LIQUID-LIQUID EXTRACTION OF NEUTRAL DEGRADATION PRODUCTS IN MONOETHANOLAMINE ABSORPTION SOLUTION USED IN CARBON DIOXIDE CAPTURE

Wallapa Krajangpit

•

•

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University, and Institute Francais du Petrole

2015

I 2388837x

0

Thesis Title:	e: Liquid-Liquid Extraction of Neutral Degradation Products in	
	Monoethanolamine Absorption Solution Used in Carbon	
	Dioxide Capture	
By:	Wallapa Krajangpit	
Program:	Petroleum Technology	
Thesis Advisors:	Assoc. Prof. Chintana Saiwan	
	Dr.Teeradet Supap	

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Master of Science.

.... College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

Plutan Jamin

(Assoc. Prof. Chintana Saiwan)

lerru (Dr.Teeradet Supap)

(Prof. Paitoon Tontiwachwuthikul)

emound DOL

(Asst. Prof. Kittipat Siemanond)

0

ABSTRACT

5673034063:

Petroleum Technology Program

Wallapa Krajangpit: Liquid-Liquid Extraction of Neutral Degradation Products in Monoethanolamine Absorption Solution Used in Carbon Dioxide Capture.

Thesis Advisors: Assoc. Prof. Chintana Saiwan, and Dr. Teeradet Supap 157 pp.

Keywords: MEA degradation products/ MEA/ Liquid Extraction/ CO₂ capture

The liquid-liquid extraction technique was used to separate the neutral amine degradation products (imidazole, N-acethylethanolamine, 2-oxazolidone and N-(2-hydroxyethyl)-succinimide) from the monoethanolamine (MEA) absorption solution for carbon dioxide capture. The extraction efficiency of neutral MEA degradation products was determined and investigated under various experimental conditions including the effects of 2-ethyl-1-hexanol diluent alone and extractant (quaternary amine) in 2-ethy-l-hexanol solution, the absence and presence of MEA in the neutral amine degradation products solutions at different temperature (25 °C, 40 °C and 60 °C) and the CO₂ loading of 0.05, 0.10 and 0.30 mol/mol amine. All the neutral MEA degradation products were analyzed by using a gas chromatography with flame ionization (GC-FID). The percentages of extraction efficiency of neutral MEA degradation products with extractant in diluent for N-(2-hydroxyethyl)succinimide was the most extracted, followed by 2-oxazolidone, imidazole and N-acethylethanolamine, respectively. In case of present MEA solution in aqueous phase, the extraction efficiency of neutral MEA degradation products decreased from 39.77±1.12 %, 27.83±1.66 %, 84.09±0.47 % and 99.44±0.02 % to 16.42±1.36 %, 20.18±1.19 %, 56.93±1.09 % and 72.31±2.54 % for imidazole, N-acethyl ethanolamine, 2-oxazolidone and N-(2-hydroxyethyl)-succinimide, respectively. The extraction efficiency of all neutral MEA degradation with absence and presence MEA increased with increasing extraction temperature. Lastly, the extraction efficiency was decreased dramatically with loading CO₂ in neutral MEA degradation products.

บทคัดย่อ

วัลลภา กระจ่างพิศ : การสกัดแบบลิควิด-ลิควิดผลิตภัณฑ์เสื่อมสลายเป็นกลางใน สารละลายดูดซับโมโนเอทาโนลามีนที่ใช้จับการ์บอนไดออกไซด์ (Liquid-Liquid Extraction of Neutral Degradation Products in Monoethanolamine Absorption Solution Used in Carbon Dioxide Capture) อาจารย์ที่ปรึกษา : รศ.คร. จินตนา สายวรรณ์ และ คร. ธีรเดช สุภาพ 157 หน้า

เทคนิคการสกัดแบบ ลิควิค-ลิควิค ถูกนำมาใช้แยกผลิตภัณฑ์เสื่อมสลายเป็นกลางของเอ มีน (อิมิคาโซล, เอ็น-อะซิทิวเอทาโนลามีน, 2-อ็อกซาโซลิโคน และเอ็น-(2-ไฮคร็อกซีเอทิว)-ซัคซิ ้งากสารละลายดูคซับโมโนเอทาโนลามีน (MEA) เพื่อใช้จับคาร์บอนไดออกไซค์ นิไมด์) การศึกษาประสิทธิภาพการสกัคผลิตภัณฑ์เสื่อมสลายเป็นกลางของสารละลาย MEA ที่เป็นกลาง ได้ทำการทดสอบภายใต้เงื่อนไขต่างๆ คือ ผลกระทบของ สารละลายอินทรีย์ 2-เอททิว-1-เฮกซานอล เพียงอย่างเคียว, สารสกัด (ควอเตอนารีเอมีน) ในสารละลายอินทรีย์ 2-เอททิว-1-เฮกซานอล, การปรากฏและไม่ปรากฏของ MEA ในสารละลายของผลิตภัณฑ์เสื่อมสลายเป็นกลาง ของเอมีน ที่อุณหภูมิแตกต่างกัน (25, 40 และ 60 องศาเซลเซียส) และการเติมการ์บอนไดออกไซด์ ที่ 0.05, 0.10 และ0.30 โมลต่อโมลเอมีน ทำการวิเคราะห์ผลิตภัณฑ์เสื่อมสลายเป็นกลางของ สารละลาย MEA ทั้งหมดโดยก๊าซโครมาโตกราฟี-เฟลมไอออนในเซชัน (จี ซี-เอฟ ไอ คี) พบว่า เปอร์เซ็นต์ของประสิทธิภาพการสกัดผลิตภัณฑ์เสื่อมสลายเป็นกลางของสารละลาย MEA ด้วย สารสกัดเกลือเอมีนในสารละลายอินทรีย์ เอ็น-(2-ไฮคร็อกซีเอทิว)-ซัคซินิไมค์ถูกสกัคมากที่สุด ตามด้วย 2-อ็อกซาโซลิโดน, อิมิดาโซล, และเอ็น-อะซิทิวเอทาโนลามีนตามลำดับ ในกรณีที่มี MEA อยู่ในเฟสน้ำด้วย ประสิทธิภาพการสกัดผลิตภัณฑ์เสื่อมสลายเป็นกลางของ MEA ลดลง ้สำหรับอิมิคาโซลจาก 39.77±1.12 % เป็น 16.42±1.36 %, สำหรับ เอ็น-อะซิทิวเอทาโนลามีน จาก 27.83±1.66 % เป็น 20.18±1.19 % สำหรับ 2-อีอกซาโซลิโคน จาก 84.09±0.47 % เป็น 56.93±1.09 % และ เอ็น-(2-ไฮคร็อกซี่เอทิว)-ซักซินิไมด์ จาก 99.44±0.02 % เป็น 72.31±2.54 % ประสิทธิภาพการสกัดผลิตภัณฑ์เสื่อมสลายเป็นกลางทั้งที่มีและไม่มี MEA เพิ่มขึ้นเมื่อเพิ่มอุณหภูมิการสกัด ท้ายที่สุดประสิทธิภาพการสกัคลดลงอย่างมากเมื่อใส่คาร์บอน ใคออกไซด์ในผลิคภัณฑ์เสื่อมสลายเป็นกลาง MEA

ACKNOWELEDGEMENTS

I would like to take this chance to sincerely thank my advisor, Assoc. Prof. Chintana Saiwan, for her helpful suggestions, discussions, and supervision from the very early stage of this research. She also provided me unflinching encouragement, patience and support in various ways throughout my graduate thesis.

I would also like to thank my co-advisor, Dr. Teeradet Supap, for his advice, guidance, and his willingness to share his bright thoughts with me, which was very helpful for shaping up my ideas and research.

I would like to thank Prof. Paitoon Tontiwachwuthikul and Asst. Prof. Kittipat Siemanond for kindly serving on my thesis committee. Their suggestions are certainly important and helpful for completion of this thesis.

This research work was partially supported by The Ratchadapisek Sompote Endowment Fund (2013), Chulalongkorn University (CU-56-900-FC) and Thailand Research Fund (IRG5780012).

This thesis work is funded by The Petroleum and Petrochemical College; and The National Center of Excellence for Petroleum, Petrochemicals and Advance Materials, Thailand.

My gratitude is also extended to all staff members of The Petroleum and Petrochemical College, Chulalongkorn University, for their kind help.

Finally, I would like to express my sincere gratitude to thank my whole family for showing me the joy of intellectual pursuit ever since I was a child, for standing by me and for understanding every single part of my mind.

TABLE OF CONTENTS

i
iii
iv
v
vi
ix
xvi

CHAPTER

I	INTRODUCTION	1
II	THORETICAL BACKGROUND	
	AND LITERATURE REVIEW	4
	2.1 CO ₂ Capture	5
	2.1.1 Absorption	8
	2.2.2 Amine Absorbent	9
	2.2.1 Monoethanolamine (MEA)	10
	2.3 Amine Degradation	11
	2.3.1 Oxidative Degradation	12
	2.3.2 Thermal Degradation	15
	2.4 Methods for Removal of Amine Degradation Products	22
	2.4.1 Electrodialysis	22
	2.4.2 Distillation	22
	2.4.3 Ion Exchange Resins (IEX)	23
	2.5 Liquid-Liquid Extraction	23
	2.5.1 Reactive Extraction	25
	2.6 Literature Review	29

σ

CHAPTER

111	EXPERIMENTAL	33
	3.1 Chemicals and Equipment	33
	3.2 Experimental Procedures	33
	3.2.1 Extractant Organic Solution Preparation	33
	3.2.2 Preparation of Neutral MEA Degradation Products in	
	Aqueous Solution	34
	3.3 Neutral MEA Degradation Product Extraction	35
	3.3.1 Effect of Diluent Alone	35
	3.3.2 Effect of Extractant in 2-Ethyl-Hexanol	35
	3.3.3 Effect of CO ₂ Loading	35
	3.4 Analysis of Neutral MEA Degradation Products Using	
	GC-FID Technique	36
IV	RESULTS AND DISCUSSION	37
	4.1 Conversion of Extractant	37
	4.2 Neutral MEA Degradation Products Characterizations	38
	4.2.1 Neutral MEA Degradation Product without MEA in	
	Aqueous Solution	38
	4.2.2 Neutral MEA Degradation Product with MEA in	
	Aqueous Solution	39
	4.3 Neutral MEA Degradation Products Extraction	40
	4.3.1 Effect of Diluent Alone	40
	4.3.2 Effect of Extractant in 2-Ethyl-1-Hexanol	43
	4.3.3 Effect of Temperature on Neutral MEA	
	Degradation Product Extraction	51
	4.3.4 Effect of CO ₂ Loading	55
V	CONCLUSIONS AND RECOMMENDATIONS	59
	5.1 Conclusions	59
	5.2 Reccommendations	61

σ

-

CHAPTER

o

PAGE

REFERENCES		
APPENDICES		
Appendix A Chemical Preparation	• 70	
Appendix B Conversion of Extractant	78	
Appendix C Standard Solution of Neutr	ral MEA Degradation	
Products Preparation	100	
Appendix D Extraction Neutral MEA D	Degradation Products 119	
Appendix E The Neutral MEA Degrada	ation Products	
Equilibrium Extraction	146	

CYRRICULUM VITAE

0

-

157

.

LIST OF TABLES

•

TABLE

 $_{z^{*}}$

0

2

2.1	Typical composition of flue gases after SO2scrubbing	4
2.2	Comparison the CO ₂ absorption, vapor pressure, overall cost	
	and corrosivity of MEA with commercial available amines	
	(DEA, MDEA)	10
2.3	Major MEA degradation products	18
2.4	Summary of degradation products suggested by the GC-MS technique	;
	and previously reported in literature	19
2.5	Summary of literature review	32
3.1	Properties of the neutral MEA degradation in aqueous solution	34
4.1	Dissociation constants (K_a) of neutral MEA degradation products	42
4.2	Distribution coefficient of neutral MEA degradation products	
	extraction with 2-ethyl-1-heaxanol absent and presence extractant	
	without MEA at 298 K	49
4.3	Distribution coefficient of neutral MEA degradation products	
	extraction extractant in 2-ethyl-1-heaxanol with and without MEA	
	present at 298 K	51
4.4	Distribution coefficient of neutral MEA degradation products	
	extraction with extractant in 2-ethyl-1-heaxanol without MEA	
	at 298 K, 313 K and 333 K	53
4.5	Distribution coefficient of neutral MEA degradation products	
	extraction with extractant in 2-ethyl-1-heaxanol with MEA	
	at 298 K, 313 K and 333 K	54
4.6	Distribution coefficient of neutral MEA degradation products	
	extraction with extractant in 2-ethyl-1-heaxanol	
	with CO ₂ loading at 298 K	58
Al	Preparation of neutral MEA degradation products 1000 ppm	
	in aqueous solution without MEA	74

ix

PAGE

.

PAGE

A2	Preparation of neutral MEA degradation products 1000 ppm	
	in aqueous solution with MEA	75
A3	Preparation coversion of extractant-Cl	77
B1	Volume of Cl ⁻ ion initial remaining in the extractant-Cl	78
B2	Conversion of extractant-Cl to be extractant-OH measured by	
	Mohr's method titration of batch No.1	82
B3	Conversion of extractant-Cl to be extractant-OH measured by	
	Mohr's method titration of batch No.2	83
B4	Conversion of extractant-Cl to be extractant-OH measured by	
	Mohr's method titration of batch No.3	84
B5	Conversion of extractant-Cl to be extractant-OH measured by	
	Mohr's method titration of batch No.4	85
B 6	Conversion of extractant-Cl to be extractant-OH measured by	
	Mohr's method titration of batch No.5	86
B7	Conversion of extractant-Cl to be extractant-OH measured by	
	Mohr's method titration of batch No.6	87
B8	Conversion of extractant-Cl to be extractant-OH measured by	
	Mohr's method titration of batch No.7	88
B9	Conversion of extractant-Cl to be extractant-OH measured by	
	Mohr's method titration of batch No.8	89
B10	Conversion of extractant-Cl to be extractant-OH measured by	
	Mohr's method titration of batch No.9	90
B11	Conversion of extractant-Cl to be extractant-OH measured by	
	Mohr's method titration of batch No.10	91
B12	Conversion of extractant-Cl to be extractant-OH measured by	
	Mohr's method titration of batch No.11	92
B13	Conversion of extractant-Cl to be extractant-OH measured by	
	Mohr's method titration of batch No.12	93
B14	Conversion of extractant-Cl to be extractant-OH measured by	
	Mohr's method titration of batch No.13	94

•

 \sim

PAGE

o

B15	Conversion of extractant-Cl to be extractant-OH measured by	
	Mohr's method titration of batch No.14	95
B16	Conversion of extractant-Cl to be extractant-OH measured by	
	Mohr's method titration of batch No.15	96
B17	Average conversion of extractant-OH after evaporation of water.	97
B18	Extractant-OH solution preparation	99
C1	Dilution of 1000 ppm calibrating solution without MEA to other	
	concentration	105
C2	Dilution of 1000 ppm calibrating solution with MEA to other	
	concentration	106
C3	GC-FID results of calibration curve of aqueous solution	
	without MEA Run No. 1	106
C4	GC-FID results of calibration curve of aqueous solution	
	without MEA Run No. 2	111
C5	GC-FID results of calibration curve of aqueous solution	
	with MEA Run No. 1	115
Dl	1 M of average extractant-OH preparation for neutral MEA	
	degradation products 1000 ppm in aqueous solution with	
	diluent alone. Volume ratio of diluents to neutral MEA	
	degradation products aqueous solution is 1:1	119
D2	1 M of average extractant-OH preparation for neutral MEA	
	degradation products 1000 ppm in aqueous solution without MEA.	
	Volume ratio of extracntant-OH in diluents to neutral MEA	
	degradation products aqueous solution is 1:1	120
D3	1 M of average extractant-OH preparation for neutral MEA	
	degradation products 1000 ppm in aqueous solution with MEA.	
	Volume ratio of extracntant-OH in diluents to neutral MEA	
	degradation products aqueous solution is 1:1	121

xi

TABLE

D4	1 M of average extractant-OH preparation for neutral MEA	5.	
	degradation products 1000 ppm in aqueous solution with		· .
	CO ₂ loading. Volume ratio of extracntant-OH in diluents to		
	neutral MEA degradation products aqueous solution is 1:1	122	
D5	Concentration of neutral MEA degradation products in		
	aqueous solution before extraction with diluent alone	124	
D6	GC-FID Analysis of the extraction of neutral MEA		
	degradation products with diluent alone	125	
D7	Remain concentration of neutral MEA degradation products in		
	aqueous solution after extraction with diluent alone	125	
D8	Calculation extraction efficiency of neutral MEA		
	degradation products with diluent alone	126	
D9	Concentration of neutral MEA degradation products in		
	aqueous solution before extraction without MEA	127	
D10	GC-FID Analysis of the extraction of neutral MEA		
	degradation products without MEA at 25 °C	128	
D11	Remain concentration of neutral MEA degradation products in		
	aqueous solution after extraction without MEA at 25 $^{\circ}\mathrm{C}$	128	
D12	Calculation extraction efficiency of neutral MEA		
	degradation products without MEA at 25 °C	129	
D13	GC-FID Analysis of the extraction of neutral MEA		
	degradation products without MEA at 40 °C	129	
D14	Remain concentration of neutral MEA degradation products in	4	
	aqueous solution after extraction without MEA at 40 $^{\circ}C$	130	
D15	Calculation extraction efficiency of neutral MEA		
	degradation products without MEA at 40 °C	130	
D16	GC-FID Analysis of the extraction of neutral MEA		
	degradation products without MEA at 60 °C	131	
D17	Remain concentration of neutral MEA degradation products in		
	aqueous solution after extraction without MEA at 60 °C	131	

o

xii

0

÷

.

PAGE

.

D18	Calculation extraction efficiency of neutral MEA	
	degradation products without MEA at 60 °C	132
D19	Concentration of neutral MEA degradation products in	
	aqueous solution before extraction with MEA	133
D20	GC-FID Analysis of the extraction of neutral MEA	
	degradation products with MEA at 25 °C	134
D21	Remain concentration of neutral MEA degradation products in	
	aqueous solution after extraction with MEA at 25 $^{\circ}\mathrm{C}$	134
D22	Calculation extraction efficiency of neutral MEA	
	degradation products with MEA at 25 °C	135
D23	GC-FID Analysis of the extraction of neutral MEA	
	degradation products with MEA at 40 °C	135
D24	Remain concentration of neutral MEA degradation products in	
	aqueous solution after extraction with MEA at 40 $^{\circ}C$	136
D25	Calculation extraction efficiency of neutral MEA	
	degradation products with MEA at 40 °C	136
D26	GC-FID Analysis of the extraction of neutral MEA	
	degradation products with MEA at 60 °C	137
D27	Remain concentration of neutral MEA degradation products in	
	aqueous solution after extraction with MEA at 60 $^{\circ}\mathrm{C}$	137
D28	Calculation extraction efficiency of neutral MEA	
	degradation products with MEA at 60 °C	138
D29	Concentration of neutral MEA degradation products in	
	aqueous solution before extraction with $\rm CO_2$ loading at 25 $^{\circ}\rm C$	139
D30	GC-FID Analysis of the extraction of neutral MEA	
	degradation products with CO_2 loading 0.05 kmol/m ³ at 25 °C.	140
D31	Remain concentration of neutral MEA degradation products in	
	aqueous solution after extraction with CO ₂ loading	
	0.05 kmol/m ³ at 25 °C	141

Ø

0

1.5

D32	Calculation extraction efficiency of neutral MEA degradation		
	products with CO ₂ loading 0.05 kmol/m ³ at 25 °C	141	
D33	GC-FID Analysis of the extraction of neutral MEA degradation		
	products with CO ₂ loading 0.10 kmol/m ³ at 25 °C	142	
D34	Remain concentration of neutral MEA degradation products in		
	aqueous solution after extraction with CO ₂ loading		
	0.10 kmol/m ³ at 25 °C	143	
D35	Calculation extraction efficiency of neutral MEA degradation		
	products with CO ₂ loading 0.10 kmol/m ³ at 25 °C	143	
D36	GC-FID Analysis of the extraction of neutral MEA degradation		
	products with CO2 loading 0.30 kmol/m3 at 25 °C	144	
D37	Remain concentration of neutral MEA degradation products in		
	aqueous solution after extraction with CO ₂ loading		
	0.30 kmol/m ³ at 25 °C	145	
D38	Calculation extraction efficiency of neutral MEA degradation		
	products with CO ₂ loading 0.30 kmol/m ³ at 25 °C	145	
E1	Calculation concentration of neutral MEA undissociation (ppm)		
	in organic phase with diluent alone	146	
E2	Calculation concentration of neutral MEA undissociation (ppm)		
	in organic phase without MEA	147	
E3	Calculation concentration of neutral MEA undissociation (ppm)		
	in organic phase with MEA	148	
E4	Calculation concentration of neutral MEA undissociation (ppm)		
	in organic phase with CO ₂ loading	149	
E5	Calculation distribution ratio of neutral MEA degradation		
	with diluent alone	150	
E6	Calculation distribution ratio of neutral MEA degradation		
	without MEA	151	
E7	Calculation distribution ratio of neutral MEA degradation with MEA	152	

0

E8	Calculation distribution ratio of neutral MEA degradation	
	with CO ₂ loading	153
E9	Calculation equilibrium extraction of neutral MEA degradation	
	with diluent alone	155
E10	Calculation equilibrium extraction of neutral MEA degradation	
	without MEA	155
E11	Calculation equilibrium extraction of neutral MEA degradation	Ŧ
	with MEA	156
E12	Calculation equilibrium extraction of neutral MEA degradation	
	with CO ₂ loading	156

LIST OF FIGURES

•

FIGURE		PAGE
2.1	Schemetic diagram of the integration of a CO continuousity to a	
2.1	Schematic diagram of the integration of a CO_2 capture unit to a	-
	coal-fired power plant.	5
2.2	Simplified post-combustion capture block diagram.	6
2.3	Distribution of post-combustion CO ₂ capture technology types	
	by TRL ranking.	7
2.4	Schematic diagram of the typical absorption-based CO ₂ capture unit.	8
4.1	Percentage conversion of extractant chloride to hydroxide form.	37
4.2	Chromatogram of neutral MEA degradation products without MEA	
	in aqueous solution before extraction.	38
4.3	Chromatogram of neutral MEA degradation products with MEA	
	in aqueous solution before extraction.	39
4.4	Average extraction efficiency of neutral MEA degradation products	
	with 2-ethyl-1-hexanol diluent alone in the absence of extractant	
	at 298 K.	41
4.5	Average extraction efficiency of neutral MEA degradation products	
	without MEA by extractant in 2-ethyl-1-hexanol and by 2-ethyl-1-hexanol	kanol
	alone at 298 K.	43
4.6	Average extraction efficiency of neutral MEA degradation products	
	with and without MEA by extractant in 2-ethyl-1-hexanol and by	
	2-ethyl-1-hexanol alone at 298 K.	50
4.7	Effect of temperature on neutral MEA degradation products extraction	n
	efficiency without MEA by extractant in 2-ethyl-1-hexanol at	
	298 K, 313 K and 333 K.	52
4.8	Effect of temperature on neutral MEA degradation products extraction	n
	efficiency in the presence of MEA by extractant in 2-ethyl-1-hexanol	at
	298 K, 313 K and 333 K.	54

xvi

.

FIGURE

σ

4.9	Effect of CO ₂ loading on extraction of neutral MEA degradation	
	products in the 5 kmol/m ³ MEA solution at 298 K	
	(using extractant in diluent).	56
C1	Chromatogram of imidazole without MEA in aqueous solution	
	before extraction.	100
C2	Chromatogram of N-acethylethanolamine without MEA in	
	aqueous solution before extraction.	101
C3	Chromatogram of 2-oxazolidone without MEA in aqueous solution	
	before extraction.	101
C4	Chromatogram of N-(2-hydroxyethyl)-succinimide without MEA in	
	aqueous solution before extraction.	102
C5	Chromatogram of imidazole with MEA in aqueous solution	
	before extraction.	103
C6	Chromatogram of N-acethylethanolamine with MEA in	
	aqueous solution before extraction.	103
C7	Chromatogram of 2-oxazolidone with MEA in aqueous solution	
	before extraction.	104
C8	Chromatogram of N-(2-hydroxyethyl)-succinimide with MEA in	
	aqueous solution before extraction.	104
C9	Calibration curve of the neutral MEA degradation products	
	without MEA.	110
C10	Calibration curve of the neutral MEA degradation products	
	without MEA.	114
C11	Calibration curve of the neutral MEA degradation products	
	with MEA.	118