REFERENCES

- Babadagli, T., and Boluk, Y. (2005) Oil recovery performances of surfactant solutions by capillary imbibition. <u>Journal of Colloid and Interface</u> <u>Science</u>, 282, 162-175.
- Berger, P.D., and Lee, C.H. (2006) Improved ASP process using organic alkali. Texas: <u>Society of Petroleum Engineer</u>, (99581).
- Bourrel, M., and Schechter, R.S. (1988) <u>Microemulsion and Related Systems</u>. New York: Marcel Dekker.
- Chen, P. (2011) <u>Surfactant-Enhanced Spontaneous Imbibition Process in Highly</u> <u>Fractured Carbonate Reservoirs</u>, M.S. Thesis, University of Texas at Austin, U.S.A.
- Eksborg, S., and Lagerstrom, P.O. (1973) Ion-pair chromatography of organic compounds. <u>J. Chromatography</u>, 83, 99-110.
- Guerra, E., Valero, E., and Rodriguez, D. (2007) Improved ASP design using organic compound-surfactant-polymer (OCSP) for La Salina field, Maracaibo lake. Texas: <u>Society of Petroleum Engineer</u>, (107776).
- Hirasaki, G.J., Rohan, J.A., Dubey, S.T., and Niko, H. (1990) Wettability evaluation during restored state core analysis. Texas: <u>Society of</u> <u>Petroleum Engineer</u>, 20506.
- Hsu, T.P., Prapas, Lohateeraparp, Roberts, B.L., Wan, W., Lin, Z., Wang, X., Budhathoki, M., Shiau, B.J.B., and Harwell, J.H. (2012) Improved oil recovery by chemical flood from high salinity reservoirs-single-well surfactant injection test. Texas: <u>Society of Petroleum Engineer</u>, (154838).
- Iglauer, S., Wu, Y., Shuler, P., Yang, Y., and Goddard III, W.A. (2010) New surfactant classes for enhanced oil recovery and their tertiary oil recovery potential. Journal of Petroleum Science and Engineering, 71, 23-29.
- Khan, A., and Marques, E. (1997) <u>Cationic_Surfactants:_Specialist_Surfactant</u>. London: Blakie Academic & Professional.

- Kiran, S.K., Acosta, E.J., and Moran, K. (2009) Evaluating the hydrophiliclipophilic nature of asphaltenic oils and naphthenic amphiphiles using microemulsion models. <u>Journal of Colloid and Interface Science</u>, 336, 304-313.
- Korphol, P. (2004) <u>Microemulsion Formation of Motor Oil with Mixed</u> <u>Surfactants at Low Salinity for Detergency</u>. M.S. Thesis, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand.
- Laohacharoensombat, S. (2002) <u>Cloud Point Extraction of Toluene from</u> <u>Wastewater Using Nonionic Surfactants: Effect of Temperature and</u> <u>Surfactant Structure</u>. M.S. Thesis, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand.
- Lohateeraparp, P. (2001) <u>Study of Alcohol-Free Microemulsion Systems</u> <u>Containing Fatty Acids As Co surfactants</u>. M.S. Thesis, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand.
- Shiau, B.J.B., Hsu, T.P., Prapas, Lohateeraparp, Wan, W., Lin, Z., Roberts, B.L., and Harwell, J.H. (2012) Improved oil recovery by chemical flood from high salinity reservoirs. Texas: <u>Society of Petroleum Engineer</u>, (154260).
- Shuler, P., and Wu, Y. (2005) <u>Screening Methods for Selection of Surfactant</u> <u>Formulations for IOR from Fractured Carbonate Reservoirs</u>. California: California Institute of Technology.
- Solairaj, M., Britton, C., Lu, J., Kim, D.H., Weerasooriya, U., and Pope, G.A.
 (2012) New correlation to predict the optimum surfactant structure for EOR. <u>Society of Petroleum Engineer</u>, (154262).
- Thakur, R.K., Villette, C., Aubry, J.M., and Delaplace, G. (2007) Spectrophotometric method associated with formulation scans for application of hydrophilic-lipophilic deviation concept in food emulsions. Journal of Colloid and Surfaces, 301, 469-474.

- Ubolsuk, M. (2003) <u>Microemulsion Formation by Mixed Anionic and Cationic</u> <u>Surfactants</u>. M.S. Thesis, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand.
- Vikingstad, A., and Aarra, M.G. (2009) Comparing the static and dynamic foam properties of a fluorinated and an alpha olefin sulfonate surfactant. <u>Journal of Petroleum Science and Engineering</u>, 65, 105-111.
- Wu, B. (1997) Formulating Microemulsion Systems of Petroleum Hydrocarbons Using Surfactant/cosurfactant Mixtures. M.S. Thesis, University of Oklahoma, U.S.A.
- Yang, F., Wang, D., and Wang, G. (2006) Study in high-concentration polymer flooding to further enhance oil recovery. Texas: <u>Society of Petroleum</u> <u>Engineer</u>, (101202).

APPENDICES

Appendix A Phase Behavior of Single Anionic Surfactant System at 30°C

Figure A-1 Phase behavior of Lipal 835I systems at 1wt% to 10wt% NaCl (left to right).

Figure A-2 Phase behavior of SDBS systems at 1wt% to 10wt% NaCl (left to right).

Figure A-3 Phase behavior of SDS systems at 1wt% to 10wt% NaCl (left to right).

Figure A-4 Phase behavior of MES systems at 1wt% to 6wt% NaCl (left to right).

Appendix B Phase Behavior of mixed Anionic-Nonionic Surfactant System at $30^\circ C$

Figure B-1 Phase behavior of mixed SDBS/Tergitol® TMN6 systems at 5wt% to 12wt% NaCl (left to right).

Figure B-2 Phase behavior of mixed SDBS/Triton[®] X-100 systems at 5wt% to 14wt% NaCl (left to right).

Figure B-4 Phase behavior of mixed Lipal 835I/Triton[®] X-100 systems at 4wt%, 6wt%, 8wt% and 10wt% NaCl (left to right).

Figure B-4 Phase behavior of mixed Lipal 835I/Triton[®] X-100 systems at 6wt%, 8wt% and 10wt% NaCl (left to right).

Figure B-5 Phase behavior of mixed Lipolan PB-800 CJ/Tergitol® TMN6 systems at 2wt%, 4wt%, 6wt% and 8wt% NaCl (left to right).

Figure B-6 Phase behavior of mixed Lipolan PB-800 CJ/Triton[®] X-100 systems at at 2wt%, 4wt%, 6wt% and 8wt% NaCl (left to right).

Appendix C Phase Height and Phase Behavior Data of Mixed Anionic-Nonionic Surfactant Systems

r	· · · · ·										
NaCl					Exposure	time (day)					Phase Behavior
(wt%)		1	3	3	1	5		7	1	.0	10 days exposure
	LL (mm)	UL (mm)	LL (mm)	UL (mm)	LL (mm)	UL (mm)	LL (mm)	UL (mm)	LL (mm)	UL (mm)	
5	0	-0.32	0	-0.26	0	-0.40	0	-0.39	0	-0.38	Winsor type I
6	0	0.03	0	0.03	0	0.06	0	0.14	0	0.14	Winsor type I
7	0	0.61	0	1.20	0	0.80	0	1.36	0	1.45	Winsor type I
8	-2.99	0.39	-5.69	0.79	-6.12	0.78	-6.33	0.97	-7.27	1.17	Winsor type III
8.5	-2.16	0.71	-3.17	1.04	-3.64	1.165	-3.95	1.23	-5.13	1.51	Winsor type III
9	-2.29	0.83	-2.59	1.08	-3.11	1.15	-3.49	1.35	-4.33	1.49	Winsor type III
9.5	-1.66	0.98	-2.2	1.41	-2.93	0.415	-3.07	1.51	-3.84	1.765	Winsor type III
10	-1.37	0.65	-1.86	1.01	-2.29	1.07	-2.28	1.21	-2.84	1.30	Winsor type III
11	-0.84	-0.25	-1.16	-0.18	-1.45	-0.21	-1.28	0.04	-1.5	0.02	Winsor type III
12	-0.43	1.04	-1.03	1.7	-1.61	1.67	-1.59	2.06	-1.66	2.23	Winsor type III
12.5	-0.81	1.07	-1.58	1.38	-1.7	1.78	-2.1	2.35	-2.1	2.35	Winsor type III
13	-1.94	1.72	-1.75	1.81	-2.04	1.89	-1.71	2.46	-2.31	1.98	Winsor type III
13.5	-2.03	0.59	-2.24	0.54	-2.27	0.93	-2.31	1.28	-2.31	1.28	Winsor type III
14	0.68	9.25	-12.5	7.42	-3.28	6.09	-3.41	5.94	-3.65	5.91	Winsor type III
15	0.71	10.69	-2.2	7.2	-2.71	7.18	-2.56	7.02	-2.56	7.02	Winsor type III
16	2.01	11.7	-2.38	7.16	-2.55	6.96	-2.76	6.92	-2.76	6.92	Winsor type III

Table C-1 Phase height and phase behavior of mixed SDBS/Triton[®] X-100 surfactant systems 30°C

NaCl					Exposure	time (day)					Phase Behavior
(wt%)		1		3		5		7	1	.0	10 days exposure
_	LL (mm)	UL (mm)	LL (mm)	UL (mm)	LL (mm)	UL (mm)	LL (mm)	UL (mm)	LL (mm)	UL (mm)	
5	0	2.03	0	2.24	0	2.19	0	2.19	0	2.12	Winsor type I
6	0	3.44	0	3.47	0	3.58	0	3.67	0	3.74	Winsor type I
7	-25.26	-7.01	-16.09	2.05	-13.88	4.05	-12.32	4.42	-12.17	4.80	Winsor type III
7.5	-9.93	4.595	-8.91	5.515	-8.935	5.625	-8.99	5.605	-8.965	5.62	Winsor type III
8	-7.35	5.90	-7.31	5.82	-7.51	5.79	-7.12	5.85	-7.20	5.93	Winsor type III
8.5	-6.46	6.96	-6.42	7.07	-6.325	6.885	-6.205	6.905	-6.3	6.94	Winsor type III
9	-2.31	11.03	-5.71	7.86	-5.64	7.81	-5.55	7.62	-5.79	7.68	Winsor type III
10	0	15.69	-4.04	11.90	-4.51	11.65	-4.70	10.82	-4.58	10.09	Winsor type III
11	-1.77	0	-2.84	0	-3.04	0	-3.36	0	-3.61	0	Winsor type II
12	-0.30	0	-3.09	0	-3.03	0	-3.42	0	-3.44	0	Winsor type II

Table C-2 Phase height and phase behavior of mixed SDBS/Tergitol[®] TMN6 surfactant systems 30°C

NaCl			-		Exposure	time (day)					Phase Behavior
(wt%)		1		3		5	-	7	1	LO	10 days exposure
	LL (mm)	UL (mm)	LL (mm)	UL (mm)	LL (mm)	UL (mm)	LL (mm)	UL (mm)	LL (mm)	UL (mm)	
2	0	0	0	0	0	0	0	0	0	0	No phase interaction
4	0	0	0	0	0	0	0	0	0	0	No phase interaction
6	0	0	0	0	0	0	0	0	0	0	No phase interaction
8	0	0	0	0	0	0	0	0	0	0	No phase interaction
10	0	0	0	0	0	0	0	0	0	0	No phase interaction

 Table C-3 Phase height and phase behavior of mixed Lipal 835I/Triton[®] X-100 surfactant systems 30°C

Table C-4 Phase height and phase behavior of mixed Lipal 835I/Tergitol® TMN6 surfactant systems 30°C

NaCl					Exposure	time (day)			-		Phase Behavior
(wt%)		1		3		5		7	1	10	10 days exposure
	LL (mm)	UL (mm)	LL (mm)	UL (mm)	LL (mm)	UL (mm)	LL (mm)	UL (mm)	LL (mm)	UL (mm)	
2	0	0	0	0	0	0	0	0	0	0	No phase interaction
4	0	0	0	0	0	0	0	0	0	0	No phase interaction
6	0	0	0	0	0	0	0	0	0	0	No phase interaction
8	0	0	0	0	0	0	0	0	0	0	No phase interaction
10	0	0	0	0	0	0	0	0	0	0	No phase interaction

NaCl					Exposure	time (day)					Phase Behavior
(wt%)		1		3		5	7		1	LO	10 days exposure
	LL (mm)	UL (mm)	LL (mm)	UL (mm)	LL (mm)	UL (mm)	LL (mm)	UL (mm)	LL (mm)	UL (mm)	
2	-1.15	0	-1.15	0	-1.11	0	-1.2	0	-1.04	0	Winsor type II
4	-1.37	0	-0.86	0	-1.23	0	-1.28	0	-1.51	0	Winsor type II
6	-0.059	16.14	-0.37	16.32	-0.6	16.34	-0.48	16.41	-0.48	16.29	Gel/sponge at the middle
8	-0.49	3.92	-0.18	4.27	-0.2	4.16	-0.26	3.93	-0.2	4.26	Gel/sponge at the middle

Table C-5 Phase height and phase behavior of mixed Lipolan PB-800CJ/Triton[®] X-100 surfactant systems 30°C

Table C-6 Phase height and phase behavior of mixed Lipolan PB-800CJ/Tergitol® TMN6 surfactant systems 30°C

NaCl					Exposure	time (day)					Phase Behavior
(wt%)		1		3		5		7	1	0	10 days exposure
	LL (mm)	UL (mm)	LL (mm)	UL (mm)	LL (mm)	UL (mm)	LL (mm)	UL (mm)	LL (mm)	UL (mm)	
2	-1.7	0	-1.7	0	-1.73	0	-1.5	0	-0.15	0	Winsor type II
4	-1.13	0	-1.05	0	-1.05	0	-0.83	0	-0.83	0	Winsor type II
6	-0.81	0	-0.7	0	-0.6	0	-0.58	0	-0.57	0	Winsor type II
8	-0.64	0	-0.52	0	-0.47	0	-0.4	0	-0.39	0	Winsor type II

NaCl					Exposure	time (day)					Phase Behavior
(wt%)		1		3		5		7	1	0	10 days exposure
	LL (mm)	UL (mm)	LL (mm)	UL (mm)	LL (mm)	UL (mm)	LL (mm)	UL (mm)	LL (mm)	UL (mm)	
5	0	0	0	0.14	0	0.24	0	0.27	0	0.27	Winsor type I
6	0	0.89	0	0.9	0	1.32	0	1.35	0	1.35	Winsor type I
7	0	2.23	0	2.15	0	2.44	0	2.31	0	2.3	Winsor type I
8	-2.99	0.39	-5.69	0.79	-6.12	0.78	-6.33	0.97	-7.27	1.17	Winsor type III
8.5	-2.16	0.715	-3.165	1.04	-3.635	1.165	-3.95	1.23	-5.125	1.51	Winsor type III
9	-12.53	1.45	-11.89	2.19	-11.67	2.35	-11.59	2.55	-11.62	2.57	Winsor type III
9.5	-15.17	-0.341	-9.48	2.07	-8.57	3.05	-8.48	3.1	-8.5	3.13	Winsor type III
10	-10.71	-0.021	-8.47	1.68	-8.33	2.05	-8.41	2.02	-8.5	1.98	Winsor type III
11	-8.14	0	-7.78	0.13	-7.73	0.07	-7.3	0.4	-7.32	0.4	Winsor type III
12	-3.96	3.87	-3.69	3.91	-3.58	3.93	-3.73	4.04	-3.73	4.04	Winsor type III
12.5	-0.81	1.07	-1.58	1.38	-1.7	1.78	-2.1	2.35	-2.1	2.35	Winsor type III
13	-3.79	4.39	-3.7	4.11	-3.56	4.2	-3.7	4.15	-3.71	4.18	Winsor type III
13.5	-2.03	0.59	-2.24	0.54	-2.27	0.93	-2.31	1.28	-2.31	1.28	Winsor type III
14	-1.13	5.76	-2.4	4.56	-2.49	4.41	-2.69	4.34	-2.69	4.34	Winsor type III
15	0.71	10.69	-2.2	7.2	-2.71	7.18	-2.56	7.02	-2.56	7.02	Winsor type III
16	2.01	11.7	-2.38	7.16	-2.55	6.96	-2.76	6.92	-2.76	6.92	Winsor type III

Table C-7 Phase height and phase behavior of mixed SDBS/Triton[®] X-100 surfactant systems at 50°C

NaCl					Exposure	time (day)					Phase Behavior
(wt%)		1		3	I -	5		7	1	0	10 days exposure
	LL (mm)	UL (mm)	LL (mm)	UL (mm)	LL (mm)	UL (mm)	LL (mm)	UL (mm)	LL (mm)	UL (mm)	
5	0	1.11	0	2.2	0	2.02	0	2.01	0	2.01	Winsor type I
6	0	-0.58	0	1.79	0	3.11	0	3.63	0	3.63	Winsor type I
7	-13.2	0.16	-8.77	5.06	-8.49	5.01	-8.41	4.93	-8.39	4.9	Winsor type III
7.5	-7.51	4.94	-7.25	5.08	-7.22	5.09	-7.23	5.05	-7.21	5.05	Winsor type III
8	-5.92	5.67	-5.86	5.65	-5.63	5.41	-5.82	5.38	-5.83	5.35	Winsor type III
8.5	-5.06	5.2	-5.14	5.14	-5.24	5.01	-5.39	5.01	-5.38	5.02	Winsor type III
9	-1.2	9.02	-4.31	6.79	-4.25	6.3	-4.5	6.16	-4.5	6.16	Winsor type III
10	-3.74	8.09	-3.74	7.5	-3.74	7.15	-3.89	7.06	-3.89	7.1	Winsor type III
11	0	0	-2.62	0	-2.57	0	-2.78	0	-2.78	0	Winsor type II
12	-2.01	0	-3.19	0	-3.47	0	-3.38	0	-3.38	0	Winsor type II

Table C-8 Phase height and phase behavior of mixed SDBS/Tergitol[®] TMN6 surfactant systems at 50°C

NaCl					Exposure	time (day)					Phase Behavior
(wt%)		1		3		5	-	7	-	LO	10 days exposure
	LL (mm)	UL (mm)	LL (mm)	UL (mm)	LL (mm)	UL (mm)	LL (mm)	UL (mm)	LL (mm)	UL (mm)	
4	0	0	0	0	0	0	0	0	0	0	No phase interaction
6	0	0	0	0	0	0	0	0	0	0	No phase interaction
8	0	0	0	0	0	0	0	0	0	0	No phase interaction
10	0	0	0	0	0	0	0	0	0	0	No phase interaction
4	0	0	0	0	0	0	0	0	0	0	No phase interaction

Table C-9 Phase height and phase behavior of mixed Lipal 835I/Triton[®] X-100 surfactant systems at 50°C

Table C-10 Phase height and phase behavior of mixed Lipal 835I/Tergitol[®] TMN6 surfactant systems at 50°C

NaCl					Exposure	time (day)					Phase Behavior
(wt%)		1		3		5	-	7	1	LO	10 days exposure
	LL (mm)	UL (mm)	LL (mm)	UL (mm)	LL (mm)	UL (mm)	LL (mm)	UL (mm)	LL (mm)	UL (mm)	
2	0	0	0	0	0	0	0	0	0	0	No phase interaction
4	0	0	0	0	0	0	0	0	0	0	No phase interaction
6	0	0	0	0	0	0	0	0	0	0	No phase interaction
8	0	0	0	0	0	0	0	0	0	0	No phase interaction
10	0	0	0	0	0	0	0	0	0	0	No phase interaction

NaCl					Exposure	time (day)					Phase Behavior
(wt%)		1		3		5	7		1	10	10 days exposure
	LL (mm)	UL (mm)	LL (mm)	UL (mm)	LL (mm)	UL (mm)	LL (mm)	UL (mm)	LL (mm)	UL (mm)	
2	-1.1	0	-1.07	0	-1.05	0	-1.05	0	-1.04	0	Winsor type II
4	-1.35	0	-1.2	0	-1.22	0	-1.34	0	-1.32	0	Winsor type II
6	-0.03	15.15	-0.35	16	-0.42	16.34	-0.44	16.38	-0.47	16.29	Gel/sponge at the middle
8	-0.45	3.92	-0.18	4.27	-0.2	4.16	-0.28	3.96	-0.23	4.26	Gel/sponge at the middle

Table C-11 Phase height and phase behavior of mixed Lipolan PB-800CJ/Triton[®] X-100 surfactant systems at 50°C

Table C-12 Phase height and phase behavior of mixed Lipolan PB-800CJ/Tergitol[®] TMN6 surfactant systems at 50°C

NaCl		···			Exposure	time (day)					Phase Behavior
(wt%)		1		3		5		7	1	LO	10 days exposure
	LL (mm)	UL (mm)	LL (mm)	UL (mm)	LL (mm)	UL (mm)	LL (mm)	UL (mm)	LL (mm)	UL (mm)	
2	-1.7	0	-1.7	0	-1.73	0	-1.5	0	-0.15	0	Winsor type II
4	-1.13	0	-1.05	0	-1.05	0	-0.83	0	-0.83	0	Winsor type II
6	-0.81	0	-0.7	0	-0.6	0	-0.58	0	-0.57	0	Winsor type II
8	-0.64	0	-0.52	0	-0.47	0	-0.4	0	-0.39	0	Winsor type II

Appendix D Solubilization Parameter Data of Microemulsion Systems

Oil solubilization parameter:
$$SP_o = \frac{Vo}{Ms}$$

Water solubilization parameter: $SP_w = \frac{V_w}{M_s}$

Where SP_o , V_o , V_w and M_s are represented as oil solubilization parameter, oil solubilized volume, water solubilized volume and total mass of surfactant(s) respectively

 Table D-1 Solubilization parameter of mixed SDBS/Triton[®] X-100 surfactant

 systems

	Relative				
NaCl	height	Solubilized volume		Solubilization parameter	
(wt%)	(mm)	Vo (ml)	Vw (ml)	(SPo)	(SPw)
5	0.38	-0.055498596	5	-0.485127585	43.70629371
6	0.14	0.020446851	5	0.178731215	43.70629371
7	1.45	0.211770957	5	1.851144731	43.70629371
8	6.103333333	0.170877255	1.062262595	1.4936823	9.28551219
8.5	3.615	0.220533893	0.748500797	1.927743823	6.542839135
9	2.836666667	0.218099744	0.632391893	1.906466297	5.527901162
9.5	2.07	0.257776372	0.56009767	2.253289965	4.89595865
10	1.543333333	0.188889957	0.414292148	1.65113599	3.621434864
11	1.48	0.002920979	0.219073404	0.025533031	1.914977308
12	0.57	0.325689127	0.242441234	2.846932931	2.119241554
12.5	0.25	0.343215	0.306702766	3.000131115	2.680968231
13	0.33	0.289176893	0.337373042	2.527770046	2.949065054
13.5	1.03	0.186942638	0.337373042	1.634113969	2.949065054
14	2.26	0.863149212	0.533078616	7.545010592	4.659778115
15	4.46	1.025263531	0.373885276	8.9620938	3.268227938
16	4.16	1.010658637	0.403095063	8.834428646	3.523558246

NaCl	Relative height	Solubilized volume		Solubilization parameter	
(wt%)	(mm)	Vo (ml)	Vw (ml)	(SPo)	(SPw)
5	2.12	0.309623744	5	2.619490223	42.30118443
6	3.74	0.546223021	5	4.621176148	42.30118443
7	7.366666667	0.701034893	2.027159232	5.930921259	17.15024731
7.5	3.345	0.82079502	1.304947243	6.944120307	11.0401628
8	1.27	0.86655702	1.097314339	7.331277667	9.283539248
8.5	0.64	1.013579616	0.92375952	8.575123653	7.815224367
9	1.893333333	1.121655828	0.824202829	9.489474014	6.972951175
10	5.51	1.473633764	0.658680701	12.46729073	5.572594766
11	3.61	5	0.443988765	42.30118443	4.46054703
12	3.44	5	0.442528276	42.30118443	4.250493569

 Table D-2 Solubilization parameter of mixed SDBS/ Tergitol[®] TMN6 surfactant

 systems

Appendix E Experiment Data from Interfacial Tension Measurement

 Table E The interfacial tension between anionic-nonionic mixed surfactant and

 decane for varying NaCl concentration

NaCl	SDBS/Triton [®] X-100 : Decane	SDBS/Tergitol® TMN6 : Decane
(wt%)	(mN/m)	(mN/m)
5	-	0.0003488
6	0.00244327	0.00033125
7	0.00139539	0.00014125
7.5	-	0.000175345
8	0.001399325	0.00013185
8.5	-	6.25295E-05
9	0.001036045	0.000110314
10	0.000704074	0.00016874
11	0.000637933	0.000317819
12	0.000566903	0.00046525
12.5	0.000488858	_
13	0.001023967	-
13.5	0.00101341	-
14	0.00110567	-

Figure F-1 Decane recovered from spontaneouse imbibition test by mixed SDBS/Tergitol® TMN6 with 8.5wt% NaCl for 10 days.

Figure F-2 Decane recovered from spontaneouse imbibition test by mixed SDBS/ Triton[®] X-100 with 12.5wt% NaCl for 10 days.

Figure F-3 Decane recovered from spontaneouse imbibition test by pure water for 10 days.

CURRICULUM VITAE

Name: Mr. Nattawit Khomsanit

Date of Birth: October 10, 1988

Nationality: Thai

University Education:

2007–2010 Bachelor Degree of Engineering, Faculty of Engineering, Silpakorn University, Nakorn Pathom, Thailand

Work Experience:

2010	Position:	Internship		
	Company:	Innovation Group, Bangkok, Thailand		

Proceedings:

 Khomsanit, N.; Kitiyanan, B.; and Harwell, J. (2013, April 23) Mixed Anionic-Nonionic Surfactant Microemulsion with Decane and Spontaneous Imbibition Test for Enhanced Oil Recovery. <u>Poster presented at The 4th Research</u> <u>Symposium on Petrochemical, and Materials Technology and the 19th PPC</u> <u>Symposium on Petroleum, Petrochemicals, and Polymers, Bangkok, Thailand.</u>