.3
4	42.5	52.3	34	377.4	504.8	64	358.6	500.4	94	349.4	499.5
6	54.9	79.6	36	376.3	498.3	66	355.5	499.5	96	350.4	500.3
8	78.2	110.6	38	375.9	496.7	68	353.9	499.1	98	350.2	499.6
10	107.8	149.7	40	372.0	499.9	70	351.1	500.1	100	352.1	499.3
12	143.8	195.6	42	369.9	501.2	72	350.4	499.9	102	349.5	500.8
- 14	191.2	232.6	44	367.3	499.1	74	357.6	501.0	104	349.2	498.5
16	241.5	275.3	46	365.5	500.0	76	357.1	499.8	106	350.1	500.1
18	292.3	328.7	48	363.7	500.2	78	354.1	498.8	108	350.4	498.7
20	348.5	405.7	50	362.2	500.4	80	352.9	500.0	110	349.5	499.7
22	362.1	426.8	52	361.0	500.9	82	352.3	500.2	112	349.7	503.4
24	350.3	464.6	54	359.3	498.7	84	348.8	500.5	114	349.2	500.0
26	360.3	508.5	56	358.3	500.7	86	347.3	500.0	116	350.1	501.2
28	369.0	503.3	58	357.1	499.1	88	347.2	499.9	118	351.3	499.5
30	373.2	499.1	60	356.6	499.4	90	347.0	498.7	120	353.2	500.4

Figure A12 Temperature profiles of catalytic pyrolysis (0.25%Re-1%MoO₃KL).

Table A13 Pyrolysis conditions: Catalytic Pyrolysis using 0.50%Re-1%MoO₃/KL

Pyrolysis oils = 12.44 g Pyrolysis gas = 4.80 g Carbon black = 12.76 g

*T1 = Catalytic temperature

Time (min)	T1	Т2	Time (min)	TI	T2	Time (min)	TI	T2	Time (min)	T1	T2
2	37.5	35.2	32	366.6	500.4	62	361.0	500.5	92	349.6	498.7
4	49.8	39.4	34	376.6	503.5	64	359.7	503.4	94	348.9	503.9
6	77.7	50.9	36	383.5	498.9	66	357.3	502.3	96	350.3	503.7
8	105.3	89.7	38	385.3	500.3	68	355.5	499.5	98	351.1	501.6
10	149.8	139.9	40	384.9	499.5	70	354.4	501.3	100	348.8	500.0
12	185.4	188.7	42	383.7	501.4	72	352.2	500.0	102	351.1	502.3
14	227.2	249.7	44	383.1	498.5	74	350.1	503.4	104	350.5	503.5
16	324.9	300.3	46	382.7	500.0	76	352.1	502.8	106	352.2	505.3
18	346.9	389.4	48	380.0	500.8	78	351.3	501.2	108	353.3	506.4
20	347.5	433.4	50	378.2	500.1	80	349.9	499.2	110	355.5	505.3
22	348.0	474.2	52	376.6	500.2	82	352.1	499.5	112	353.7	503.2
24	349.0	500.3	54	373.4	500.6	84	353.9	498 .7	114	349.9	499.8
26	350.0	500.3	56	371.7	499.5	86	353.8	500.2	116	348.0	498.6
28	356.9	505.4	58	366.5	500.2	88	350.8	503.3	118	350.0	500.4
30	360.1	503.4	60	364.5	497.6	90	351.1	499.7	120	351.2	503.3

Figure A13 Temperature profiles of catalytic pyrolysis (0.50%Re-1%MoO₃KL).

 Table A14 Pyrolysis conditions: Catalytic Pyrolysis using 0.75%Re-1%MoO₃/KL

Pyrolysis oils = 12.27 g Pyrolysis gas = 4.84 g Carbon black = 12.89 g

Time (min)	T 1	T2	Time (min)	T1	Т2	Time (min)	T1	T2	Time (min)	T 1	Т2
2	32.8	36.6	32	357.0	498.0	62	355.0	499.8	92	349.9	497.8
4	· 40.8	42.6	34	356.3	499.7	64	357.6	499.9	94	350.1	503.3
6	57.3	61.3	36	360.6	502.8	66	355.4	501.1	96	353.4	502.7
8	81.9	93.0	38	366.0	499.2	68	354.6	500.0	98	350.7	499.9
10	117.4	139.0	40	366.7	497.6	70	354.4	498.5	100	353.3	501.9
12	154.6	182.4	42	366.2	502.8	72	352.0	500.3	102	355.5	499.5
14	197.9	204.9	44	365.5	497.6	74	355.0	501.2	104	356.5	498.8
16	242.6	300.0	46	364.3	501.4	76	356.7	504.4	106	353.4	498.7
18.	291.1	365.3	48	361.3	497.8	78	352.9	502.3	108	350.1.	500.1
20	342.8	422.3	50	359.6	500.0	80	353.3	503.2	110	352.2	500.7
22	360.7	461.1	52	356.3	500.8	82	351.3	505.5	112	351.1	502.3
24	355.6	502.2	54	355.4	497.9	84	352.3	501.7	114	349.9	498.7
26	356.2	502.7	56	353.2	500.7	86	350.0	499.5	116	350.2	499.1
28	359.0	503.3	58	350.1	499.8	88	349.1	498.7	118	352.1	502.1
30	358.4	500.0	60	350.8	498.7	90	348.8	503.1	120	350.0	502.1

Figure A14 Temperature profiles of catalytic pyrolysis (0.75%Re-1%MoO₃KL).

Table A15 Pyrolysis conditions: Catalytic Pyrolysis using 1%Re-1%MoO₃/KL

Pyrolysis oils = 11.72 g Pyrolysis gas = 5.35 g Carbon black = 12.93 g

Time (min)	T 1	Т2	Time (min)	T1	T2	Time (min)	T1	T2	Time (min)	T1	T2
2	31.0	31.2	32	371.8	498.5	62	351.1	499.0	92	355.5	500.4
4	37.9	41.2	34	372.2	500.0	64	349.8	498.3	94	354.4	504.0
6	59.8	71.9	36	371.3	500.1	66	349.7	500.1	96	352.1	503.0
8	82.3	104.8	38	371.0	499.0	68	347.9	498.7	98	350.0	499.5
10	120.3	155.8	40	370.2	499.5	70	349.2	499.5	100	351.1	501.4
12	159.3	209.6	42	368.7	501.0	72	350.2	500.5	102	349.4	504.2
14	202.7	266.6	44	367.5	500.4	74	348.7	501.1	104	348.7	503.1
16	257.0	355.6	46	365.8	498.0	76	351.3	500.2	106	347.8	499.8
18	307.5	395.3	48	364,2	501.0	78	350.0	504.3	108	350.8	498.7
20	347.1	443.4	50	362.3	499.0	80	351.1	499.7	110	354.4	497.8
22	358.7	488.7	52	360.7	499.8	82	355.5	499.5	112	352.1	501.1
24	357.7	509.3	54	358.1	498.5	84	352.1	497.5	114	350.0	500.3
26	361.9	497.4	56	356.4	500.4	86	354.4	498.0	116	349.9	500.3
28	366.9	501.9	58	354.9	499.8	88	353.3	499.2	118	352.3	499.2
30	367.1	504.0	60	354,6	500.1	90	355.4	500.3	120	353.5	499.9

Figure A15 Temperature profiles of catalytic pyrolysis (1%Re-1%MoO₃KL).

	Pyrolytic oil	Pyrolytic gas	Char
Non catalyst	42.19	13.04	44.77
KL zeolite	34.67	18.77	46.56
%wtMoO3/KL			
1% MoO ₃ /KL	41.90	15.37	42.73
2% MoO ₃ /KL	40.47	15.53	44.00
3% MoO ₃ /KL	41.60	15.30	43.10
5% MoO ₃ /KL	35.63	20.77	43.60
10% MoO ₃ /KL	35.70	20.70	43.60
%wtRe/KL	and the second second		
0.25% Re/KL	35.00	20.83	44.17
0.50% Re/KL	34.40	21.57	44.03
0.75% Re/KL	36.44	20.23	43.33
	36.87	20.37	42.76

APPENDIX B Pyrolysis Product Distribution

 Table B1
 The weight percentage of pyrolysis products (wt%)

			12.10
%wtRe-1MoO ₃ /KL			
0.25%Re-1%MoO ₃ /KL	40.73	17.10	42.17
0.50%Re-1% MoO ₃ /KL	41.47	16.00	42.53
0.75%Re-1% MoO ₃ /KL	40.90	16.13	42.97
1%Re-1% MoO ₃ /KL	39.07	17.83	43.10

Product distribution	Non- Catalyst	KL	wt%MoO3/KL				
(%yield)			1%	2%	3%	5%	10%
Gas products							
Methane	2.991	4.076	3.457	3.569	3.372	4.665	4.556
Ethylene	1.307	1.721	1.318	1.336	1.335	1.865	1.853
Ethane	2.361	3.442	2.974	2.936	2.900	4.085	4.029
Propylene	1.493	2.119	1.617	1.633	1.633	2.275	2.260
Propane	1.113	1.733	1.576	1.481	1.544	2.121	2.105
C4	2.548	3.810	3.115	3.143	3.104	4.001	4.012
C5	1.135	1.792	1.211	1.317	1.294	1.619	1.719
C6	0.070	0.068	0.093	0.106	0.107	0.127	0.150
C7	0.002	0.002	0.001	0.003	0.002	0.002	0.003
C8	0.012	0.004	0.004	0.010	0.009	0.007	0.014
Total	14.900	20.467	15.367	15.533	15.300	20.767	20.700
Petroleum pr	oducts					·	
Naphtha	31.67	46.67	43.00	47.50	36.00	46.00	49.00
Kerosene	25.00	27.67	26.50	26.00	29.00	27.00	29.50
Light gas oil	19.33	15.00	14.00	13.00	16.00	17.00	11.50
Heavy gas oil	15.83	6.66	10.00	9.50	12.00	7.00	6.00

6.50

100.00

4.00

100.00

7.00

100.00

3.00

100.00

4.00

100.00

Residue

Total

8.17

100.00

4.00

100.00

Table B2 Yields of pyrolysis products at different MoO3 amounts loaded on KLzeolite (%yield)

* * *

•

Product distribution (%yield)	Non- Catalyst	KL	wt%Re/KL			
			0.25%	0.50%	0.75%	1%
Gas products						
Methane	2.991	4.076	4.530	4.923	4.260	4.631
Ethylene	1.307	1.721	1.793	2.005	1.822	1.632
Ethane	2.361	3.442	3.912	4.053	3.533	3.913
Propylene	1.493	2.119	2.203	2.394	2.191	2.052
Propane	1.113	1.733	2.029	2.082	1.866	2.072
C4	2.548	3.810	4.233	4.302	4.348	4.131
C5	1.135	1.792	1.968	1.679	2.012	1.814
C6	0.070	0.068	0.147	0.122	0.176	0.108
C7	0.002	0.002	0.004	0.002	0.004	0.002
C8	0.012	0.004	0.016	0.004	0.023	0.012
Total	13.033	18.767	20.833	21.567	20.233	20.367
Petroleum products						
Naphtha	31.67	46.67	40.00	42.00	46.00	31.00
Kerosene	25.00	27.67	28.00	31.00	31.00	26.00
Light gas oil	19.33	15.00	20.00	15.00	11.00	21.00
Heavy gas oil	15.83	6.66	8.00	7.00	7.00	14.00
Residue	8.17	4.00	4.00	5.00	5.00	8.00

100.00

100.00

Total

100.00

100.00

100.00

100.00

Table B3 Yields of pyrolysis products at different Re amounts loaded on KL zeolite(%yield)

Product distribution (%yield)	Non- Catalyst	KL	w	wt%Re-1%MoO3/KL		
			0.25%	0.50%	0.75%	1%
Gas products						
Methane	2.991	4.076	3.729	3.532	3.644	4.031
Ethylene	1.307	1.721	1.420	1.345	1.369	1.501
Ethane	2.361	3.442	3.193	3.031	3.152	3.483
Propylene	1.493	2.119	1.747	1.664	1.696	1.874
Propane	1.113	1.733	1.716	1.643	1.679	1.878
C4	2.548	3.810	3.441	3.308	3.314	3.627
· C5	1.135	1.792	1.739	1.360	1.194	1.346
C6	0.070	0.068	0.105	0.111	0.079	0.088
C7	0.002	0.002	0.002	0.001	0.001	0.001
C8	0.012	0.004	0.008	0.004	0.005	0.004
Total	13.033	18.767	17.100	16.000	16.133	17.833
33 						
Petroleum products						
Naphtha	31.67	46.67	28.00	29.00	32.00	28.00
Kerosene	25.00	27.67	23.00	24.00	26.50	29.00
Light gas oil	19.33	15.00	25.00	23.00	21.50	25.00
Heavy gas oil	15.83	6.66	16.00	16.00	12.50	13.00

4.00

100.00

8.00

100.00

8.00

100.00

7.50

100.00

5.00

100.00

Residue

Total

8.17

100.00

Table B4Yields of pyrolysis products at different Re amounts loaded on1%MoO3/KL catalysts (%yield)

APPENDIX C Pyrolysis Gas Compositions

Table C1 Compositions of gas product at different MoO3 amounts loaded on KLzeolite (%wt)

Composition	Non-	VI	%MoO ₃ /KL				
Composition	catalyst	KL	1%	2%	3%	5%	10%
Methane	22.95	21.72	22.49	22.98	22.04	22.46	22.01
Ethylene	10.03	9.170	8.579	8.598	8.726	8.983	8.950
Ethane	18.12	18.34	19.35	18.90	18.95	19.67	19.47
Propylene	11.46	11.29	10.52	10.52	10.68	10.95	10.92
Propane	8.540	9.236	10.25	9.534	10.09	10.21	10.17
C4	19.55	20.30	20.27	20.23	20.29	19.27	19.38
C5	8.712	9.550	7.883	8.479	8.455	7.797	8.303
C6	0.539	0.363	0.608	0.680	0.699	0.610	0.725
C7	0.015	0.009	0.008	0.017	0.016	0.009	0.015
C8	0.093	0.019	0.027	0.063	0.058	0.033	0.066

 Table C2
 Compositions of gas product at different Re amounts loaded on KL

 zeolite (%wt)

Composition	Non-	VI		%R	e/KL	
Composition	catalyst	NL	0.25%	0.50%	0.75%	1%
Methane	22.95	21.72	21.74	22.83	21.05	22.74
Ethylene	10.03	9.170	8.606	9.299	9.003	8.014
Ethane	18.12	18.34	18.78	18.79	17.46	19.21
Propylene	11.46	11.29	10.57	11.10	10.83	10.07
Propane	8.540	9.236	9.739	9.655	9.220	10.17
C4	19.55	20.30	20.32	19.95	21.49	20.28
C5	8.712	9.550	9.445	7.784	9.943	8.905
C6	0.539	0.363	0.703	0.567	0.871	0.529
C7	0.015	0.009	0.018	0.007	0.020	0.009
C8	0.093	0.019	0.075	0.018	0.113	0.059

Composition	Non-	KI		%Re-1%	MoO ₃ /KL	<u> </u>
Composition	catalyst		0.25%	0.50%	0.75%	1.00%
Methane	22.95	21.72	21.81	22.08	22.59	22.60
Ethylene	10.03	9.170	8.305	8.405	8.487	8.416
Ethane	18.12	18.34	18.67	18.95	19.53	19.53
Propylene	11.46	11.29	10.21	10.40	10.51	10.51
Propane	8.540	9.236	10.03	10.27	10.41	10.53
C4	19.55	20.30	20.12	20.68	20.54	20.34
C5	8.712	9.550	10.17	8.500	7.401	7.546
C6	0.539	0.363	0.615	0.696	0.491	0.491
C7	0.015	0.009	0.010	0.009	0.007	0.007
C8	0.093	0.019	0.049	0.023	0.028	0.023

Table C3Compositions of gas product at different Re amounts loaded on1%MoO3/KL catalysts (%wt)

APPENDIX D Maltene Analysis

Table D1 Chemical compositions in maltenes (wt%)

	Saturated Hydrocarbons	Mono- Aromatics	Di- Aromatics	Poly- Aromatics	Polar- Aromatics
Non-catalyst	54.67	11.58	15.15	14.34	4.27
KL zeolite	60.04	12.20	12.04	11.48	4.23
				•	
wt%MoO ₃ /KL					10 ¹ 4
1%MoO ₃ /KL	59.84	19.95	11.14	5.70	3.37
2%MoO ₃ /KL	57.89	21.58	11.05	5.79	3.68
3%MoO ₃ /KL	59.08	19.04	12.04	5.47	4.38
5%MoO ₃ /KL	57.14	18.10	13.81	6.90	4.05
10%MoO3/KL	58.23	16.88	14.29	7.14	3.46

wt%Re/KL	_				
0.25%Re/KL	62.47	20.00	7.12	5.75	4.66
0.50%Re/KL	58.00	23.91	7.90	5.41	4.78
0.75%Re/KL	57.52	26.39	6.33	5.80	3.96
1%Re/KL	56.16	26.85	7.67	4.93	4.38

wt%Re-1%MoO ₃ /KL					
0.25%Re-1%MoO ₃ /KL	73.89	16.45	3.39	2.61	3.66
0.50%Re-1%MoO ₃ /KL	71.43	17.31	3.57	4.12	3.57
0.75%Re-1%MoO ₃ /KL	68.27	21.60	3.20	4.27	2.67
1%Re-1%MoO ₃ /KL	66.85	22.64	2.70	4.31	3.50

	Saturated Hydrocarbons	Mono- Aromatics	Di- Aromatics	Poly- Aromatics	Polar- Aromatics
Non-catalyst	23.06	4.89	6.39	6.05	1.80
KL zeolite	20.82	4.23	4.17	3.98	1.47
wt%MoO3/KL					
1%MoO ₃ /KL	25.07	8.36	4.67	2.39	1.41
2%MoO ₃ /KL	23.43	8.73	4.47	2.34	1.49
3%MoO ₃ /KL	24.58	7.92	5.01	2.28	1.82
5%MoO3/KL	20.36	6.45	4.92	2.46	1.44
10%MoO3/KL	20.79	6.03	5.10	2.55	1.24
wt%Re/KL		4			
0.25%Re/KL	21.86	7.00	2.49	2.01	1.63
0.50%Re/KL	19.95	8.22	2.72	1.86	1.64
0.75%Re/KL	20.96	9.61	2.31	2.11	1.44
1%Re/KL	20.71	9.90	2.83	1.82	1.62
wt%Re- 1MoO3/KL		100 ⁻¹¹			
0.25%Re-1%MoO ₃ /	KL 30.10	6.70	1.38	1.06	1.49
0.50%Re-1%MoO ₃ /	KL 29.62	7.18	1.48	1.71	1.48
0.75%Re-1%MoO ₃ /	KL 27.92	8.83	1.31	1.75	1.09
1%Re-1%MoO ₃ /	KL 26.11	8.85	1.05	1.68	1.37

Table D2	Chemical compositions in maltenes	(%Yield)

	Naphtha	Kerosene	Light Gas Oil	Heavy Gas Oil	Long Residue
Non-catalyst	31.7	25.0	19.3	15.8	8.2
KL zeolite	46.7	27.7	15.0	6.7	4.0

Table D3	Petroleum	fractions of	Maltenes	(wt%)
				(

/t%MoO ₃ /KL		-			
1% MoO ₃ /KL	25	30	25	14	6
2% MoO ₃ /KL	29	29	25	11	6
3% MoO3/KL	28	28	24	14	6
5% MoO ₃ /KL	37	31	16	10	6
10% MoO ₃ /KL	40	31	14.5	10.5	4
	•	• ··· • ···			

wt%Re/KL				• •	
0.25% Re/KL	40.0	28.0	20.0	8.0	4.0
0.50% Re/KL	42.0	31.0	15.0	7.0	5.0
0.75% Re/KL	46.0	31.0	11.0	7.0	5.0
1% Re/KL	31.0	26.0	21.0	14.0	8.0
			•		

wt%Re-1%MoO3/KL					
0.25%Re-1%MoO ₃ /KL	28.0	23.0	25.0	16.0	8.0
0.50%Re-1%MoO ₃ /KL	29.0	24.0	23.0	16.0	8.0
0.75%Re-1%MoO ₃ /KL	32.0	26.5	21.5	12.5	7.5
1%Re-1%MoO ₃ /KL	28.0	29.0	25.0	13.0	5.0

	Naphtha	Kerosene	Light Gas Oil	Heavy Gas Oil	Long Residue
Non-catalyst	13.36	10.55	8.16	6.68	3.45
KL zeolite	16.18	9.59	5.20	2.31	1.39
wt%MoO ₃ /KL					
1%MoO ₃ /KL	10.48	12.57	10.48	5.87	2.51
2%MoO ₃ /KL	11.74	11.74	10.12	4.45	2.43
3%MoO ₃ /KL	11.65	11.65	9.98	5.82	2.50
5%MoO ₃ /KL	13.18	11.05	5.70	3.56	2.14
10%MoO ₃ /KL	14.28	11.07	5.18	3.75	1.43
wt%Re/KL					
0.25%Re/KL	14.00	9.80	7.00	2.80	1.40
0.50%Re/KL	14.45	10.66	5.16	2.41	1.72
0.75%Re/KL	16.76	11.29	4.01	2.55	1.82
1%Re/KL	11.43	9.59	7.74	5.16	2.95
wt%Re-1MoO ₃ /KL					
0.25%Re-1%MoO ₃ /KL	11.41	9.37	10.18	6.52	3.26
0.50%Re-1%MoO ₃ /KL	12.03	9.95	9.54	6.63	3.32
0.75%Re-1%MoO ₃ /KL	13.09	10.84	8.79	5.11	3.07
1%Re-1%MoO ₃ /KL	10.94	11.33	9.77	5.08	1.95

 Table D4
 Petroleum fractions of Maltenes (%Yield)

APPENDIX E Coke Formation (wt%)

Catalyst	Coke (wt%)
KL zeolite	18.07

wt%MoO3/KL	
1%MoO ₃ /KL	19.93
2%MoO ₃ /KL	20.21
3%MoO ₃ /KL	19.33
5%MoO ₃ /KL	20.88
10%MoO ₃ /KL	22.88
wt%Re/KL	
0.25%Re/KL	18.59
0.50%Re/KL	18.55
0.75%Re/KL	18.81
1%Re/KL	18.10
wt%Re-1%MoO3/KL	
0.25%Re-1%MoO ₃ /KL	17.25
0.50%Re-1%MoO ₃ /KL	18.28
0.75%Re-1%MoO ₃ /KL	18.86
1%Re-1%MoO ₃ /KL	20.04

APPENDIX F Asphaltene Yields

Catalyst	Asphaltene/Oil ratio (g/g Oil)
Non catalyst	0.0023
KL zeolite	0.0007

wt%MoO ₃ /KL	
1%MoO ₃ /KL	0.0002
2%MoO ₃ /KL	0.0004
3%MoO ₃ /KL	0.0002
5%MoO ₃ /KL	0.0002
10%MoO ₃ /KL	0.0002

wt%Re/KL	
0.25%Re/KL	0.0001
0.50%Re/KL	0.0002
0.75%Re/KL	0.0003
l%Re/KL	0.0003

wt%Re-1%MoO ₃ /KL		
0.25%Re-1%MoO ₃ /KL	0.0002	
0.50%Re-1%MoO ₃ /KL	0.0002	
0.75%Re-1%MoO ₃ /KL	0.0001	
1%Re-1%MoO ₃ /KL	0.0002	

APPENDIX G Sulfur Content (wt%)

	Sulfur Content (wt%)		
	Catalyst	Pyrolytic Oil	
Non-catalyst	-	1.31	
KL zeolite	0.41	0.88	

wt%MoO3/KL		
1% MoO ₃ /KL	0.75	1.02
2% MoO ₃ /KL	0.88	1.02
3% MoO ₃ /KL	0.83	1.04
5% MoO ₃ /KL	1.02	0.89
10% MoO ₃ /KL	0.98	0.90
L.		

wt%Re/KL		
0.25% Re/KL	0.34	0.94
0.50% Re/KL	0.39	0.85
0.75% Re/KL	0.49	0.85
1% Re/KL	0.44	1.03

wt%Re-1%MoO ₃ /KL	2 ²)	
0.25% Re-1% MoO ₃ /KL	0.55	1.10
0.50% Re-1% MoO ₃ /KL	0.62	1.06
0.75% Re-1% MoO ₃ /KL	0.64	1.01
1% Re-1% MoO ₃ /KL	0.69	1.02

0/2		Boiling Point (°C)								
no	Maltene	Saturated	Mono-	Di-	Poly-	Polar-				
		Hydrocarbons	Aromatics	Aromatics	Aromatics	Aromatics				
0	42.2	37.1	45.2	38.4	43.5	40.7				
5	154.9	191.1	270.8	75.5	72.6	69.0				
10	158.4	204.7	280.9	246.1	73.0	201.9				
15	170.3	212.8	289.4	306.2	73.4	208.7				
20	180.6	219.6	293.8	321.6	73.8	216.9				
25	191.7	225.9	300.3	327.9	74.2	227.0				
30	203.5	231.6	303.2	337.5	74.8	238.6				
35	212.7	238.4	307.5	342.7	76.5	247.2				
40	221.4	245.6	312.6	347.5	219.8	257.8				
45	229.8	253.4	316.6	351.3	262.6	269.6				
50	239.8	260.6	321.4	356.7	293.5	283.1				
55	251.6	269.0	326.4	361.7	318.4	296.0				
60	264.1	275.5	330.7	365.4	340.1	309.8				
65	275.6	284.0	336.4	370.4	356.6	324.7				
70	288.9	293.6	344.1	375.9	373.1	342.4				
75	303.7	306.1-	353.0	382.4	385.3	362.2				
80	322.6	323.0	363.0	389.8	395.1	386.1				
85	345.1	345.4	373.9	399.2	413.3	416.9				
90	374.3	375.3	388.1	410.2	439.1	461.8				
95	410.6	410.1	408.4	432.6	486.3	524.8				
100	531.3	476.9	450.3	543.9	568.3	575.3				

APPENDIX H True Boiling Point Curves (°C)

Table H1 True Boiling Point Curves : Non-catalyst

Figure H1 True boiling point curves (°C) for non-catalytic pyrolysis.

0/0	Boiling Point (°C)							
Off	Maltene	Saturated Hydrocarbons	Mono- Aromatics	Di- Aromatics	Poly- Aromatics	Polar- Aromatics		
0	44.1	81.3	27.3	26.3	45.0	44.3		
5	112.8	166.9	209.7	59.8	71.9	178.9		
10	152.9	171.3	256.9	69.7	72.3	194.3		
15	156.6	181.3	270.9	70.2	72.6	195.3		
20	167.1	187.9	275.9	70.7	73.0	198.3		
25	170.0	193.8	285.5	71.2	73.4	209.5		
30	174.9	200.1	291.6	71.7	73.8	214.7		
35	184.5	205.6	298.3	72.4	74.5	226.8		
40	191.1	210.9	302.5	73.1	75.6	236.4		
45	199.8	215.6	309.1	74.1	78.5	242.7		
50	205.9	220.5	315.5	75.4	192.5	257.0		
55	212.5	226.6	321.4	77.2	230.3	270.7		
60	219.7	233.1	327.6	79.5	256.6	285.1		
65	226.7	241.9	332.9	81.8	295.3	299.9		
70	236.3	250.6	341.6	88.0	326.1	315.4		
75	248.6	261.5	352.5	291.7	346.2	334.4		
80	265.3	273.3	364.5	315.5	362.3	350.6		
85	284.6	289.1	376.7	337.6	377.4	371.1		
90	314.2	313.9	394.5	359.6	394.5	396.9		
95	359.7	359.2	417.8	387.7	423.6	439.7		
100	461.1	438.0	473.7	455.0	553.6	562.5		

Table H2 True Boiling Point Curves : KL zeolite

Figure H2 True boiling point curves (°C) for KL zeolite.

0/	Boiling Point (°C)								
0ff	1%MoO3 /KL	2%MoO3 /KL	3%MoO3 /KL	5%MoO3 /KL	10%MoO3 /KL				
0	48.8	47.8	45.3	23.7	24.2				
5	154.4	149.2	149.0	118.3	114.6				
10	157.3	153.4	152.7	149.3	148.7				
15	167.9	169.3	168.3	153.5	150.6				
20	171.7	179.2	178.5	168.2	164.6				
25	185.1	191.5	191.6	173.7	170.5				
30	193.2	202.7	203.8	. 186.8	181.0				
35	203.9	211.1	212.8	195.0	190.2				
40	212.0	219.3	221.5	205.2	199.8				
45	219.3	226.6	229.3	212.5	208.3				
50	226.3	235.0	238.0	220.0	215.8				
55	234.6	243.8	247.6	226.2	222.9				
60	244.9	253.7	257.6	234.3	229.8				
65	256.7	262.9	268.1	242.8	238.0				
70	271.0	273.0	277.4	254.1	248.0				
75	284.6	282.1	287.9	267.5	260.3				
80	302.4	293.3	300.2	283.2	276.2				
85	326.3	308.3	316.0	304.7	297.4				
90	356.6	334.0	340.2	336.1	329.6				
95	397.1	379.2	379.5	388.4	384.5				
100	520.5	462.3	455.2	557.5	556.1				

Table H3 True Boiling Point Curves : Maltene obtained from MoO₃/KL Catalysts

Figure H3 True boiling point curves (°C) for maltene obtained from MoO₃/KL Catalysts.

0/	Boiling Point (°C)								
Off	Non Catalyst	Non Catalyst KL		2%MoO3 /KL	1%Re/KL				
0	45.2	27.3	80.5	65.8	69.2				
5	270.8	209.7	190.6	209.1	75.8				
10	280.9	256.9	198.4	227.8	89.1				
15	289.4	270.9	210.0	244.0	168.6				
20	293.8	275.9	219.5	262.0	191.4				
25	300.3	285.5	227.7	279.4	209.3				
30	303.2	291.6	234.9	293.5	219.2				
35	307.5	298.3	245.7	297.6	228.3				
40	312.6	302.5	258.6	301.1	236.9				
45	316.6	309.1	270.9	308.5	245.8				
50	321.4	315.5	283.0	314.2	255				
55	326.4	321.4	291.7	318.4	263.8				
60	330.7	327.6	296.6	325.0	271.4				
65	336.4	332.9	303.5	328.8	278.9				
70	344.1	341.6	311.0	338.0	287.9				
75	353.0	352.5	323.8	345.9	299.2				
80	363.0	364.5	334.3	355.4	315.4				
85	373.9	376.7	348.0	369.3	332.9				
90	388.1	394.5	376.4	391.5	360.3				
95	408.4	417.8	411.0	426.2	391.3				
100	450.3	473.7	492.5	498.1	465.8				

Table H4True Boiling Point Curves : Comparison of Mono-aromatics (non-
catalyst, KL, 1%MoO₃/KL, 2%MoO₃/KL, and 1%Re/KL)

Figure H4 True boiling point curves (°C) for comparison of Mono-aromatics (non-catalyst, KL, 1%MoO₃/KL, 2%MoO₃/KL, and 1%Re/KL).

0/0	Boiling Point (°C)							
Off	Maltene	Saturated Hydrocarbons	Mono- Aromatics	Di- Aromatics	Poly- Aromatics	Polar- Aromatics		
0	32.0	165.6	51.0	31.1	33.9	30.3		
5	113.0	187.2	73.7	72.2	71.7	171.9		
10	145.1	197.2	79.6	73.8	72.7	192.5		
15	148.1	204.1	214.0	76.3	74.7	193.9		
20	161.4	210.0	230.3	80.4	163.3	194.3		
25	167.6	213.7	242.7	241.0	243.7	194.9		
30	179.3	218.8	245.3	260.2	272.1	202.5		
35	189.6	224.3	253.0	269.9	287.0	209.4		
40	199.7	229.3	258.5	274.8	295.3	219.8		
45	207.8	234.7	263.4	277.1	305.1	226.1		
50	215.4	241.6	268.2	285.9	311.6	236.2		
55	223.8	247.5	272.1	292.4	320.2	247.4		
60	232.4	253.9	276.8	299.5	328.9	263.9		
65	243.3	260.9	283.2	302.7	337.9	279.1		
70	253.7	268.0	288.9	314.2	346.9	298.6		
75	264.7	276.1	296.3	322.3	355.4	320.3		
80	276.0	285.3	306.7	330.9	365.3	343.4		
85	290.7	297.2	322.4	348.2	376.1	369.3		
90	312.8	318.8	341.2	372.5	389.4	393.1		
95	354.4	359.3	372.3	405.5	410.4	423.1		
100	451.7	452.2	453.3	488.3	498.6	521.1		

Table H5 True Boiling Point Curves : 0.25%Re/KL

Figure H5 True boiling point curves (°C) for 0.25%Re/KL.

0/0	Boiling Point (°C)							
Off	Maltene	Saturated Hydrocarbons	Mono- Aromatics	Di- Aromatics	Poly- Aromatics	Polar- Aromatics		
0	24.8	65.6	73.2	74.4	22.5	22.3		
5	115.3	80.3	212.1	189.4	26.1	24.4		
10	148.7	149.4	228.6	206.2	32.0	27.3		
15	150.6	168.2	234.4	219.2	40.7	31.1		
20	162.8	175.3	243.3	232.3	225.6	36.0		
25	170.0	187.1	249.7	247.1	251.7	41.7		
30	178.1	193.7	255.5	271.0	275.9	209.1		
35	188.4	203.5	262.8	288.0	305.0	227.7		
40 -	196.8	208.7	270.9	298.0	327.9	240.5		
45	206.2	214.3	277.4	307.1	342.8	252.1		
50	214.0	220.2	285.5	314.9	354.2	263.7		
55	221.1	224.6	293.3	323.2	364.5	275.4		
60	227.3	230.3	303.1	332.6	373.8	288.8		
65	235.1	236.1	312.3	342.9	383.0	303.9		
70	243.4	243.1	323.2	354.8	392.5	321.3		
75	254.3	251.3	334.0	367.7	403.1	342.3		
80	267.7	261.1	347.5	381.8	415.1	367.6		
85	284.8	274.0	365.7	397.9	429.6	396.3		
90	311.2	294.3	385.6	417.0	449.1	431.5		
95	359.1	337.3	416.4	446.4	482.0	483.4		
100	554.4	451.7	506.6	525.7	565.6	569.3		

 Table H6
 True Boiling Point Curves : 0.50%Re/KL

Figure H6 True boiling point curves (°C) for 0.50%Re/KL.

0/2	Boiling Point (°C)							
Off	Maltene	Saturated Hydrocarbons	Mono- Aromatics	Di- Aromatics	Poly- Aromatics	Polar- Aromatics		
0	34.9	99.4	72.3	27.1	23.2	23.1		
5	145.9	180.7	189.0	253.3	74.2	36.6		
10	148.3	192.5	211.0	273.7	262.8	173.3		
15	163.1	203.6	224.4	285.1	289.8	194.4		
20	169.6	212.2	234.9	290.1	302.7	201.3		
25	185.1	218.7	246.8	292.8	308.3	210.2		
30	196.4	224.7	255.4	296.2	315.4	218.9		
35	207.5	231.8	264.3	300.8	323.6	231.2		
40	217.7	239.3	271.4	302.8	331.7	240.5		
45	226.7	247.1	275.9	307.6	339.3	251.0		
50	237.1	254.9	282.6	313.1	347	265.0		
55	248.9	263.0	287.5	316.0	353.6	278.4		
60	260.4	270.3	292.2	321.8	361.5	291.4		
65	271.5	277.4	299.2	328.2	368.5	306.7		
70	281.8	284.7	304.1	336.5	376.0	323.4		
75	291.8	293.9	313.0	350.6	383.8	342.8		
80	303.3	303.8	323.6	366.3	392.7	365.3		
85	319.6	318.7	336.8	383.6	403.6	389.4		
90	344.8	340.9	361.4	404.2	418.2	414.6		
95	389.1	384.3	392.3	429.6	447.1	453.8		
100	480.8	464.4	466.4	511.8	550.5	560.6		

Table H7 True Boiling Point Curves : 0.75%Re/KL

Figure H7 True boiling point curves (°C) for 0.75%Re/KL.

0/2	Boiling Point (°C)							
Off	Maltene	Saturated Hydrocarbons	Mono- Aromatics	Di- Aromatics	Poly- Aromatics	Polar- Aromatics		
0	78.6	77.3	69.2	44.5	39.4	33.5		
5	145.8	166.9	75.8	187.3	202.3	180.1		
10	148.6	181.9	89.1	208.0	238.9	193.6		
15	163.4	191.0	168.6	226.8	268.1	194.1		
20	170.3	201.5	191.4	252.0	288.3	194.5		
25	185.7	208.8	209.3	268.8	302.0	196.0		
30	197.7	215.1	219.2	272.3	310.4	208.6		
35	208.1	220.6	228.3	276.8	319.9	214.6		
40	217.6	227.5	236.9	285.5	330.0	226.6		
45	225.7	234.6	245.8	291.8	339.3	235.4		
50	235.3	242.6	255.0	298.5	349	242.2		
55	245.7	251.3	263.8	302.1	357.6	256.7		
60	257.1	259.4	271.4	310.2	366.6	269.6		
65	269.0	268.4	278.9	316.9	375.7	283.0		
70	278.9	276.9	287.9	325.1	384.7	299.3		
75	291.5	286.8	299.2	334.2	393.9	317.5		
80	308.0	298.6	315.4	349.5	404.8	337.6		
85	329.3	318.4	332.9	368.5	416.0	359.4		
90	358.4	345.6	360.3	391.0	430.8	385.9		
95	392.2	385.7	391.3	420.7	453.6	415.5		
100	453.1	455.3	465.8	496.7	524.0	519.7		

Table H8 True Boiling Point Curves : 1%Re/KL

Figure H8 True boiling point curves (°C) for 1%Re/KL.

0/0	Boiling Point (°C)							
Off	Maltene	Saturated Hydrocarbons	Mono- Aromatics	Di- Aromatics	Poly- Aromatics	Polar- Aromatics		
0	110.4	40.0	31.8	23.5	23.1	171.9		
5	146.1	154.1	211.3	39.2	40.2	199.5		
10	149.5	171.7	228.6	273.3	249.4	205.5		
15	167.6	187.3	244.6	289.8	279.1	214.6		
20	183.0	199.8	255.4	295.6	300.3	227.7		
25	194.2	207.7	267.5	302.1	314.8	239.6		
30	206.6	215.3	272.8	306.1	326.2	248.1		
35	216.6	222.6	278.7	309.9	338.2	260.8		
40	225.7	230.7	285.7	315.3	347.0	272.6		
45	235.8	238.7	291.0	318.8	355.4	283.9		
50	246.9	248.0	296.6	324.6	363.9	295.6		
55	258.3	256.7	301.5	331.2	371.3	308.5		
60	268.9	265.9	306.4	339.2	378.7	321.9		
65	276.9	272.9	314.3	350.5	386.0	337.7		
70	286.4	281.5	321.7	361.1	393.5	354.5		
75	297.0	290.1	329.7	373.6	401.8	372.3		
80	310.6	299.4	340.4	387.3	411.1	389.8		
85	328.9	314.3	358.4	403.9	422.4	407.4		
90	356.5	334.6	379.0	421.6	438.3	427.4		
95	391.7	376.2	410.2	451.2	468.7	457.5		
100	459.4	463.8	492.1	558.0	553.0	531.2		

Table H9 True Boiling Point Curves : 0.25%Re-1%MoO₃/KL

Figure H9 True boiling point curves (°C) for 0.25%Re-1%MoO₃/KL.

0/2	Boiling Point (°C)								
Off	Maltene	Saturated Hydrocarbons	Mono- Aromatics	Di- Aromatics	Poly- Aromatics	Polar- Aromatics			
0	23.7	42.6	33.0	23.3	22.7	73.7			
5	107.9	158.4	211.4	43.4	29.0	75.9			
10	149.3	172.0	228.7	278.2	39.8	160.3			
15	159,3	199.0	244.7	290.5	74.7	192.6			
20	172.4	200.5	255.6	296.3	214.9	201.9			
25	188.9	208.3	267.7	302.0	304.4	210.4			
30	203.5	216.2	272.8	306.2	314.7	220.4			
35	214.7	223.2	278.6	310.2	329.4	233.4			
40	224.5	231.3	285.6	315.4	339.4	242.3			
45	234.4	239.6	290.9	319.1	348.0	252.0			
50	245.0	249.1	296.2	324.9	355.7	264.7			
55	256.5	257.9	301.3	331.6	364.6	276.5			
60	267.7	267.2	305.8	340.2	372.2	288.4			
65	277.4	273.9	313.7	350.5	379.5	302.2			
70	287.6	282.5	320.7	360.9	387.5	317.0			
75	299.2	291.0	328.9	372.8	395.6	334.4			
80	313.1	300.5	338.9	385.9	404.8	353.3			
85	332.1	315.3	356.5	401.9	415.6	375.2			
90	360.8	335.7	377.4	419.0	432.1	398.8			
95	405.6	376.6	409.0	446.7	475.2	430.8			
100	532.4	460.1	490.0	551.9	566.1	497.6			

Table H10 True Boiling Point Curves : 0.50%Re-1%MoO₃/KL

Figure H10 True boiling point curves (°C) for 0.50%Re-1%MoO₃/KL.

0/	Boiling Point (°C)								
Off	Maltene	Saturated Hydrocarbons	Mono- Aromatics	Di- Aromatics	Poly- Aromatics	Polar- Aromatics			
0	22.9	31.6	157.9	22.7	22.5	22.5			
5	45.7	165.0	189.3	29.0	30.1	29.2			
10	148.8	182.7	214.5	40.4	72.9	41.3			
15	152.9	192.1	244.0	220.7	247.0	201.5			
20	169.4	203.5	269.1	254.2	270:1	211.9			
25	182.6	210.5	274.9	291.1	288.6	223.3			
30	194.6	216.6	280.9	310.9	305.2	235.9			
35	206.3	223.3	288.5	322.5	321.0	247.1			
40	215.8	230.0	293.9	332.9	337.4	258.5			
45	224.5	236.9	299.9	343.3	349.2	271.3			
50	233.6	245.1	305.3	353.1	360.3	285.7			
55	243.0	253.1	312.0	361.8	370.1	299.9			
60	254.0	260.7	319.3	371.1	378.6	316.2			
65	264.6	269.5	327.3	380.5	386.8	334.9			
70	275.3	276.4	335.3	390.6	395.4	354.9			
75	286.4	285.4	346.8	401.9	405.1	375.3			
80	300.2	296.3	361.6	413.6	416.2	395.9			
85	319.7	311.6	377.3	428.6	429.8	417.5			
90	350.5	339.1	397.6	449.0	449.2	442.7			
95	397.6	390.9	426.1	484.5	483.3	482.5			
100	527.2	493.0	500.3	564.3	561.1	563.8			

Table H11 True Boiling Point Curves : 0.75%Re-1%MoO₃/KL

Figure H11 True boiling point curves (°C) for 0.75%Re-1%MoO₃/KL.

0/0	Boiling Point (°C)								
Off	Maltene	Saturated Hydrocarbons	Mono- Aromatics	Di- Aromatics	Poly- Aromatics	Polar- Aromatics			
0	74.6	149.4	23.7	27.1	24.6	43.2			
5	148.9	172.6	188.1	296.6	219.2	213.1			
10	152.7	189.6	212.8	315.4	272.6	231.4			
15	168.2	201.3	225.5	324.8	295.6	243.5			
20	178.7	208.6	236.0	332.7	311.9	254.2			
25	191.8	215.6	247.4	340.0	326.5	263.7			
30	203.9	222.7	256.9	347.3	339.5	272.8			
35	212.8	228.6	266.4	354.5	351.3	282.6			
40	221.4	235.5	273.6	361.2	362.6	292.4			
45	229.0	242.8	279.2	368.0	373.1	302.0			
50	237.6	250.7	286.3	374.7	382.8	312.5			
55	247.1	257.9	292.2	381.6	392.1	324.5			
60	256.8	265.7	298.1	388.9	401.3	338.0			
65	266.4	272.8	304.9	397.0	410.9	352.5			
70	275.3	279.3	313.0	405.7	421.0	368.3			
75	284.6	286.9	322.8	415.2	432.2	384.3			
80	295.3	296.2	334.7	426.3	445.1	401.8			
85	309.0	307.1	352.4	439.9	460.9	422.2			
90	331.0	325.0	376.0	457.6	482.6	447.7			
95	371.9	359.4	409.4	485.0	517.8	488.5			
100	461.0	430.8	507.6	549.4	584.0	562.9			

 Table H12
 True Boiling Point Curves : 1%Re-1%MoO₃/KL

Figure H12 True boiling point curves (°C) for 1%Re-1%MoO₃/KL.

APPENDIX I Carbon Number Distributions

Table I1 Carbon number distributions of maltene for Non-catalyst, KL, and MoO_3/KL catalysts

No. Carbon	Non- catalyst	KL	1%MoO₃/ KL	2%MoO ₃ / KL	3%MoO₃/ KL	5%MoO ₃ / KL	10%MoO3 /KL
5	0.0006	0.0000	0.0000	0.1081	0.1245	0.0509	0.0464
6	0.0406	0.0004	0.0110	0.3565	0.4028	0.2880	0.2880
7	0.5105	0.1124	0.3300	1.0109	1.1062	1.1826	1.2578
8	2.3022	2.0630	2.2690	2.4167	2.5368	3.4432	3.7726
9	5.4335	8.5156	6.4120	4.7858	4.8051	7.1421	7.8424
10	8.5285	15.2254	10.5906	7.7841	7.5163	10.9368	11.8087
11	10.3619	17.1867	12.6831	10.4645	9.8395	13.0940	13.7672
12	10.7218	15.1644	12.5464	11.8801	11.0505	13.0638	13.3417
13	10.0350	11.7652	11.0884	11.7573	10.9819	11 5030	11.4299
14	8.8261	8.5606	9.1799	10.5001	9.9633	9.3510	9.0705
. 15	7.4756	6.0525	7.3273	8.7322	8.4811	7.2481	6.8881
16	6.1941	4.2402	5.7394	6.9354	6.9229	5.4749	5.1141
17	5.0726	2.9757	4.4602	5.3602	5.5077	4.0876	3.7631
18	4.1334	2.1042	3.4622	4.0845	4.3204	3.0438	2.7677
19	3.3660	1.5040	2.6956	3.0958	3.3682	2.2732	2.0449
20	2.7471	1.0882	2.1103	2.3475	2.6237	1.7082	1.5224
21	2.2510	0.7974	1.6637	1.7873	2.0491	1.2942	1.1439
22	1.8539	0.5918	1.3218	1.3692	1.6081	0.9895	0.8680
23	1.5356	0.4446	1.0586	1.0568	1.2698	0.7637	0.6654
24	1.2796	0.3379	0.8546	0.8222	1.0094	0.5950	0.5152
25	1.0727	0.2597	0.6953	0.6450	0.8081	0.4678	0.4027
26	0.9045	0.2016	0.5699	0.5099	0.6514	0.3710	0.3176
27	0.7669	0.1580	0.4704	0.4063	0.5287	0.2966	0.2527
28	0.6537	0.1249	0.3907	0.3260	0.4319	0.2389	0.2026
29	0.5598	0.0995	0.3265	0.2634	0.3548	0.1938	0.1635
30	0.4815	0.0798	0.2742	0.2140	0.2931	0.1581	0.1329
31	0.4156	0.0644	0.2314	0.1749	0.2433	0.1298	0.1086
32	0.3599	0.0522	0.1960	0.1435	0.2028	0.1070	0.0892
33	0.3125	0.0426	0.1666	0.1183	0.1697	0.0886	0.0735
34	0.2719	0.0349	0.1420	0.0979	0.1424	0.0736	0.0609
35	0.2370	0.0286	0.1213	0.0813	0.1198	0.0614	0.0505
36	0.2067	0.0236	0.1038	0.0676	0.1010	0.0513	0.0421
37	0.1803	0.0195	0.0889	0.0563	0.0852	0.0429	0.0351
38	0.1571	0.0161	0.0762	0.0470	0.0720	0.0359	0.0293
39	0.1368	0.0133	0.0652	0.0392	0.0608	0.0301	0.0245
40	0.1188	0.0110	0.0557	0.0327	0.0513	0.0252	0.0204
41	0.1027	0.0091	0.0475	0.0273	0.0432	0.0211	0.0170
42	0.0884	0.0075	0.0403	0.0226	0.0362	0.0176	0.0142
43	0.0754	0.0062	0.0339	0.0187	0.0302	0.0145	0.0117
44	0.0635	0.0050	0.0282	0.0153	0.0249	0.0119	0.0096
45	0.0525	0.0040	0.0231	0.0123	0.0202	0.0096	0.0077
46	0.0422	0.0031	0.0184	0.0097	0.0160	0.0076	0.0061
47	0.0323	0.0024	0.0140	0.0073	0.0121	0.0057	0.0046
48	0.0226	0.0016	0.0097	0.0050	0.0083	0.0039	0.0031
49	0.0128	0.0009	0.0055	0.0028	0.0047	0.0022	0.0018
50	0.0026	0.0002	0.0011	0.0006	0.0009	0.0004	0.0004

No. Carbon	0.25%Re/KL	0.50%Re/KL	0.75%Re/KL	1%Re/KL
5	0.2054	0.1142	0.1250	0.0041
6	0.7107	0.4644	0.4788	0.1045
7	1.9899	1.5314	1.4087	0.8206
8	4.4171	3.9571	3.1895	2.8993
9	7.7231	7.8213	5.6582	6.0205
10	10.7793	11.8217	8.1167	8.8328
11	12.3953	14.0576	9.7915	10.3551
12	12.2426	13.8091	10.3389	10.5166
13	10.8331	11.8317	9.9045	9.7511
14	8.9042	9.2756	8.8646	8.5406
15	6.9898	6.8997	7.5808	7.2245
16	5.3453	4.9934	6.2974	5.9885
17	4.0362	3.5735	5.1417	4.9108
18	3.0359	2.5545	4.1601	4.0090
19	2.2876	1.8351	3.3541	3.2717
20	1.7329	1.3294	2.7051	2.6762
21	1.3223	0.9729	2.1878	2.1980
22	1.0175	0.7199	1.7771	1.8145
23	0.7899	0.5387	1.4513	1.5064
24	0.6188	0.4076	1.1921	1.2580
25	0.4889	0.3116	0.9851	1.0569
26	0.3896	0.2406	0.8189	0.8931
27	0.3129	0.1875	0.6846	0.7588
28	0.2531	0.1474	0.5755	0.6480
29	0.2061	0.1168	0.4862	0.5560
30	0.1688	0.0931	0.4126	0.4791
31	0.1390	0.0747	0.3515	0.4144
32	0.1151	0.0603	0.3006	0.3595
- 33	0.0956	0.0489	0.2577	0.3127
34	0.0797	0.0398	0.2215	0.2725
35	0.0666	0.0326	0.1907	0.2379
36	0.0558	0.0267	0.1644	0.2078
37	0.0469	0.0219	0.1418	0.1815
38	0.0394	0.0181	0.1223	0.1585
39	0.0331	0.0149	0.1053	0.1381
40	0.0278	0.0123	0.0906	0.1201
41	0.0233	0.0101	0.0776	0.1040
42	0.0194	0.0083	0.0662	0.0896
43	0.0161	0.0068	0.0560	0.0765
44	0.0132	0.0055	0.0468	0.0645
45	0.0107	0.0044	0.0385	0.0534
46	0.0084	0.0034	0.0307	0.0429
47	0.0064	0.0026	0.0234	0.0329
48	0.0044	0.0018	0.0163	0.0230
49	0.0025	0.0010	0.0092	0.0131
50	0.0005	0.0002	0.0018	0.0026

 Table I2
 Carbon number distributions of maltene for Re/KL catalysts

No. Carbon	0.25%Re- 1%MoO√KL	0.50%Re- 1%MoO√KL	0.75%Re- 1%MoO√KL	1%Re- 1%MoO√KL
5	1.7854	0.7781	0.2590	0.3758
6	2.5198	1.3591	0.6838	0.8118
7	3.4365	2.2371	1.5825	1.6210
8	4.5188	3.4521	3.1664	2.9649
9	5.7074	4.9607	5.4183	4.9066
10	6.8892	6.5935	7.9032	7.2510
11	7.9014	8.0637	9.8997	9.4757
12	8.5658	9.0601	10.8397	10.9267
13	8.7492	9.3835	10.6307	11.2070
14	8.4214	9.0329	9.5859	10.3981
15	7.6701	8.1778	8.1408	8.9191
16	6.6598	7.0556	6.6419	7.2305
17	5.5649	5.8759	5.2857	5.6472
18	4.5192	4.7765	4.1486	4.3136
19	3.5991	3.8244	3.2362	3.2582
20	2.8322	3.0367	2.5222	2.4520
21	2.2153	2.4034	1.9707	1.8478
22	1.7297	1.9027	1.5471	1.3988
23	1.3523	1.5103	1.2219	1.0658
24	1.0609	1.2038	0.9715	0.8181
25	0.8361	0.9644	0.7779	0.6330
26	0.6625	0.7769	0.6272	0.4936
27	0.5279	0.6293	0.5090	0.3880
28	0.4231	0.5127	0.4158	0.3071
29	0.3409	0.4198	0.3416	0.2448
30	0.2761	0.3455	0.2822	0.1964
31	0.2247	0.2856	0.2342	0.1584
32	0.1837	0.2370	0.1952	0.1284
33	0.1507	0.1974	0.1633	0.1046
- 34	0.1241	0.1649	0.1370	0.0855
35	0.1025	0.1381	0.1153	0.0701
36	0.0848	0.1159	0.0972	0.0577
37	0.0703	0.0974	0.0820	0.0476
38	0.0584	0.0819	0.0693	0.0393
-39	0.0485	0.0688	0.0585	0.0324
40	0.0403	0.0578	0.0493	0.0268
41	0.0334	0.0485	0.0415	0.0221
42	0.0276	0.0405	0.0348	0.0182
43	0.0227	0.0336	0.0290	0.0149
44	0.0185	0.0276	0.0239	0.0121
45	0.0148	0.0223	0.0194	0.0097
46	0.0116	0.0176	0.0153	0.0076
47	0.0087	0.0133	0.0116	0.0057
48	0.0060	0.0092	0.0080	0.0039
49	0.0034	0.0052	0.0045	0.0022
50	0.0007	0.0010	0.0009	0.0004

 Table I3
 Carbon number distributions of maltene for %Re-1%MoO₃/KL catalysts

No. Carbon	Non-catalyst	KL	1%MoO ₃ /KL	2%MoO₃/KL	1%Re/KL
5	0.0003	0.0000	0.0308	0.0447	0.2310
6	0.0012	0.0000	0.1017	0.0899	0.4809
7	0.0041	0.0000	0.2965	0.1721	0.9425
8	0.0130	0.0000	0.7575	0.3148	1.7333
9	0.0381	0.0001	1.6773	0.5515	2.9737
. 10	0.1042	0.0018	3.1921	0.9282	4.7148
11	0.2657	0.0311	5.2053	1.5039	6.8279
12	0.6332	0.2866	7.3092	2.3490	8.9284
13	1.4080	1.4363	8.9561	3.5363	10.4645
14	2.9000	4.2317	9.7662	5.1157	10.9976
15	5.4409	8.1335	9.6944	7.0601	10.4629
. 16	9.0456	11.3606	8.9571	9.1766	9.1621
17	12.8673	12.6765	7.8562	11.0265	7.5322
- 18	15.2037	12.1682	6.6472	11.9938	5.9254
19	14.8175	10.5997	5.4934	11.6235	4.5327
20	12.1894	8.6927	4.4754	10.0125	3.4134
21	8.8382	6.8770	3.6180	7.7741	2.5528
. 22	5.9137	5.3328	2.9160	5.5781	1.9074
23	3.7877	4.0951	2.3505	3.8001	1.4293
- 24	2.3806	3.1344	1.8988	2.5142	1.0768
25	1.4902	2.4008	1.5394	1.6419	0.8166
26	0.9369	1.8449	1.2533	1.0694	0.6238
27	0.5941	1.4242	1.0252	0.6991	0.4801
- 28	0.3808	1.1052	0.8426	0.4602	0.3721
29	0.2468	0.8624	0.6957	0.3056	0.2905
30	0.1618	0.6766	0.5769	0.2048	0.2282
31	0.1072	0.5337	0.4803	0.1385	0.1804
32	0.0718	0.4230	0.4013	0.0946	0.1434
33	0.0485	0.3368	0.3364	0.0651	0.1145
34	0.0331	0.2692	0.2827	0.0452	0.0918
. 35	0.0228	0.2160	0.2381	0.0316	0.0739
36	0.0158	0.1738	0.2009	0.0223	0.0597
37	0.0110	0.1403	0.1697	0.0158	0.0484
38	0.0078	0.1135	0.1434	0.0113	0.0393
39	0.0055	0.0919	0.1211	0.0082	0.0319
40	0.0039	0.0745	0.1022	0.0059	0.0260
41	0.0028	0.0604	0.0860	0.0043	0.0211
42	0.0021	0.0489	0.0721	0.0032	0.0171
43	0.0015	0.0394	0.0601	0.0023	0.0139
44	0.0011	0.0316	0.0495	0.0017	0.0111
45	0.0008	0.0249	0.0402	0.0013	0.0088
46	0.0006	0.0193	0.0318	0.0009	0.0068
47	0.0004	0.0143	0.0240	0.0006	0.0051
48	0.0003	0.0098	0.0166	0.0004	0.0035
49	0.0001	0.0054	0.0093	0.0002	0.0019
50	0.0000	0.0011	0.0019	0.0000	0.0004

Table I4Carbon number distributions of mono-aromatics for non-catalyst, KL,1%MoO3/KL, 2%MoO3/KL, and 1%Re/KL

APPENDIX J Temperature Programmed Reduction of Re/KL

Figure J TPR profiles of different loading percentages of Re/KL catalysts.

CURRICULUM VITAE

Name: Ms. Ruktawee Mahanin

Date of Birth: April 25, 1987

Nationality: Thai

University Education:

2005–2009 Bachelor Degree of Science, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand

Work Experience:

March 2008 - May 2008 Position:

Position: Student Internship Company name: Thai Bridge Stone Co.,Ltd., Nongkhae, Saraburi, Thailand.

Proceedings:

 Mahanin, R. and Jitkarnka, S. (2011, April 26) Catalytic Pyrolysis of Waste Tire over KL-based Catalysts: The Effect of MoO₃ and Re. <u>Proceedings of The 2nd</u> <u>Research Symposium on Petroleum, Petrochemicals, and Advanced Materials, and</u> <u>The 17th PPC Symposium on Petroleum, Petrochemicals, and Polymers</u>, Queen Sirikit National Convention Center, Bangkok, Thailand.

