REFERENCES

- Akkarachalanont, P., Saiwan, C., Supap, T., Idem, R., and Tontiwachwuthikul, P.
 (2012) Reactive extraction process for regeneration of amine-based solvents used for carbon dioxide capture. M.S. Thesis, The Petroleum and Petrochemical College, Chulalongkorn University.
- Bedell, S.A. (2009) Oxidative degradation mechanisms for amines in flue gas capture. <u>Energy Procedia</u>, 1(1), 771-778.
- Bhown, A.S. and Freeman, B.C. (2011) Analysis and status of post-combustion carbon dioxide capture technologies. <u>Environment Science Technology</u>, 45(20), 8624-8632.
- Bora, M.M. and Dutta, N.N. (1998) Extraction of 7-Aminocephalosporanic acid with secondary, tertiary, and quaternary amines. <u>Journal of Chemical &</u> <u>Engineering Data</u>, 43, 318-324.
- Chakma, A., Mehrotra, K.S., and Nielsen, B. (1995) Comparison of chemical solvents for mitigating CO₂ emissions from coal-fired power plants. <u>Heat</u> <u>Recovery Systems & CIIP</u>, 15(2), 231-240.
- Dang, H. and Rochelle, G.T. (May 14-17, 2001). CO₂ Absorption Rate and Solubility in Monoethanolamine /Piperazine/Water. Presentation at the First National Conference on Carbon Sequestration, Washington, DC.
- Drage, T.C., Arenillas, A., Smith, K.M. and Snape, C.E. (2008). Thermal stabil-ity of polyethylenimine based carbon dioxide adsorbents and its influence on selection of regeneration strategies. <u>Microporous and Mesoporous</u> <u>Materials</u>, 116, 504–512.
- Davis, J.D. (2009) Thermal degradation of aqueous amines used for ccarbon dioxide. Ph.D. Dissertation, The University of Texas at Austin, Texus, United States of America.
- Davis, J. and Rochelle, G. (2009) Thermal degradation of monoethanolamine at stripper conditions. <u>Energy Procedia</u>, 1(1), 327-333.
- De Coninck, H., Stephens, J.C., and Metz, B. (2009) Global learning on carbon capture and storage: A call for strong international cooperation on CCS demonstration. <u>Energy Policy</u>, 37(6), 2161-2165.

Ø

- Delfort, B., Carrette, P.L., and Bonnard, L. (2011) MEA 40% with improved oxidative stability for CO₂ capture in post-combustion. <u>Energy Procedia</u>, 4, 9-14
- Dumée, L., Scholes, C., Stevens, G., and Kentish, S. (2012) Purification of aqueous amine solvents used in post combustion CO₂ capture: A review. <u>International Journal of Greenhouse Gas Control</u>, 10, 443-455.
- Dutta, N.N., Bora, M.M., and Bhattacharya, K.G. (1998) 7-Aminocephalosporanic acid with secondary, tertiary, and quaternary Amines. <u>Journal of Chemical</u> <u>and Engineering Data</u>, 43, 318-324.
- Eide-Haugmo, I., Lepaumier, H.A., Einbu, K., Vernstad, E.F., Silva, D.A., and Svendsen, H.F. (2011) Chemical stability and biodegradability of new solvents for CO₂ capture. <u>Energy Procedia</u>, 4, 1631-1636.
- Fisher, K.S. and Investigator, P. (2005) Integrating mea regeneration with CO₂ compression and peaking to reduce CO₂ capture costs. Work Performed Under Grant, U.S. Department of Energy National Energy Technology Laboratory 626 Cochrans Mill Road, P.O. Box 10940.
- Fredriksen, S.B. and Jens, K.J. (2013) Oxidative degradation of aqueous amine solutions of MEA, AMP, MDEA, Pz: A review. <u>Energy Procedia</u>, 37, 1770-1777.
- Gillis, G.A., Hawker, L.E., and Blake, R.J. (1963) N-(2-hydroxyethyl) ethylenediamine, a corrosive contaminant in monoethanolamine gas-treating solutions. <u>Proceedings of the Laurance Reid Gas Conditioning Conference</u>, University of Oklahoma, Norman, United States of America.
- Gouedard, C., Picq, D., Launay, F., and Carrette, P.L. (2012) Amine degradation in CO₂ capture. I. A review. <u>International Journal of Greenhouse Gas Control</u>, 10, 244-270.
- Guetta, D. "Acidity, basicity and pKa." Columbia. 2006. 3 March 2015 http://www.columbia.edu/~crg2133/Files/CambridgeIA/Chemistry/Acidity BasicitykPa.pdf>
- Hofmeyer, B.G., Scholten, H.G., and Lloyd, W.G. (1965) Contamination and corrosion in monoethanolamine gas treating solutions. <u>Internal Report</u> <u>Michigan: The Dow Chemical Company</u>, 722

- Hogan, M.C., and Cleveland, C.J. "Fossil fuel. Retrieved from." The Encyclopedia of Earth. 2014. 22 July 2015 < http://www.eoearth.org/view/article/152839>
- Huang, B., Xu, S., Gao, S., Liu, L., Tao, J., Niu, H., Cai, M., and Cheng, J. (2010)
 Industrial test and techno-economic analysis of CO₂ capture in Huaneng
 Beijing coal-fired power station. <u>Applied Energy</u>, 87(11), 3347-3354.
- Idem, R., Wilson, M., Tontiwachiwuthikul, P., Chakma, A., Veawab, A., Aroonwilas, A. and Gelowitz, D. (2006) Pilot plant studies of the CO₂ capture performance of aqueous MEA and mixed MEA/MDEA solvents at the university of regina CO₂ capture technology development plant and the boundary dam CO₂ capture demonstration plant. <u>Industrial and Engineering</u> <u>Chemistry Research</u>, 45, 2414-2420.
- Islam, M.S., Yusoff, R., and Ali, B.S. (2010) Degradation studies of amines and alkanolamines during sour gas treatment process. <u>Engineering e-</u> <u>Transaction</u>, 5(2), 97-109.
- Ki Hong, Y., Hi Hong, W., and Hoon Han, D. (2001) Application of reactive extraction to recovery of carboxylic acids. <u>Biotechnology Bioprocess</u> <u>Engineering</u>, 6, 386-394.
- Kislik, V.S. (2012) Chapter 5 Examples of application of solvent extraction techniques in chemical, radiochemical, biochemical, pharmaceutical, analytical separations, and wastewater treatment. <u>Classical and Novel</u> <u>Approaches</u>, 185–314.
- Kyuchoukov, G., Marinova, M., Molinier, J., Albet, J., and Malmary, G. (2001) Extraction of lactic acid by means of a mixed extractant. <u>Industrial &</u> <u>Engineering Chemistry Research</u>, 40, 5635-5639.
- Lackner, K.S., Alissa Park, A.H., and Miller, B.G. (2010) Eliminating CO₂ emission from coal-fired power plants. <u>Chemical Engineering Science</u>, 59, 128-173.
- Lepaumier, H., Picq, D., and Carrette, P.L. (2009b) New amines for CO₂ capture.
 II. Oxidative degradation mechanisms. <u>Industrial and Engineering</u> <u>Chemistry Research</u>, 48, 9068–9075.

- Lepaumiera, H., Silvab, E., Einbub, A., Grimstvedtb, A., Knudsenc, J., Zahlsenb, K., and Svendsena, H. (2011a) Comparison of MEA degradation in pilot-scale with lab-scale experiments. <u>Energy Procedia</u>, 4, 1652-1659.
- Maghrabya, G.M.M. El., Williamsb, A.C., and Barryb, B.W. (2005) Drug interaction and location in liposomes: Correlation with polar surface areas. International Journal of Pharmaceutics, 292, 179–185.
- Marinova, M., Kyuchoukov, G., Albet, J., Molinier, J., and Malmary, G. (2004) Separation of tartaric and lactic acids by means of solvent extraction. <u>Separation and Purification Technology</u>, 37, 199–207.
- Mazandarani, A., Mahlia, T.M.I., Chong, W.T., and Moghavvemi, M. (2011) Fuel consumption and emission prediction by Iranian power plants until 2025. <u>Renewable and Sustainable Energy Reviews</u>, 15(3), 1575-1592.
- Pirngruber, G.D., Guillou, F., Gomez, A., and Clausse, M. (2013) A theoretical analysis of the energy consumption of post-combustion CO₂ capture processes by temperature swing adsorption using solid sorbents. <u>International Journal of Greenhouse Gas Control</u>, 14, 74-83.
- Polderman, L.D. and Dillon, C.P. (1955) Why monoethanolamine solution breaks down in gas treating service. <u>Oil Gas Journal</u>, 54(2), 180-183.
- Portugal, A.F., Sousa, J.M., Magalhães, F.D., and Mendes, A. (2009) Solubility of carbon dioxide in aqueous solutions of amino acid salts. <u>Chemical</u> <u>Engineering Transactions</u>, 64(9), 1993-2002.
- Prasad, S. and Dhanya, M.S. (2011) Air quality and biofuels. <u>Environmental</u> <u>Impact of Biofuels</u>, 12, 227-250
- Rao, A.B. and Rubin, E.S. (2002) A technical economic and environmental assessment of amine-based. <u>Science Technology</u>, 36, 4467–4475.
- Rochelle, G., Chen, E., Freeman, S., Van Wagener, D., Xu, Q., and Voice, A. (2011) Aqueous piperazine as the new standard for CO₂ capture technology. <u>Chemical Engineering Journal</u>, 171(3), 725-733.

Rochelle, G.T. (2009) Amine scrubbing of CO₂ capture. <u>Science</u>, 325, 1652-1654.

Rochelle, G.T. (2012) Thermal degradation of amines for CO₂ capture. <u>Current</u> <u>Opinion in Chemical Engineering</u>, 1(2), 183-190.

- Rochelle, G.T. and Chi, S. (2001) Oxidative degradation of monoethanolamine. Proceeding of the First National Conference on Carbon Sequestration, The University of Texas at Austin, Texas, Texus, United States of America.
- Rooney, P.C., Dupart, M.S., and Bacon, T.R. (1998) Oxygen's role in alkanolamine degradation. <u>Hydrocarbon Processing (International Edition)</u>, 77(7), 109-113
- Rooney, P.C. and Daniels, D.D. (1998) Oxygen solubility in various alkanolamine. <u>Petroleum Technology Quarterly</u>, 63, 97-101.
- Saptoro, A. and Huo, K.C. (2013) Influences of Indonesian coals on the performance of a coal-fired power plant with an integrated post combustion CO₂ removal system: A comparative simulation study. <u>Energy Conversion</u> <u>and Management</u>, 68, 235-243.
- Strazisar, B.R., Anderson, R.R., and White, C.M. (2003) Degradation pathways for monoethanolamine in a CO₂ capture facility. <u>Energy Fuels</u>, 17(4), 1034– 1039.
- Strube, R. and Manfrida, G. (2011) CO₂ capture in coal-fired power plants Impact on plant performance. <u>International Journal of Greenhouse Gas Control</u>, 5, 710-720
- Spigarelli, B.P. and Kawatra, S.K. (2013) Opportunities and challenges in carbon dioxide capture. Journal of CO₂ Utilization, 1, 69-87.
- Supap, T., Idem, R., Tontiwachwuthikul, P., and Saiwan, C. (2006) Analysis of monoethanolamine and its oxidative degradation products during co₂ absorption from flue gases: A comparative study of GC-MS, HPLC-RID, and CE-DAD analytical techniques and possible optimum combinations. <u>Industrial & Engineering Chemistry Research</u>, 45, 2437-2451.
- Supap, T., Idem, R., and Tontiwachwuthikul, P. (2011) Mechanism of formation of heat stable salts (HSSs) and their roles in further degradation of monoethanolamine during CO₂ capture from flue gas streams. <u>Energy</u> <u>Procedia</u>, 4, 591-598.

- Supap, T., Idem,R., Tontiwachwuthikul, P., and Saiwan, C. (2009) Kinetics of sulfur dioxide- and oxygen-induced degradation of aqueous monoethanolamine solution during CO₂ absorption from power plant flue gas streams. <u>International Journal of Greenhouse Gas Control</u>, 3(2), 133-142.
- Suppaibulsuk, P., Saiwan, C., and Supap, T. (2013) Effect of organic solvents on separation of heat stable salts (hsss) generated during carbon dioxide absorption using amine solution. <u>Chemical Engineering Transaction</u>, 35, 409-414.
- Tamada, J.A., Kertes, A.S., and King, J. (1990a) Extraction of carboxylic acids with amine extractants. 1. equilibria and law of mass action modeling. <u>Industrial</u> <u>& Engineering Chemistry Research</u>, 29, 1319-1326.
- Tamada, J.A. and King, J. (1990b) Extraction of carboxylic acids with amine extractions. 2. chemical interactions and interpretation of data. Industrial & Engineering Chemistry Research, 29, 1327-1333.
- Tamada, J.A. and King, J. (1990c) Extraction of carboxylic acids with amine extractants. 3. effect of temperature, water coextraction, and process considerations. <u>Industrial & Engineering Chemistry Research</u>, 29, 1333-1338.
- Thambimuthu, K.K., Iran, M.S., and Abanades, J.C. (2010) Capture of CO₂. <u>IPCC</u> <u>Special Report on Carbon dioxide Capture and Storage</u>, Cambridge University Press, New York, United States of America. 107-171.
- Thitakamol, B., Veawab, A., and Aroonwilas, A. (2007) Environmental impacts of absorption-based CO₂ capture unit for post-combustion treatment of flue gas from coal-fired power plant. <u>International Journal of Greenhouse Gas</u> <u>Control</u>, 1(3), 318-342.
- Venkatesan, S. and Meera Sheriffa Begum, K.M. (2009) Emulsion liquid membrane pertraction of imidazole from dilute aqueous solutions by Aliquat-336 mobile carrier. <u>Desalination</u>, 236, 65-77.
- Verma, N. and Verma, A. (2009) Amine system problems arising from heat stable salts and solutions to improve system performance. <u>Fuel Processing</u> <u>Technology</u>, 90, 483–489.

ο

- Voice, A.K. and Rochelle, G.T. (2013) Products and process variables in oxidation of monoethanolamine for CO₂ capture. <u>International Journal of Greenhouse</u> <u>Gas Control</u>, 12, 472-477.
- Wang, M., Lawal, A., Stephenson, P., Sidders, J., and Ramshaw, C. (2011) Postcombustion CO₂ capture with chemical absorption: A state-of-the-art review. <u>Chemical Engineering Research and Design</u>, 89(9), 1609-1624.
- Waseware, K.L., Shende, D., and Keshav, A. (2011) Reactive extraction of itaconic acid using quaternary amine aliquat 336 in ethyl acetate, toluene, hexane, and kerosene. <u>Industrial & Engineering Chemistry Research</u>, 50, 1003.
- Xu, G., Li, L., Yang, Y., Tian, L., Liu, T., and Zhang, K. (2012) A novel CO₂ cryogenic liquefaction and separation system. <u>Energy</u>, 42(1), 522-529.
- Yang, S.T., White, S.A., and Hsu, S.T. (1991) Extraction of carboxylic acids with tertiary and quaternary amines. <u>American Chemical Society</u>, 99(30), 1335-1342.
- Yankov, D., Molinier, J., Albet, J., Malmary, G., and Kyuchoukov, G. (2004) Lactic acid extraction from aqueous solutions with tri-n-octylamine dissolved in decanol and dodecane. <u>Biochemical Engineering Journal</u>, 21, 63-71.
- Yazvikova, N.V., Zelenskaya, L.G., and KhimZ, P. (1975) Mechanism of side reactions during removal of carbondioxide from gases by treatment with monoethanolamine. <u>Zhurnal Prikladnoi Khimii</u>, 48(3), 674-676.
- Zahlsen, K., Brunsvik, A., Wittgens, B., and Einbu, A. (2010) Establish sampling and analytical procedures for potentially harmful components post combustion amine based CO₂ capture. Subtask 4: Literature Study. <u>SINTEF</u> <u>Report, F16585</u>.
- Zoannou, K.S., Sapsford, D.J., and Griffiths, A.J. (2013) Thermal degradation of monoethanolamine and its effect on CO₂ capture capacity. <u>International</u> <u>Journal of Greenhouse Gas Control</u>, 17, 423-430.

APPENDICES

Appendix A Chemical Preparation

A1. Aqueous Solution without MEA

٠

A stock solution of 1000 ppm of each neutral MEA degradation products was prepared in a 500 mL volumetric flask. The theoretical weight of neutral MEA degradation products in DI water was calculated as follow:

Mass of neutral MEA degradation (g) =
$$\frac{1000 \text{ ppm neutral MEA degradation}}{1 \text{ ppm neutral MEA degradation}} \left| \frac{1 \text{ g neutral MEA degradation}}{10^6 \text{ g solution}} \right| \frac{1 \text{ g solution}}{1 \text{ mL solution}} \right| 500 \text{ mL solution}$$

The solution density of 1 g/mL was assumed. The volume of neutral MEA degradation products in DI water was mass of neutral MEA degradation products in solution divided by its density. After preparing the neutral MEA degradation products concentration, the actual concentrations of neutral MEA degradation products as follow:

Concentration of neatral MEA degradation (ppm)	_ 1 ppm neutral MEA degradation	10 ⁶ g neutral MEA degradation	1 mL solution	g actual mass of neutral MEA degradation
	500 mL solution	1 g solution	1 g solution	g actual mass of neutral MEA degradation

Preparation of Neutral MEA Degradation Products 1000 ppm in Aqueous Solution without MEA

0

imidazole 1,000 ppm solution was prepared by 0.50 g of imidazole 99 wt% dissolved in 500 mL of DI water.

Mass of imidazole (g) = $\frac{1000 \text{ ppm imidazole}}{1 \text{ ppm imidazole}} \left| \frac{1 \text{ g imidazole}}{10^6 \text{ g solution}} \right| \frac{1 \text{ g solution}}{1 \text{ mL solution}} \right| 500 \text{ mL solution}$

Mass of imidazole (g) = 0.50 g imidazole $\left|\frac{100 \text{ g solution}}{99 \text{ g imidazole}}\right|$

 \therefore Mass of imidazole (g) = 0.50 g imidazole in 500 mL solution

<u>N-acthylethanolamine</u> 1,000 ppm solution was prepared by 0.50 mL of N-acthylethanolamine 88.60 wt% dissolved in 500 mL of DI water.

 $Mass of N - acthyle than olamine (g) = \frac{1000 \text{ ppm } N - acthyle than olamine}{1 \text{ ppm } N - acthyle than olamine} \left| \frac{1 \text{ g } N - acthyle than olamine}{10^6 \text{ g solution}} \right| \frac{1 \text{ g solution}}{1 \text{ mL solution}} \right| 500 \text{ mL solution}$

Mass of N – acthylethanolamine (g) = 0.50 g N – acthylethanolamine $\left| \frac{100 \text{ g solution}}{88.60 \text{ g N} - \text{acthylethanolamine}} \right|$

 \therefore Mass of N – acthylethanolamine (g) = 0.56 g N – acthylethanolamine in 500 mL solution .

 $\label{eq:Volume} Volume \ of \ N-acthyle than olamine \ (mL) \ = \ 0.56 \ g \ N-acthyle than olamine \ \frac{1 \ mL \ N-acthyle than olamine}{1.12 \ g \ N-acthyle than olamine}$

 \therefore Volume of N – acthylethanolamine (mL) = 0.50 mL N – acthylethanolamine in 500 mL solution

2-oxazolidone 1,000 ppm solution was prepared by 0.51 g of 2-oxazolidone 98 wt% dissolved in 500 mL of DI water.

11

Mass of 2 - oxazolidone (g) =
$$\frac{1000 \text{ ppm } 2 - \text{oxazolidone}}{1 \text{ ppm } 2 - \text{oxazolidone}} \left| \frac{1 \text{ g } 2 - \text{oxazolidone}}{10^6 \text{ g solution}} \right| \frac{1 \text{ g solution}}{1 \text{ mL solution}} \right| 500 \text{ mL solution}$$

Mass of 2 – oxazolidone (g) = 0.50 g 2 – oxazolidone $\frac{100 \text{ g solution}}{98 \text{ g } 2 - \text{ oxazolidone}}$

 \therefore Mass of 2 – oxazolidone (g) = 0.51 g 2 – oxazolidone in 500 mL solution

•

<u>N-(2-hydroxyethyl)-succinimide</u> 1,000 ppm solution was prepared by 0.53 g of N-(2-hydroxyethyl)-succinimide 95 wt% dissolved in 500 mL of DI water.

 $Mass of N - (2 - hydroxyethyl) - succinimide (g) = \frac{1000 \text{ ppm } N - (2 - hydroxyethyl) - succinimide}{1 \text{ ppm } N - (2 - hydroxyethyl) - succinimide} \left| \frac{1 \text{ g } N - (2 - hydroxyethyl) - succinimide}{10^6 \text{ g solution}} \right| \frac{1 \text{ g solution}}{1 \text{ mL solution}} \left| \frac{3 \text{ solution}}{1 \text{ mL solution}} \right| 500 \text{ mL solution} = \frac{1000 \text{ ppm } N - (2 - hydroxyethyl) - succinimide}{1 \text{ mL solution}} \right| \frac{1 \text{ g solution}}{1 \text{ mL solution}} \left| \frac{1 \text{ g solution}}{1 \text{ mL solution}} \right| \frac{1 \text{ g solution}}{1 \text{ mL solution}} \right| \frac{1 \text{ g solution}}{1 \text{ mL solution}} \left| \frac{1 \text{ g solution}}{1 \text{ mL solution}} \right| \frac{1 \text{ g solution}}{1 \text{ mL solution}} \right| \frac{1 \text{ g solution}}{1 \text{ mL solution}} \left| \frac{1 \text{ g solution}}{1 \text{ mL solution}} \right| \frac{1 \text{ g solution}}{1 \text{ mL solution}} \right| \frac{1 \text{ g solution}}{1 \text{ mL solution}} \left| \frac{1 \text{ g solution}}{1 \text{ mL solution}} \right| \frac{1 \text{ g solution}}{1 \text{ mL solution}} \right| \frac{1 \text{ g solution}}{1 \text{ mL solution}} \left| \frac{1 \text{ g solution}}{1 \text{ mL solution}} \right| \frac{1 \text{ g solution}}{1 \text{ mL solution}} \right| \frac{1 \text{ g solution}}{1 \text{ mL solution}} | \frac{1 \text{ g solution}}{$

Mass of N – (2 – hydroxyethyl) – succinimide (g) = 0.50 g N – (2 – hydroxyethyl) – succinimide| 100 g solution 95 g N – (2 – hydroxyethyl) – succinimide

: Mass of N – (2 - hydroxyethyl) – succinimide (g) = 0.53 g N – (2 - hydroxyethyl) – succinimide in 500 mL solution

 Table A1
 Preparation of neutral MEA degradation products 1000 ppm in aqueous solution

 without MEA

Chemical	Theoretical Concentration	Theoretical Weight	Actual Weight	Actual Concentration	
	(ppm)	(g)	(g)	(ppm)	
Imidazole	1000	0.50	0.5050	999.99	
N-acethylethanolamine	1000	0.56	0.5643	999.94	
2-Oxazolidone	1000	0.51	0.5102	999.99	
N-(2-hydroxyethyl)- succinimide	1000 ·	0.53	0.5263	999.97	

A2. Aqueous Solution with MEA

.

MEA 5 M (30 wt%) Preparation

5 M of MEA = $\frac{5 \text{ mol MEA}}{1000 \text{ mL solution}} \left| \frac{61.08 \text{ g MEA}}{1 \text{ mol MEA}} \right|$

The solution density of 1 g/mL was assumed.

5 M of MEA = $\frac{305.4 \text{ g MEA}}{1000 \text{ mL solution}} \left| \frac{1 \text{ mL solution}}{1 \text{ g solution}} \right| 100$

5 M of MEA = 30.54 % wt

The density of MEA is 1.02 g/mL. The volume of MEA in solution was mass of MEA in solution divided by its density, the actual volume of MEA as follow:

Volume of 5 M of MEA (mL) = 305.40 g MEA $\frac{1 \text{ mL MEA}}{1.02 \text{ g MEA}}$

Volume of 5 M of MEA (mL) = 299.41 mL MEA in 1000 mL solution

The MEA stock solution with 1000 ppm neutral MEA degradation products in a 100 mL volumetric flask was theoretically calculated similar to the neutral MEA degradation products in aqueous solution without MEA.

Volume of MEA (mL) = $\frac{299.41 \text{ mL MEA}}{1000 \text{ mL solution}} | 100 \text{ mL solution} |$

 \therefore Volume of MEA (mL) = 29.94 mL in 100 solution

imidazole 1,000 ppm solution was prepared by 0.50 g of imidazole 99 wt% mixed with 29.94 mL of MEA and then adjusted volume by DI water to 100 mL.

<u>N-(2-hydroxyethyl)-succinimide</u> 1,000 ppm solution was prepared by 0.53 g of N-(2-hydroxyethyl)-succinimide 95 wt% mixed with 29.94 mL of MEA and then adjusted volume by DI water to 100 mL.

<u>2-oxazolidone</u> 1,000 ppm solution was prepared by 0.51 g of 2-oxazolidone 98 wt% mixed with 29.94 mL of MEA and then adjusted volume by DI water to 100 mL. <u>N-(2-hydroxyethyl)-succinimide</u> 1,000 ppm solution was prepared by 0.53 g of N-(2-hydroxyethyl)-succinimide 95 wt% mixed with 29.94 mL of MEA and then adjusted volume by DI water to 100 mL.

Table A2 Preparation of neutral MEA degradation products 1000 ppm in aqueous solution withMEA

	Theoretical	Theoretical	Actual	Actual
Chemical	Concentration	Volume	Volume	Concentration
	5 M (wt%)	(mL)	(mL)	5 M (wt%)
Imidazole	30.54	29.94	29.95	30.55
N-acethylethanolamine	30.54	29.94	29.95	30.55
2-Oxazolidone	30.54	29.94	29.95	30.55
N-(2-hydroxyethyl)- succinimide	30.54	29.94	29.95	30.55

A3. NaOH Preparation

2 M of NaOH for converting extraction in chloride form to extraction in hydroxide⁻ form was prepared in a 1000 mL volumetric flask.

Volume of 2 M of MEA (mL) = $\frac{2 \text{ mol NaOH}}{1000 \text{ mL solution}} \left| \frac{39.997 \text{ g NaOH}}{1 \text{ mol NaOH}} \right|$

Volume of 2 M of MEA (mL) = $\frac{79.99 \text{ g NaOH}}{1000 \text{ mL solution}} \left| \frac{100 \text{ g solution}}{99 \text{ g NaOH}} \right|$

 \therefore Volume of 2 M of MEA (mL) = 80.80 g NaOH in 1000 mL solution

A4. AgNO₃ Preparation

0.05 M of AgNO₃ used as an indicator in Mohr's titration method was prepared in a 1000 mL volumetric flask.

Mass of 0.05 M of AgNO₃ (g) = $\frac{0.05 \text{ mol AgNO}_3}{1000 \text{ mL solution}} \left| \frac{169.87 \text{ g AgNO}_3}{1 \text{ mol AgNO}_3} \right|$

Mass of 0.05 M of AgNO₃ (g) = $\frac{8.49 \text{ g AgNO}_3}{1000 \text{ mL solution}}$ 1000 mL solution

 \therefore Mass of 0.05 M of AgNO3 (g) = 8.49 g AgNO3 in 1000 mL solution

0

-

A5. Na₂CrO₄ Preparation

σ

0.25 M of Na₂CrO₄ used as an indicator in Mohr's titration method was prepared in a 100 mL volumetric flask.

Mass of 0.25 M of Na₂CrO₄(g) = $\frac{0.25 \text{ mol Na}_2\text{CrO}_4}{1000 \text{ mL solution}} \left| \frac{161.97 \text{ g Na}_2\text{CrO}_4}{1 \text{ mol Na}_2\text{CrO}_4} \right|$

Mass of 0.25 M of Na₂CrO₄(g) = $\frac{40.49 \text{ g Na₂CrO₄}}{1000 \text{ mL solution}} | 100 \text{ mL Na₂CrO₄}$

: Mass of 0.25 M of $Na_2CrO_4(g) = 4.05$ g in 100 mL solution

Table A3	Preparation	coversion of	extractant-Cl

Chemical	Theoretical Concentration (Molar)	Theoretical Weight or Volume (g) or (mL)	Actual Weight or Volume (mL)	Actual Concentration (Molar)
NaOH	2	80.80	80.80	2
AgNO ₃	0.05	8.49	8.49	0.05
Na ₂ CrO ₄	0.25	4.05	4.04	0.25

Appendix B Conversion of Extractant

Calculation Example of Conversion from Extractant Chloride form (Extractant-Cl) to Extractant Hydroxide form (Extractant-OH).

$$Extractant-Cl + NaOH = Extractant-OH + NaCl$$

Molecular weight of extractant-Cl is 404.16 g/mol. One mole of extractant-Cl consists of one mole of Cl⁻ ion and one mole of extractant ion and produces one mole of extractant-OH. If the conversion is incomplete, there is extractant-OH and extractant-Cl remaining which extractant-Cl remaining can be determined by titration of Cl⁻ in extractant-Cl with Ag^+ to find the final conversion. Know that Cl⁻ and Ag^+ have reaction at the mole ratio of 1:1.

Table B1 Volume of Cl⁻ ion initial remaining in the extractant-Cl

0

Weight of Extractant-Cl	AgNO ₃	mmole of Ag^+ = mmole of Cl ⁻	Weight of Cl	%Cl ⁻ Initial
$(g) = W_1$	(mL)	$(W_1 \times AgNO_3)$	$(mg = mmole Cl \times 35.5 (mg)) = W_2$	$(W_2 * 0.001/W_1) \times 100$
0.1005	3.9	0.195	6.92	6.89

78

B1

Example calculation volume of Cl initial remaining in the extractant.

From titration extractant-Cl in Table B1was calculated as follow:

Mol of 3.9 mL of 0.05 M of AgNO₃(mol) = $\frac{0.05 \text{ mol AgNO}_3}{1000 \text{ mL solution}}$ 3.90 mL solution

Mol of 3.9 mL of 0.05 M of $AgNO_3(mol) = 0.000195 mol AgNO_3 = 0.195 mmol Ag^+$

Mol of 3.9 mL of 0.05 M of $AgNO_3(mol) = 0.195$ mmol Cl⁻ remaining in the extractant - Cl

Mass of Cl⁻remaining in the extractant – Cl (g) = $0.195 \text{ mmol Cl}^{-1} \frac{35.50 \text{ mg Cl}^{-1}}{1 \text{ mmol Cl}^{-1}}$

Mass of Cl⁻remaining in the extractant $- Cl(g) = 6.9225 \text{ mg Cl}^{-}$

%Cl⁻ initial remaining in the extractant – Cl = $\frac{0.0069225 \text{ g Cl}^{-}}{0.1005 \text{ g extractant} - \text{Cl}}$ 100

 \therefore %Cl⁻ initial remaining in the extractant – Cl = 6.8881 %

<u>Example</u> calculation conversion of extractant-Cl to be extractant-OH measured by Mohr's method titration. From titration of after 1st conversion batch no.1 in Table B B1was calculated as follow.

Mol of 2.65 mL of 0.05 M of AgNO₃(mol) = $\frac{0.05 \text{ mol } \text{AgNO}_3}{1000 \text{ mL solution}}$ 2.65 mL solution

Mol of 2.65 mL of 0.05 M of AgNO₃ (mol) = 0.0001325 mol AgNO₃ = 0.1325 mmol Ag⁺

Mol of 2.65 mL of 0.05 M of AgNO₃ (mol) = 0.1325 mmol Cl⁻ remaining in the extractant - Cl

Mass of Cl⁻remaining in the extractant – Cl after 1st conversion (g) = $0.1325 \text{ mmol Cl}^{-1} \frac{35.5 \text{ mg Cl}^{-1}}{1 \text{ mmol Cl}^{-1}}$

Mass of Cl⁻remaining in the extractant – Cl after 1^{st} conversion (g) = 4.7038 mg Cl⁻

%Cl⁻ remaining in the extractant – Cl after 1st conversion = $\frac{0.0047038 \text{ g Cl}^{-}}{0.1004 \text{ g extractant} - Cl}$ 100

 \therefore %Cl⁻ remaining in the extractant – Cl after 1st conversion = 4.685%

$$\% Extraction CI = \frac{(\% CI^{-} initial remaining in the extractant - Cl - \% CI^{-} remaining in the extractant - Cl after 1st conversion)}{\% CI^{-} initial remaining in the extractant - Cl} 100$$

$$\% Extraction Cl = \frac{(6.8881 - 4.685)}{6.8881} | 100$$

 \therefore %Extraction Cl = 31.98%

Extractant as Aliquat-336 is in the form of chloride (extractant-Cl). It was converted to hydroxide form by reaction.

.

Time of Conversion	Weight of Extractant-Cl (g)	ÁgNO3 (mL)	mmole of Ag ⁺ = mmole of Cl ⁻	Weight of Cl ⁻ (mg)	%Cl Remaining	%Extraction Cl
After 1 st Conversion	0.1004	2.65	0.13	4.70	4.69	31.98
After 2 nd Conversion	0.1006	2.55	0.13	4.53	4.50	34.68
After 3 rd Conversion	0.1003	2.40	0.12	4.26	4.25	38.34
After 4 th Conversion	0.1008	2.23	0.11	3.95	3.92	43.12
After 5 th Conversion	0.1007	2.05	0.10	3.64	3.61	47.54
After 6th Conversion	0.1007	1.80	0.09	3.20	3.17	53.94
After 7 th Conversion	0.1006	1.70	0.09	3.02	3.00	56.45
After 8 th Conversion	0.1002	1.50	0.08	2.66	2.66	61.42
After 9 th Conversion	0.1001	1.45	0.07	2.57	2.57	62.67
After 10 th Conversion	0.1006	1.45	0.07	2.57	2.56	62.86
After 11 th Conversion	0.1000	1.30	0.07	2.31	2.31	66.50
After 12 th Conversion	0.1001	1.30	0.07	2.31	2.31	66.53
After 13 th Conversion	0.1000	1.25	0.06	2.22	2.22	67.79
After Evaporation	0.1005	1.45	0.07	2.57	2.56	62.82

Table B2 Conversion of extractant-Cl to be extractant-OH measured by Mohr's method titration of batch No.1

þ

0

1.11

Time of Conversion	Weight of Extractant-Cl (g)	AgNO ₃ (mL)	mmole of Ag ⁺ = mmole of Cl ⁻	Weight of Cl ⁻ (mg)	%Cl ⁻ Remaining	%Extraction Cl
After 1 st Conversion	0.1005	2.65	0.13	4.70	4.68	32.05
After 2 nd Conversion	0.1005	2.50	0.13	4.44	4.42	35.90
After 3 rd Conversion	0.1002	2.45	0.12	4.35	4.34	36.99
After 4 th Conversion	0.1002	2.20	0.11	3.91	3.90	.43.42
After 5 th Conversion	0.1003	2.00	0.10	3.55	3.54	48.62
After 6th Conversion	0.1006	1.85	0.09	3.28	3.26	52.61
After 7 th Conversion	0.1007	1.70	0.09	3.02	3.00	56.50
After 8 th Conversion	0.1001	1.50	0.08	2.66	2.66	61.38
After 9 th Conversion	0.1003	1.45	0.07	2.57	2.57	62.75
After 10 th Conversion	0.1004	1.45	0.07	2.57	2.56	62.78
After 11 th Conversion	0.1004	1.30	0.07	2.31	2.30	66.63
After 12 th Conversion	0.1003	1.25	0.06	2.22	2.21	67.88
After 13 th Conversion	0.1000	1.25	0.06	2.22	2.22	67.79
After Evaporation	0.1001	1.45	0.07	2.57	2.57	62.67

 Table B3
 Conversion of extractant-Cl to be extractant-OH measured by Mohr's method titration of batch No.2

.

.....

- 1 -

Table B4	Conversion of extractant-Cl to be extractant	-OH measured b	y Mohr	's method	titration	of batch No.3

Time of Conversion	Weight of Extractant-Cl (g)	AgNO ₃ (mL)	mmole of Ag ⁺ = mmole of Cl ⁻	Weight of Cl ⁻ (mg)	%Cl' Remaining	%Extraction Cl
After 1 st Conversion	0.1000	2.60	0.13	4.62	4.62	33.00
After 2 nd Conversion	0.1007	2.55	0.13	4.53	4.49	34.74
After 3 rd Conversion	0.1002	2.45	0.12	4.35	4.34	36.99
After 4 th Conversion	0.1008	2.25	0.11	3.99	3.96	42.48
After 5 th Conversion	0.1000	1.95	0.10	3.46	3.46	49.75
After 6th Conversion	0.1007	1.80	0.09	3.20	3.17	53.94
After 7 th Conversion	0.1002	1.65	0.08	2.93	2.92	57.57
After 8 th Conversion	0.1000	1.50	0.08	2.66	2.66	61.35
After 9 th Conversion	0.1006	1.40	0.07	2.49	2.47	64.14
After 10 th Conversion	0.1003	1.45	0.07	2.57	2.57	62.75
After 11 th Conversion	0.1001	1.25	0.06	2.22	2.22	67.82
After 12 th Conversion	0.1002	1.25	0.06	2.22	2.21	67.85
After 13 th Conversion	0.1000	1.25	0.06	2.22	2.22	67.79
After Evaporation	0.1000	1.50	0.08	2.66	2.66	61.35

Time of Conversion	Weight of Extractant-Cl	AgNO ₃	mmole of Ag^+ = mmole of Cl^-	Weight of Cl	%Cl ⁻ Remaining	%Extraction Cl
	(g)	(mL)	_	(mg)		
After 1 st Conversion	0.1005	2.65	0.13	4.70	4.68	32.05
After 2 nd Conversion	0.1002	2.55	0.13	4.53	4.52	34.42
After 3 rd Conversion	0.1000	2.40	0.12	4.26	4.26	38.15
After 4 th Conversion	0.1008	2.25	0.11	3.99	3.96	42.48
After 5 th Conversion	0.1006	2.05	0.10	3.64	3.62	47.49
After 6th Conversion	0.1007	1.80	0.09	3.20	3.17	53.94
After 7 th Conversion	0.1004	1.70	0.09	3.02	3.01	56.37
After 8 th Conversion	0.1006	1.50	0.08	2.66	2.65	61.58
After 9 th Conversion	0.1006	1.45	0.07	2.57	2.56	62.86
After 10 th Conversion	0.1000	1.45	0.07	2.57	2.57	62.63
After 11 th Conversion	0.1004	1.30	0.07	2.31	2.30	66.63
After 12 th Conversion	0.1004	1.30	0.07	2.31	2.30	66.63
After 13 th Conversion	0.1002	1.30	0.07	2.31	2.30	66.57
After Evaporation	0.1005	1.45	0.07	2.57	2.56	62.82

 Table B5
 Conversion of extractant-Cl to be extractant-OH measured by Mohr's method titration of batch No.4°

Time of Conversion	Weight of Extractant-Cl (g)	AgNO ₃ (mL)	mmole of Ag ⁺ = mmole of Cl ⁻	Weight of Cl ⁻ (mg)	%Cl ⁻ Remaining	%Extraction Cl
After 1 st Conversion	0.1000	2.60	0.13	4.62	4.62	33.00
After 2 nd Conversion	0.1002	2.55	0.13	4.53	4.52	34.42
After 3 rd Conversion	0.1007	2.45	0.12	4.35	4.32	37.30
After 4 th Conversion	0.1000	2.23	0.11	3.95	3.95	42.66
After 5 th Conversion	0.1006	2.00	0.10	3.55	3.53	48.77
After 6th Conversion	0.1007	1.85	0.09	3.28	3.26	52.66
After 7 th Conversion	0.1007	1.65	0.08	2.93	2.91	57.78
After 8 th Conversion	0.1004	1.55	0.08	2.75	2.74	60.22
After 9 th Conversion	0.1004	1.45	0.07	2.57	2.56	62.78
After 10 th Conversion	0.1003	1.45	0.07	2.57	2.57	62.75
After 11 th Conversion	0.1003	1.30	0.07	2.31	2.30	66.60
After 12 th Conversion	0.1001	1.30	0.07	2.31	2.31	66.53
After 13 th Conversion	0.1004	1.30	0.07	2.31	2.30	66.63
After Evaporation	0.1005	1.45	0.07	2.57	2.56	62.82

Table B6 Conversion of extractant-Cl to be extractant-OH measured by Mohr's method titration of batch No.5

.

. .

Time of Conversion	Weight of Extractant-Cl (g)	AgNO ₃ (mL)	mmole of Ag ⁺ = mmole of Cl ⁻	Weight of Cl ⁻ (mg)	%Cl ⁻ Remaining	%Extraction Cl
After 1 st Conversion	0.1005	2.65	0.13	4.70	4.68	32.05
After 2 nd Conversion	0.1003	2.50	0.13	4.44	4.42	35.77
After 3 rd Conversion	0.1001	2.40	0.12	4.26	4.26	38.22
After 4 th Conversion	0.1000	2.23	0.11	3.95	3.95	42.66
After 5 th Conversion	0.1007	2.05	0.10	3.64	3.61	47.54
After 6th Conversion	0.1006	1.85	0.09	3.28	3.26	52.61
After 7 th Conversion	0.1002	·1.65	0.08	2.93	2.92	57.57
After 8 th Conversion	0.1003	1.50	0.08	2.66	2.65	61.46
After 9 th Conversion	0.1001	1.45	0.07	2.57	2.57	62.67
After 10 th Conversion	0.1005	1.45	0.07	2.57	2.56	62.82
After 11 th Conversion	0.1000	1.25	0.06	2.22	2.22	67.79
After 12 th Conversion	0.1003	1.25	0.06	2.22	2.21	67.88
After 13 th Conversion	0.1002	1.25	0.06	2.22	2.21	67.85
After Evaporation	0.1002	1.50	0.08	2.66	2.66	61.42

 Table B7
 Conversion of extractant-Cl to be extractant-OH measured by Mohr's method titration of batch No.6

Time of Conversion	Weight of Extractant-Cl (g)	AgNO ₃ (mL)	mmole of Ag ⁺ = mmole of Cl ⁻	Weight of Cl (mg)	%Cl ⁻ Remaining	%Extraction Cl
After 1 st Conversion	0.1003	2.65	0.13	4.70	4.69	31.92
After 2 nd Conversion	0.1000	2.55	0.13	4.53	4.53	34.29
After 3 rd Conversion	0.1001	2.40	0.12	4.26	4.26	38.22
After 4 th Conversion	0.1001	2.20	0.11	3.91	3.90	43.36
After 5 th Conversion	0.1008	2.05	0.10	3.64	3.61	47.59
After 6th Conversion	0.1007	1.80	0.09	3.20	3.17	53.94
After 7 th Conversion	0.1005	1.65	0.08	2.93	2.91	57.69
After 8 th Conversion	0.1001	1.50	0.08	2.66	2.66	61.38
After 9 th Conversion	0.1006	1.45	0.07	2.57	2.56	62.86
After 10 th Conversion	0.1002	1.45	0.07	2.57	2.57	62.71
After 11 th Conversion	0.1000	1.30	0.07	2.31	2.31	66.50
After 12 th Conversion	0.1004	1.30	0.07	2.31	2.30	.66.63
After 13 th Conversion	0.1002	1.25	0.06	2.22	2.21	67.85
After Evaporation	0.1002	1.45	0.07	2.57	2.57	62.71

 Table B8
 Conversion of extractant-Cl to be extractant-OH measured by Mohr's method titration of batch No.7

Time of Conversion	Weight of Extractant-Cl (g)	AgNO ₃ (mL)	mmole of Ag ⁺ = mmole of Cl ⁻	Weight of Cl [*] (mg)	%Cl ⁻ Remaining	%Extraction Cl
After 1 st Conversion	0.1005	2.65	0.13	4.70	4.68	32.05
After 2 nd Conversion	0.1004	2.55	0.13	4.53	4.51	34.55
After 3 rd Conversion	0.1005	2.40	0.12	4.26	4.24	38.46
After 4 th Conversion	0.1004	2.25	0.11	3.99	3.98	42.25
After 5 th Conversion	0.1003	2.00	0.10	3.55	3.54	48.62
After 6th Conversion	0.1000	1.80	0.09	3.20	3.20	53.61
After 7 th Conversion	0.1000	1.70	0.09	3.02	3.02	56.19
After 8 th Conversion	0.1004	1.50	0.08	2.66	2.65	61.50
After 9 th Conversion	0.1006	1.45	0.07	2.57	2.56	62.86
After 10 th Conversion	0.1005	1.45	0.07	2.57	2.56	62.82
After 11 th Conversion	0.1006	1.30	0.07	2.31	2.29	66.70
After 12 th Conversion	0.1003	1.30	0.07	2.31	2.30	66.60
After 13 th Conversion	0.1000	1.25	0.06	2.22	2.22	67.79
After Evaporation	0.1005	1.45	0.07	2.57	2.56	62.82

 Table B9
 Conversion of extractant-Cl to be extractant-OH measured by Mohr's method titration of batch No.8

0

16.1

68

Time of Conversion	Weight of Extractant-Cl (g)	AgNO ₃ (mL)	mmole of Ag ⁺ = mmole of Cl ⁻	Weight of Cl ⁻ (mg)	%Cl ⁻ Remaining	%Extraction Cl
After 1 st Conversion	0.1008	2.65	0.13	4.70	4.67	32.25
After 2 nd Conversion	0.1001	2.50	0.13	4.44	4.43	35.64
After 3 rd Conversion	0.1001	2.43	0.12	4.30	4.30	37.57
After 4 th Conversion	0.1001	2.20	0.11	3.91	3.90	43.36
After 5 th Conversion	0.1003	1.95	0.10	3.46	3.45	49.90
After 6th Conversion	0.1006	1.80	0.09	3.20	3.18	53.89
After 7 th Conversion	0.1002	1.70	0.09	3.02	3.01	56.28
After 8 th Conversion	0.1000	1.50	0.08	2.66	2.66	61.35
After 9 th Conversion	0.1004	1.45	0.07	2.57	2.56	62.78
After 10 th Conversion	0.1006	1.45	0.07	2.57	2.56	62.86
After 11 th Conversion	0.1000	1.25	0.06	2.22	2.22	67.79
After 12 th Conversion	0.1001	1.25	0.06	2.22	2.22	67.82
After 13 th Conversion	0.1000	1.25	0.06	2.22	2.22	67.79
After Evaporation	0.1002	1.50	0.08	2.66	2.66	61.42

 Table B10
 Conversion of extractant-Cl to be extractant-OH measured by Mohr's method titration of batch No.9

þ

1.1

14

Time of Conversion	Weight of Extractant-Cl (g)	AgNO ₃ (mL)	mmole of Ag ⁺ = mmole of Cl ⁻	Weight of Cl ⁻ (mg)	%Cl [°] Remaining	%Extraction Cl
After 1 st Conversion	0.1005	2.65	0.13	4.70	4.68	32.05
After 2 nd Conversion	0.1003	2.55	0.13	4.53	4.51	34.48
After 3 rd Conversion	0.1006	2.40	0.12	4.26	4.23	38.52
After 4 th Conversion	0.1002	2.20	0.11	3.91	3.90	43.42
After 5 th Conversion	0.1000	1.95	0.10	3.46	3.46	49.75
After 6th Conversion	0.1007	1.80	0.09	3.20	3.17	53.94
After 7 th Conversion	0.1001	1.70	0.09	3.02	3.01	56.24
After 8 th Conversion	0.1000	1.55	0.08	2.75	2.75	60.06
After 9 th Conversion	0.1004	1.45	0.07	2.57	2.56	62.78
After 10 th Conversion	0.1002	1.45	0.07	2.57	2.57	62.71
After 11 th Conversion	0.1004	1.30	0.07	2.31	2.30	66.63
After 12 th Conversion	0.1002	1.25	0.06	2.22	2.21	67.85
After 13 th Conversion	0.1002	1.25	0.06	2.22	2.21	67.85
After Evaporation	0.1004	1.45	0.07	2.57	2.56	62.78

 Table B11
 Conversion of extractant-Cl to be extractant-OH measured by Mohr's method titration of batch No.10

1

Time of Conversion	Weight of Extractant-Cl (g)	AgNO ₃ (mL)	mmole of Ag ⁺ = mmole of Cl ⁻	Weight of Cl ⁻ (mg)	%Cl ⁻ Remaining	%Extraction Cl
After 1 st Conversion	0.1006	2.65	0.13	4.70	4.68	32.12
After 2 nd Conversion	0.1000	2.55	0.13	4.53	4.53	34.29
After 3 rd Conversion	0.1007	2.45	0.12	4.35	4.32	37.30
After 4 th Conversion	0.1002	2.23	0.11	3.95	3.94	42.78
After 5 th Conversion	0.1006	2.00	0.10	3.55	3.53	48.77
After 6th Conversion	0.1003	1.85	0.09	3.28	3.27	52.47
After 7 th Conversion	0.1002	1.70	0.09	3.02	3.01	56.28
After 8 th Conversion	0.1004	1.55	0.08	2.75	2.74	60.22
After 9 th Conversion	0.1003	1.40	0.07	2.49	2.48	64.03
After 10 th Conversion	0.1002	1.40	0.07	2.49	2.48	63.99
After 11 th Conversion	0.1004	1.30	0.07	2.31	2.30	66.63
After 12 th Conversion	0.1002	1.30	0.07	2.31	2.30	66.57
After 13 th Conversion	0.1005	1.25	0.06	2.22	2.21	67.95
After Evaporation	0.1003	· 1.45	0.07	2.57	2.57	62.75

Table B12	Conversion of	f extractant-Cl to	be extractant-OH measure	d by Mohi	r's method titrat	ion of batch No.11
-----------	---------------	--------------------	--------------------------	-----------	-------------------	--------------------

•

Time of Conversion	Weight of Extractant-Cl (g)	AgNO ₃ (mL)	mmole of Ag ⁺ = mmole of Cl ⁻	Weight of Cl ⁻ (mg)	%Cl ⁻ Remaining	%Extraction Cl
After 1 st Conversion	0.1006	2.65	0.13	4.70	4.68	32.12
After 2 nd Conversion	0.1002	2.50	0.13	4.44	4.43	35.70
After 3 rd Conversion	0.1005	2.40	0.12	4.26	4.24	38.46
After 4 th Conversion	0.1003	. 2.20	0.11	3.91	3.89	43.48
After 5 th Conversion	0.1007	2.05	0.10	3.64	3.61	47.54
After 6th Conversion	0.1005	1.80	0.09	3.20	3.18	53.85
After 7 th Conversion	0.1000	1.70	0.09	3.02	3.02	56.19
After 8 th Conversion	0.1005	1.55	0.08	2.75	2.74	60.26
After 9 th Conversion	0.1004	1.45	0.07	2.57	2.56	62.78
After 10 th Conversion	0.1007	1.40	0.07	2.49	2.47	64.17
After 11 th Conversion	0.1005	1.25	0.06	2.22	2.21	67.95
After 12 th Conversion	0.1001	1.25	0.06	2.22	2.22	67.82
After 13 th Conversion	0.1004	1.25	0.06	2.22	2.21	67.92
After Evaporation	0.1004	1.45	0.07	2.57	2.56	62.78

 Table B13
 Conversion of extractant-Cl to be extractant-OH measured by Mohr's method titration of batch No.12

0

0

Time of Conversion	Weight of Extractant-Cl (g)	AgNO ₃ (mL)	mmole of Ag ⁺ = mmole of Cl ⁻	Weight of Cl ⁻ (mg)	%Cl ⁻ Remaining	%Extraction Cl
After 1 st Conversion	0.1001	2.65	0.13	4.70	4.70	31.78
After 2 nd Conversion	0.1006	2.50	0.13	4.44	4.41	35.96
After 3 rd Conversion	0.1007	2.40	0.12	4.26	4.23	38.58
After 4 th Conversion	0.1003	2.20	0.11	3.91	3.89	43.48
After 5 th Conversion	0.1002	2.05	0.10	3.64	3.63	47.28
After 6th Conversion	0.1007	1.80	0.09	3.20	3.17	53.94
After 7 th Conversion	0.1002	1.70	0.09	3.02	3.01	56.28
After 8 th Conversion	0.1004	1.50	0.08	2.66	2.65	61.50
After 9 th Conversion	0.1005	1.45	0.07	2.57	2.56	62.82
After 10 th Conversion	0.1002	1.45	0.07	2.57	2.57	62.71
After 11 th Conversion	0.1003	1.30	0.07	2.31	2.30	66.60
After 12 th Conversion	0.1005	1.30	0.07	2.31	2.30	66.67
After 13 th Conversion	0.1004	1.30	0.07	2.31	2.30	66.63
After Evaporation	0.1000	1.45	0.07	2.57	2.57	62.63

 Table B14
 Conversion of extractant-Cl to be extractant-OH measured by Mohr's method titration of batch No.13

Υ.

0

χ.....

94

•

Time of Conversion	Weight of Extractant-Cl (g)	AgNO ₃ (mL)	mmole of Λg^+ = mmole of Cl ⁻	Weight of Cl ⁻ (mg)	%Cl' Remaining	%Extraction Cl
After 1 st Conversion	0.1004	2.65	0.13	4.70	4.69	31.98
After 2 nd Conversion	0.1007	2.55	0.13	4.53	4.49	34.74
After 3 rd Conversion	0.1007	2.45	0.12	4.35	4.32	37.30
After 4 th Conversion	0.1002	2.20	0.11	3.91	3.90	43.42
After 5 th Conversion	0.1007	2.00	0.10	3.55	3.53	48.82
After 6th Conversion	0.1005	1.80	0.09	3.20	3.18	53.85
After 7 th Conversion	0.1001	1.70	0.09	3.02	3.01	56.24
After 8 th Conversion	0.1000	1.50	0.08	2.66	2.66	61.35
After 9 th Conversion	0.1007	1.45	0.07	2.57	2.56	62.89
After 10 th Conversion	0.1002	1.40	0.07	2.49	2.48	63.99
After 11 th Conversion	0.1005	1.30	0.07	2.31	2.30	66.67
After 12 th Conversion	0.1003	1.30	0.07	2.31	2,30	66.60
After 13 th Conversion	0.1001	1.30	0.07	2.31	2.31	66.53
After Evaporation	0.1003	1.45	0.07	2.57	2.57	62.75

 Table B15
 Conversion of extractant-Cl to be extractant-OH measured by Mohr's method titration of batch No.14

٥

- X-

. .

95

Time of Conversion	Weight of Extractant-Cl (g)	AgNO ₃ (mL)	mmole of Ag ⁺ = mmole of Cl ⁻	Weight of Cl ⁻ (mg)	%Cl ⁻ Remaining	%Extraction Cl
After 1 st Conversion	0.1006	2.65	0.13	4.70	4.68	32.12
After 2 nd Conversion	0.1007	2.55	0.13	4.53	4.49	34.74
After 3 rd Conversion	0.1003	2.45	0.12	4.35	4.34	37.05
After 4 th Conversion	0.1003	2.25	0.11	3.99	3.98	42.19
After 5 th Conversion	0.1004	1.95	0.10	3.46	3.45	49.95
After 6th Conversion	0.1006	1.85	0.09	3.28	3.26	52.61
After 7 th Conversion	0.1005	1.70	0.09	3.02	3.00	56.41
After 8 th Conversion	0.1003	1.50	0.08	2.66	2.65	61.46
After 9 th Conversion	0.1003	1.40	0.07	2.49	2.48	64.03
After 10 th Conversion	0.1006	1.40	0.07	2.49	2.47	64.14
After 11 th Conversion	0.1005	1.30	0.07	2.31	2.30	66.67
After 12 th Conversion	0.1003	1.30	0.07	2.31	2.30	66.60
After 13 th Conversion	0.1003	1.25	0.06	2.22	2.21	67.88
After Evaporation	0.1002	1.45	0.07	2.57	2.57	62.71

 Table B16
 Conversion of extractant-Cl to be extractant-OH measured by Mohr's method titration of batch No.15

-1

Bacth · No	%Extraction Cl	Average Conversion (%)	SD	Avg ±SD
1	62.82		1	
2	62.67	-		
3	61.35			
4	62.82	-		
5	62.82			
6	61.42			
7	62.71	_		
8	62.82	62.48	0.57	62.48±0.57
9	61.42	-		
10	62.78			
11	62.75	_		
12	62.78	-		
13	62.63	_		
14	62.75	-		
15	62.71	- <u>1</u> -		

-

Table B17 Average conversion of extractant-OH after evaporation of water

•

Average Molecular Weight of Extractant after Converting

Molecular weight of extractant-Cl is 404.16 g/mol Molecular weight of Chloride (Cl⁻) is 35.45 g/mol Molecular weight of Hydroxide (OH⁻) is 15.95 + 1 = 16.95 g/mol Therefore, molecular weight of extractant-OH is 404.16 - (35.45 + 16.95) = 385.66 g/mol

> $Mw_{avg} = (Mw_A)(X_A) + (Mw_B)(X_B)$; where $X_i = mass$ fraction $Mw_{avg} = (385.66)(0.6248) + (404.16)(1 - 0.6248)$

> > $\therefore Mw_{avg} = 392.60 \text{ g/mol}$

Therefore, the average molecular weight of extractant-OH is 392.60 g/mol.

B1. Extractant-OH Solution

The average molecular weight of extractant-OH was 392.60 g/mol. Therefore, 1 M of extractant-OH in 2-ethyl-hexanol (alcohol group diluents) with a total volume of 1000 mL was calculated mass of extractant-OH as follow:

Mass of 1 M of extractant – OH = $\frac{1 \text{ mol extractant} - \text{OH}}{1000 \text{ mL solution}} \frac{392.60 \text{ g extractnt} - \text{OH}}{1 \text{ mol extractant} - \text{OH}}$ 1000 mL solution

 \therefore Mass of 1 M of extractant – OH = 392.60 g extractnt – OH

Therefore, 1 M of extractant is equal to 392.60 g of extractant-OH adjusted volume to 1000 mL by adding diluents.
Theoretical	Theoretical	Actual	Actual		
Concentration Weight		Weight	Concentration		
of Extractant-OH of Extractant-OH		of Extractant-OH	of Extractant-OH		
(M)	(g)	(g)	(M)		
			1		

σ

Table B18 Extractant-OH solution preparation

1

0

-

Appendix C Standard Solution of Neutral MEA Degradation Products Preparation

C1. Standard Solution of Neutral MEA Degradation Products without MEA

Analysis the neutral MEA degradation products concentration must be first before extraction, the characteristic of each neutral MEA degradation, imidazole, Nacethylethanolamine, 2-oxazolidone and N-(2-hydroxyethyl)-succinimide was analyzed by gas chromatography with flame ionization (GC-FID). The retention times of each were 18.00, 20.40, 23.50 and 27.30 minutes, respectively. Chromatogram of each neutral MEA degradation products solution without MEA, imidazole, N-acethylethanolamine, 2-oxazolidone and N-(2-hydroxyethyl)succinimide was showed that in Figures C1, C2, C3 and C4

Figure C1 Chromatogram of imidazole without MEA in aqueous solution before extraction.

Figure C2 Chromatogram of N-acethylethanolamine without MEA in aqueous solution before extraction.

Figure C3 Chromatogram of 2-oxazolidone without MEA in aqueous solution before extraction.

Figure C4 Chromatogram of N-(2-hydroxyethyl)-succinimide without MEA in aqueous solution before extraction.

C2. Standard Solution of Neutral MEA Degradation Products with MEA

Analysis the neutral MEA degradation products with 30wt % MEA concentration must be done before extraction, the characteristic of each neutral MEA degradation, imidazole, N-acethylethanolamine, 2-oxazolidone and N-(2-hydroxyethyl)-succinimide was analyzed by gas chromatography with flame ionization (GC-FID). The retention times of each were 17.70, 20.10, 23.00 and 26.50 minutes, respectively. Chromatogram of each neutral MEA degradation products solution with 30 %wt MEA, imidazole, N-acethylethanolamine, 2-oxazolidone and N-(2-hydroxyethyl)-succinimide is shown that in Figures C13, C14, C15 and C16.

Figure C5 Chromatogram of imidazole with MEA in aqueous solution before extraction.

Figure C6 Chromatogram of N-acethylethanolamine with MEA in aqueous solution before extraction.

Figure C7 Chromatogram of 2-oxazolidone with MEA in aqueous solution before extraction.

Figure C8 Chromatogram of N-(2-hydroxyethyl)-succinimide with MEA in aqueous solution before extraction.

σ

C3. Standard Solution of Neutral MEA Degradation Products for Calibration Curve Preparation

.

The standard solution at concentration of neutral MEA degradation products of 1000 ppm in MEA 0.5 M (30 wt%) or DI water was prepared. The standard solution 1000 ppm was diluted to 500, 100, 50, 10 and 5 ppm as follow:

$$C_1 V_1 = C_2 V_2$$

Table C1 Dilution of 1000 ppm calibrating solution without MEA to other concentration

٥

Ø

	Conce	entratio	on of St	anda	rd Sol	ution
			(ppn	n)		
	5	10	50	100	500	1000
Total Volume (mL)	10	10	10	10	10	10
Volume of Neutral MEA degradation products without MEA 1000 ppm (mL)	0.05	0.10	0.50	1	5	10
Volume of DI water (mL)	9.95	9.90	9.50	9	5	0

 Table C2
 Dilution of 1000 ppm calibrating solution with MEA to other concentration

0

1.

	Conce	entratio	on of St	tanda	rd Sol	ution
			(ppn	n)		
	5	10	50	100	500	1000
Total Volume (mL)	10	10	10	10	10	10
Volume of Neutral MEA degradation products with MEA 1000 ppm (mL)	0.05	0.10	0.50	1	5	10
Volume of DI water (mL)	9.95	9.90	9.50	9	5	0
	l		J		1	L

 Table C3 GC-FID results of calibration curve of aqueous solution without MEA Run No. 1

11			5 nnm							
1 st		5 ppm.								
		2 nd		3 rd		Average Area				
ntion Time (min)	Peak Area	Retention Time (min)	Peak Area	Retention Time (min)	Peak Area					
17.71	10.03	17.70	10.37	17.71	10.50	10.30				
20.05	6.44	20.04	6.73	20.04	6.75	6.64				
22.94	4.67	22.95	4.66	22.94	4.40	4.58				
26.54	0.00	26.54	0.00	26.54	. 0.00	0.00				
	1 ntion Time (min) 17.71 20.05 22.94 26.54	Image: constraint of the second se	Image: Area (min) Peak Area (min) Retention Time (min) 17.71 10.03 17.70 20.05 6.44 20.04 22.94 4.67 22.95 26.54 0.00 26.54	Image: Arrow minimage Peak Area (min) Retention Time (min) Peak Area (min) 17.71 10.03 17.70 10.37 20.05 6.44 20.04 6.73 22.94 4.67 22.95 4.66 26.54 0.00 26.54 0.00	Image: Arrow (min) Peak Area (min) Retention Time (min) Peak Area (min) Retention Time (min) 17.71 10.03 17.70 10.37 17.71 20.05 6.44 20.04 6.73 20.04 22.94 4.67 22.95 4.66 22.94 26.54 0.00 26.54 0.00 26.54	Image: relation Time (min) Peak Area Retention Time (min) Retention Time (min) Retention Time (min) Peak Area Retention Time (min) Peak Area Peak Area				

Table C3	GC-FID results of calibration curve of aqueous solution without MEA Run No. 1 (cont)	

		Area Pea	ak at Concentration	in Aqueous S	olution without ME	А.				
			·····	10 ppm.			*			
Components	1 st		2 nd		3 rd					
	Retention Time (min)	Peak Area	Retention Time (min)	Peak Area	Retention Time (min)	Peak Area	Average Area			
imidazole	17.70	17.27	17.72	17.37	17.72	17.05	17.23			
N-acethylethanolamine	20.05	11.11	20.06	10.22	20.05	10.07	10.47			
2-oxazolidone	22.96	8.17	22.97	7.97	22.96	9.19	8.44			
N-(2-hydroxyethyl)-succinimide	26.54	1.81	26.57	1.66	26.57	• 1.46	1.64			
	Area Peak at Concentration in Aqueous Solution without MEA.									
	50 ppm.									
Components	1 st		2 nd		3 rd	Average				
	Retention Time (min)	Peak Area	Retention Time (min)	Peak Area	Retention Time (min)	Peak Area	Area			
imidazole	17.69	63.26	17.69	62.02	17.68	66.28	63.85			
N-acethylethanolamine	20.05	41.74	20.05	43.43	20.05	45.56	43.58			
2-oxazolidone	22.96	27.17	22.96	27.64	22.96	27.93	27.58			
N-(2-hydroxyethyl)-succinimide	26.57	4.52	26.56	5.40	26.57	6.15	5.36			

 Table C3
 GC-FID results of calibration curve of aqueous solution without MEA Run No. 1 (cont)

		Area Pea	ak at Concentration	in Aqueous S	olution without ME	A.	
				100 ppm.			
Components	1 st		2 nd		3 rd	A	
	Retention Time (min)	Peak Area	Retention Time (min)	Peak Area	Retention Time (min)	Peak Area	Average
imidazole	17.69	153.41	17.69	141.76	17.69	147.18	147.45
N-acethylethanolamine	20.07	121.22	20.07	124.52	20.06	128.60	124.78
2-oxazolidone	22.97	69.12	22.97	68.11	22.97	71.70	69.64
N-(2-hydroxyethyl)-succinimide	26.57	23.43	26.57	23.59	26.57	25.13	24.05
		Area Pea	ak at Concentration	in Aqueous S	olution without ME	A.	
				500 ppm.			
Components	1 st		2 nd		3 rd		
	Retention Time (min)	Peak Area	Retention Time (min)	Peak Area	Retention Time (min)	Peak Area	Average Area
imidazole	17.66	727.03	17.63	754.12	17.65	768.82	749.99
N-acethylethanolamine	20.05	702.72	20.04	723.37	20.04	703.09	709.72
2-oxazolidone	22.93	383.76	22.91	396.45	22.92	392.27	390.83
N-(2-hydroxyethyl)-succinimide	26.50	254.78	26.48	262.27	26.48	239.56	252.21

 Table C3
 GC-FID results of calibration curve of aqueous solution without MEA Run No. 1 (cont)

.

1

	Area Peak at Concentration in Aqueous Solution without MEA. 1000 ppm.									
Components	1 st		2 nd		3 rd					
	Retention Time (min)	Peak Area	Retention Time (min)	Peak Area	Retention Time (min)	Peak Area	Area			
imidazole	17.75	1571.61	17.73	1570.62	17.72	1566.75	1569.66			
N-acethylethanolamine	20.16	1433.07	20.15	1439.27	20.13	1413.74	1428.70			
2-oxazolidone	23.08	751.70	23.06	770.44	23.03	767.64	763.26			
N-(2-hydroxyethyl)-succinimide	26.69	590.78	26.67	535.25	26.62	575.30	567.11			

Figure C9 Calibration curve of the neutral MEA degradation products without MEA.

Ø

Table C4GC-FID results of calibration curve of aqueous solution without MEA Run No. 2

0

÷

		Area Pe	ak at Concentration	in Aqueous S	olution without ME	A.				
				5 ppm.						
Components	1 st		2 nd		3 rd		Average Area			
	Retention Time (min)	Peak Area	Retention Time (min)	Peak Area	Retention Time (min)	Peak Area				
imidazole	18.01	6.23	18.01	6.09	18.00	6.43	6.25			
N-acethylethanolamine	20.42	6.20	20.42	5.99	20.42	6.35	6.18			
2-oxazolidone	23.49	5.38	23.49	5.76	23.49	5.83	5.66			
N-(2-hydroxyethyl)-succinimide	27.30	6.79	27.30	6.65	27.30	6.46	6.63			
	Area Peak at Concentration in Aqueous Solution without MEA.									
		10 ppm.								
Components	1 st		2 nd		3 rd					
	Retention Time (min)	Peak Area	Retention Time (min)	Peak Area	Retention Time (min)	Peak Area	Average Area			
imidazole	18.01	9.54	18.01	9.83	18.00	9.51	9.63			
N-acethylethanolamine	20.45	12.76	20.43	12.77	20.42	12.65	12.72			
2-oxazolidone	23.50	10.82	23.50	10.63	23.49	10.58	10.67			
N-(2-hydroxyethyl)-succinimide	27.32	16.50	27.33	14.02	27.31	15.18	15.23			

Table C4	GC-FID	results of	calibration	curve of	aqueous	solution	without	MEA	Run No.	2 (cont)

٥

1.6

		Area Pea	ak at Concentration	in Aqueous S	olution without ME	A.					
		· · ·		50 ppm.		· <u>-</u> <u>.</u>					
Components	1 st	1 st			3 rd						
	Retention Time (min)	Peak Area	Retention Time (min)	Peak Area	Retention Time (min)	Peak Area	Area				
imidazole	18.01	64.06	18.01	63.60	18.00	60.47	62.71				
N-acethylethanolamine	20.44	68.47	20.44	71.36	20.43	68.41	69.41				
2-oxazolidone	23.52	52.94	23.52	53.00	23.51	50.39	52.11				
N-(2-hydroxyethyl)-succinimide	27.34	63.01	27.34	60.59	27.33	61.96	61.85				
	Area Peak at Concentration in Aqueous Solution without MEA.										
]	100 ppm.							
Components	1 st		2 nd		3 rd		4 1/1 1/2 //10				
	Retention Time (min)	Peak Area	Retention Time (min)	Peak Area	Retention Time (min)	Peak Area	Average				
imidazole	18.01	137.80	18.00	130.77	18.00	130.11	132.89				
N-acethylethanolamine	20.45	146.77	20.44	143.34	20.44	142.57	144.23				
2-oxazolidone	23.52	103.82	23.52	103.73	23.51	• 101.99	103.18				
N-(2-hydroxyethyl)-succinimide	27.36	125.44	27.34	130.99	27.34	121.98	126.13				

\$

X

 Table C4 GC-FID results of calibration curve of aqueous solution without MEA Run No. 2 (cont)

		Area Pea	ak at Concentration	in Aqueous S	olution without ME	Α.				
				500 ppm.						
Components	1 st		2 nd		3 rd	A				
	Retention Time (min)	Peak Area	Retention Time (min)	Peak Area	Retention Time (min)	Peak Area	Average Area			
imidazole	18.05	656.20	18.05	670.82	18.04	667.99	665.01			
N-acethylethanolamine	20.51	666.68	20.50	679.97	20.50	• 672.66	673.10			
2-oxazolidone	23.62	466.78	23.60	474.70	23.59	472.34	471.27			
N-(2-hydroxyethyl)-succinimide	27.46	581.47	27.45	588.89	27.43	586.61	585.66			
	Area Peak at Concentration in Aqueous Solution without MEA.									
	1000 ppm.									
Components	1 51		2 nd		3 rd					
	Retention Time (min)	Peak Area	Retention Time (min)	Peak Area	Retention Time (min)	Peak Area	Average Area			
imidazole	18.08	1451.35	18.09	1438.88	18.08	1462.78	1451.00			
N-acethylethanolamine	20.56	1407.96	20.57	1421.70	20.56	1427.28	1418.98			
2-oxazolidone	23.69	964.44	23.70	986.69	23.68	972.84	974.66			

Figure C10 Calibration curve of the neutral MEA degradation products without MEA.

 Table C5
 GC-FID results of calibration curve of aqueous solution with MEA Run No. 1

		Area P	eak at Concentratio	on in Aqueous	Solution with MEA	•	· · · · · · ·			
	5 ppm.									
Components	1 st		2 ^{na}		3 rd					
	Retention Time (min)	Peak Area	Retention Time (min)	Peak Area	Retention Time (min)	Peak Area	Average			
imidazole	17.73	12.26	17.73	11.00	17.74	11.31	11.52			
N-acethylethanolamine	20.13	8.28	20.13	8.15	20.13	8.57	8.33			
2-oxazolidone	22.97	8.24	22.96	8.71	22.97	8.15	8.36			
N-(2-hydroxyethyl)-succinimide	26.53	3.39	26.53	2.86	26.57	2.30	2.85			
		Area P	eak at Concentration	on in Aqueous	Solution with MEA		1			
				10 ppm.						
Components	1 ^{×i}		2 nd		3 rd		Average			
	Retention Time (min)	Peak Area	Retention Time (min)	Peak Area	Retention Time (min)	Peak Area	Area			
imidazole	17.73	22.47	17.79	22.24	17.73	21.04	21.92			
N-acethylethanolamine	20.13	19.07	20.16	17.89	20.13	18.24	18.40			
2-oxazolidone	22.97	17.45	23.00	18.69	22.97	17.36	17.83			
N-(2-hydroxyethyl)-succinimide	26.53	6.15	26.56	6.01	26.54	5.74	5.97			

Table C5	GC-FID	results of	calibration	curve of aqueou	is solution with	MEA	Run No. 1	(cont)	
----------	--------	------------	-------------	-----------------	------------------	-----	-----------	--------	--

	Area Peak at Concentration in Aqueous Solution with MEA.									
	50 ppm.									
Components	1 st		2 ^{na}		3 rd					
	Retention Time (min)	Peak Area	Retention Time (min)	Peak Area	Retention Time (min)	Peak Area	Average Area			
imidazole	17.74	74.37	17.73	76.82	17.73	72.98	74.72			
N-acethylethanolamine	20.15	75.18	20.14	79.65	20.13	75.46	76.76			
2-oxazolidone	22.98	50.51	22.98	49.86	22.97	47.27	49.22			
N-(2-hydroxyethyl)-succinimide	26.55	13.03	26.55	12.77	26.54	12.33	12.71			
		Area P	eak at Concentratio	on in Aqueous	Solution with MEA	•	_			
]	100 ppm.						
Components	1 st		2 nd	· · · · · · · · · · · · · · · · · · ·	3 rd		Auguro go			
	Retention Time (min)	Peak Area	Retention Time (min)	Peak Area	Retention Time (min)	Peak Area	Area			
imidazole	17.75	155.82	17.74	158.40	17.75	162.61	158.94			
N-acethylethanolamine	20.17	167.24	20.15	163.79	20.16	169.31	166.78			
2-oxazolidone	23.01	77.58	23.00	74.22	23.00	75.74	75.85			
N-(2-hydroxyethyl)-succinimide	26.58	29.88	26.56	28.43	26.57	25.27	27.86			

•

0

ŝ.

 Table C5
 GC-FID results of calibration curve of aqueous solution with MEA Run No. 1 (cont)

0

1.

.

		Area P	eak at Concentratio	on in Aqueous	Solution with MEA	•				
	500 ppm.									
Components	1 st	· · · · ·	2 nd		3 rd					
	Retention Time (min)	Peak Area	Retention Time (min)	Peak Area	Retention Time (min)	Peak Area	Average			
imidazole	17.77	636.14	17.77	638.12	17.77	652.34	642.20			
N-acethylethanolamine	20.19	687.95	20.20	690.61	20.20	697.01	691.86			
2-oxazolidone	23.03	308.40	23.03	305.76	23.04	308.55	307.57			
N-(2-hydroxyethyl)-succinimide	26.58	120.27	26.58	124.17	26.60	130.13	124.86			
	Area Peak at Concentration in Aqueous Solution with MEA.									
			1	000 ppm.						
Components	1**		2 nd		3 ^{ra}	· · · ·	1.10.00.00			
	Retention Time (min)	Peak Area	Retention Time (min)	Peak Area	Retention Time (min)	Peak Area	Average			
imidazole	17.78	1229.51	17.80	1217.21	17.81	1231.51	1226.07			
N-acethylethanolamine	20.21	1338.25	20.23	1314.80	20.23	1334.11	1329.05			
2-oxazolidone	23.05	590.51	23.06	585.41	23.07	584.06	586.66			
N-(2-hydroxyethyl)-succinimide	26.59	252.78	26.60	212.23	26.61	253.84	239.61			

117

Figure C11 Calibration curve of the neutral MEA degradation products with MEA.

0

1

. .

118

Appendix D Extraction Neutral MEA Degradation Products

D1. Neutral MEA Degradation Extraction Products Preparation

ŕ

 Table D1
 1 M of average extractant-OH preparation for neutral MEA degradation products 1000 ppm in aqueous solution with diluent

 alone. Volume ratio of diluents to neutral MEA degradation products aqueous solution is 1:1
 •

Extraction Neutral MEA Degradation Products with Diluent Alone at 25 °C								
Volume of Extractant-OH (mL)	Neutral MEA Degradation	Volume of Neutral MEA Degradation	Total Volume					
		(mL)	(mL)					
5	imidazole	5	10					
5	N-acethylethanolamine	5	. 10					
5	2-oxazolidone	5	10					
5	N-(2-hydroxyethyl)-succinimide	5	10					

Table D21 M of average extractant-OH preparation for neutral MEA degradation products 1000 ppm in aqueous solution withoutMEA. Volume ratio of extracntant-OH in diluents to neutral MEA degradation products aqueous solution is 1:1

.

Extraction Neutral MEA Degradation Products without MEA at 25 °C, 40 °C and 60 °C									
Volume of Extractant-OH (mL)	Neutral MEA Degradation	Volume of Neutral MEA Degradation (mL)	n Total Volume (mL)						
5	imidazole	5	10						
5	N-acethylethanolamine	5	10						
5	2-oxazolidone	5	10						
5	N-(2-hydroxyethyl)-succinimide	5	10						

.

Table D31 M of average extractant-OH preparation for neutral MEA degradation products 1000 ppm in aqueous solution with MEA.Volume ratio of extracntant-OH in diluents to neutral MEA degradation products aqueous solution is 1:1

Extraction Neutral MEA Degradation Products with MEA at 25 °C, 40 °C and 60 °C									
Volume of Extractant-OH (mL)	Neutral MEA Degradation	Volume of Neutral MEA Degradation (mL)	Total Volume (mL)						
5	imidazole	5	10						
5	N-acethylethanolamine	5	10						
5	2-oxazolidone	5	10						
5	N-(2-hydroxyethyl)-succinimide	5	10						

.

121

 Table D4
 1 M of average extractant-OH preparation for neutral MEA degradation products 1000 ppm in aqueous solution with CO2

 loading. Volume ratio of extracntant-OH in diluents to neutral MEA degradation products aqueous solution is 1:1

Extraction Neutral MEA Degradation Products with CO2 Loading 0.05, 0.10 and 0.30 (mol/mol amine) at 25 °C									
Volume of Extractant-OH (mL)	Neutral MEA Degradation	Volume of Neutral MEA Degradation (mL)	Total Volume (mL)						
5	imidazole	5	10						
5	N-acethylethanolamine	5	10						
5	2-oxazolidone	5	10						
5	N-(2-hydroxyethyl)-succinimide	5	10						

¢

٥

17-1

122

D2. Extraction of Neutral MEA Degradation Products Solution without MEA

\$

0

Extraction efficiency was calculated based on the neutral MEA degradation products concentration before extracted (1000 ppm) and remaining the neutral MEA degradation products concentration in aqueous solution as follow:

% Extraction efficiency = $\frac{\text{Remaining concentration of neutral MEA degradation after extraction}}{\text{Concentration of neutral MEA degradation before extraction}} \times 100$

% Extraction efficiency = $\frac{\text{Concentration of neutral MEA degradation before extraction} - Extraction of neutral MEA degradation}{\text{Concentration of neutral MEA degradation before extraction}} \times 100$

Extraction of Neutral MEA Degradation Products Solution with Diluent Alone

 Table D5
 Concentration of neutral MEA degradation products in aqueous solution before extraction with diluent alone

		Before Extraction of Neutral MEA Degradation Products with Diluent Alone					
Components	$\mathbf{Y} = \mathbf{a}\mathbf{X} + \mathbf{b}$	Peak Area	Concentration				
		I Car Alca	(ppm)				
imidazole	y = 0.6387x + 5.1529	1569.66	1007.69				
N-acethylethanolamine	y = 0.6955x + 6.971	1428.70	1000.63				
2-oxazolidone	y = 1.2999x + 3.0709	763.26	995.23				
N-(2-hydroxyethyl)-succinimide	y = 1.8036x	567.11	1022.84				

<u>Note</u> X = Peak Area, Y = Concentration

1

1

.

 Table D6
 GC-FID Analysis of the extraction of neutral MEA degradation products with diluent alone

Components	Extraction of Neutral MEA Degradation Products with Diluent Alone 1 st 2 nd 3 rd							
	Retention Time (min)	Peak Area	Retention Time (min)	Peak Area	Retention Time (min)	Peak Area		
imidazole	17.69	911.77	17.67	901.31	17.67	946.25		
N-acethylethanolamine	20.11	1380.54	20.09	1344.38	20.08	1364.94		
2-oxazolidone	23.00	763.45	22.97	724.18	22.96	735.69		
N-(2-hydroxyethyl)-succinimide	26.57	499.05	26.53	455.69	26.52	467.71		

 Table D7
 Remain concentration of neutral MEA degradation products in aqueous solution after extraction with diluent alone

Components		Extraction of Neutral MEA Degradation Products with Diluent Alone							
	$\mathbf{V} = \mathbf{a}\mathbf{Y} + \mathbf{b}$	1 st		2 nd		3 rd			
	1 - 4A + 0	Peak Area	Concentration (ppm)	Peak Area	Concentration (ppm)	Peak Area	Concentration (ppm)		
imidazole	y = 0.6387x + 5.1529	911.77	587.50	901.31	580.82	946.25	609.52		
N-acethylethanolamine	y = 0.6955x + 6.971	1380.54	967.14	1344.38	941.99	1364.94	956.29		
2-oxazolidone	y = 1.2999x + 3.0709	763.45	995.47	724.18	944.43	735.69	959.39		
N-(2-hydroxyethyl)-succinimide	y = 1.8036x	499.05	900.09	455.69	821.89	467.71	843.57		

 Table D8
 Calculation extraction efficiency of neutral MEA degradation products with diluent alone

1

Components	% Extraction Efficiency of Neutral MEA Degradation Products with Diluent Alone								
	1 st Extraction	2 nd Extraction	3 rd Extraction	Average Extraction Efficiency	SD	Avg ±SD			
imidazole	41.70	42.36	39.51	41.19	1.49	41.19±1.49			
N-acethylethanolamine	3.35	5.86	4.43	4.55	1.26	4.55±1.26			
2-oxazolidone	-0.02	5.10	3.60	2.89	2.64	2.89±2.64			
N-(2-hydroxyethyl)-succinimide	12.00	19.65	17.53	16.39	3.95	16.39±3.95			

•

Extraction of Neutral MEA Degradation Products Solution without MEA at 25, 40 and 60°C

 Table D9
 Concentration of neutral MEA degradation products in aqueous solution before extraction without MEA

Components		Before Extraction of Neutral MEA Degradation Products without MEA				
	$\mathbf{Y} = \mathbf{a}\mathbf{X} + \mathbf{b}$	Pools Arno	Concentration			
		I CAR AICA	(ppm)			
imidazole	y = 0.6926x + 8.8387	1451.00	1013.80			
N-acethylethanolamine	y = 0.7095x + 2.2352	1418.98	1009.00			
2-oxazolidone	y = 1.033x - 0.8573	974.66	1005.97			
N-(2-hydroxyethyl)-succinimide	y = 0.7584x	1351.12	1024.69			

<u>Note</u> X = Peak Area, Y = Concentration

 Table D10
 GC-FID Analysis of the extraction of neutral MEA degradation products without MEA at 25 °C

0

1

Components	Extraction of Neutral MEA Degradation Products without MEA at 25 °C								
	Retention Time (min)	Peak Area	Retention Time (min)	Peak Area	Retention Time (min)	Peak Area			
imidazole	17.49	885.25	17.48	871.82	17.49	849.48			
N-acethylethanolamine	20.27	1050.40	20.26	1007.03	20.28	1012.27			
2-oxazolidone	23.22	150.57	23.20	158.54	23.23	158.33			
N-(2-hydroxyethyl)-succinimide	26.93	7.82	26.91	7.67	26.95	7.20			

Table D11 Remain concentration of neutral MEA degradation products in aqueous solution after extraction without MEA at 25 °C

		Extraction of Neutral MEA Degradation Products without MEA at 25 °C							
Components	$\mathbf{V} = \mathbf{a}\mathbf{Y} + \mathbf{b}$	1 st		2 nd		3 rd			
	1 - 4A + 0	Peak Area	Concentration (ppm)	Peak Area	Concentration (ppm)	Peak Area	Concentration (ppm)		
imidazole	y = 0.6926x + 8.8387	885.25	621.96	871.82	612.66	849.48	597.19		
N-acethylethanolamine	y = 0.7095x + 2.2352	1050.40	747.50	1007.03	716.72	1012.27	720.44		
2-oxazolidone	y = 1.033x - 0.8573	150.57	154.68	158.54	162.91	158.33	162.69		
N-(2-hydroxyethyl)-succinimide	y = 0.7584x	7.82	5.93	7.67	5.81	7.20	5.46		

Table D12 Calculation extraction efficiency of neutral MEA degradation products without MEA at 25 °C

0

1

Components	% Extraction Efficiency of Neutral MEA Degradation Products without MEA at 25 °C								
	1 st Extraction	2 nd Extraction	3 rd Extraction	Average Extraction Efficiency	SD	Avg ±SD			
imidazole	38.65	39.57	41.09	39.77	1.23	39.77±1.12			
N-acethylethanolamine	25.92	28.97	28.60	27.83	1.66	27.83±1.66			
2-oxazolidone	84.62	83.81	83.83	84.09	0.47	84.09±0.47			
N-(2-hydroxyethyl)-succinimide	99.42	99.43	99.47	99.44	0.02	99.44±0.02			

 Table D13
 GC-FID Analysis of the extraction of neutral MEA degradation products without MEA at 40 °C

Components	Extraction of Neutral MEA Degradation Products without MEA at 40 °C								
	1 st		2 nd	_	3 rd				
	Retention Time (min)	Peak Area	Retention Time (min)	Peak Area	Retention Time (min)	Peak Area			
imidazole	17.48	857.37	17.47	851.05	17.48	841.69			
N-acethylethanolamine	20.24	1011.82	20.21	1029.72	20.23	1016.11			
2-oxazolidone	23.37	156.09	23.35	154.88	23.37	151.97			
N-(2-hydroxyethyl)-succinimide	26.87	5.31	26.80	6.39	26.85	5.26			

 Table D14
 Remain concentration of neutral MEA degradation products in aqueous solution after extraction without MEA at 40 °C

Components		Extraction of Neutral MEA Degradation Products without MEA at 40 °C							
	$\mathbf{V} = \mathbf{a}\mathbf{X} + \mathbf{b}$	1 st		2 nd		3 rd			
	1 - 4.4 + 0	Peak Area	Concentration (ppm)	Peak Area	Concentration (ppm)	Peak Area	Concentration (ppm)		
imidazole	y = 0.6926x + 8.8387	857.37	602.66	851.05	598.28	841.69	591.79		
N-acethylethanolamine	y = 0.7095x + 2.2352	1011.82	720.12	1029.72	732.82	1016.11	723.17		
2-oxazolidone	y = 1.033x - 0.8573	156.09	160.39	154.88	159.13	151.97	156.13		
N-(2-hydroxyethyl)-succinimide	$\mathbf{y} = 0.7584\mathbf{x}$	5.31	4.03	6.39	4.85	5.26	3.99		

 Table D15
 Calculation extraction efficiency of neutral MEA degradation products without MEA at 40°C

Components	% Extraction Efficiency of Neutral MEA Degradation Products without MEA at 40°C									
Components	1 st Extraction	2 nd Extraction	3 rd Extraction	Average Extraction Efficiency	SD	Avg ±SD				
imidazole	40.56	40.99	41.63	41.06	0.54	41.06±0.54				
N-acethylethanolamine	28.63	27.37	28.33	28.11	0.66	28.11±0.66				
2-oxazolidone	84.06	84.18	84.48	84.24	0.22	84.24±0.22				
N-(2-hydroxyethyl)-succinimide	99.61	99.53	99.61	99.58	0.05	99.58±0.05				

130

Table D16 GC-FID Analysis of the extraction of neutral MEA degradation products without MEA at 60 °C

	Extraction of Neutral MEA Degradation Products without MEA at 60 °C								
Components	1 st		2 nd		3 rd				
Componenti	Retention Time (min)	Peak Arca	Retention Time (min)	Peak Area	Retention Time (min)	Peak Area			
imidazole	17.44	520.12	17.45	529.17	17.47	555.36			
N-acethylethanolamine	20.16	687.32	20.17	681.16	20.19	.660.21			
2-oxazolidone	23.30	27.16	23.10	28.77	23.34	24.18			
N-(2-hydroxyethyl)-succinimide	26.69	4.71	27.06	4.83	27.16	4.66			

Table D17 Remain concentration of neutral MEA degradation products in aqueous solution after extraction without MEA at 60 °C

Components		Extraction of Neutral MEA Degradation Products without MEA at 60 °C							
	$\mathbf{V} = \mathbf{a}\mathbf{Y} + \mathbf{b}$	1 st		2 nd		3 rd			
	1 - 4A + D	Peak Area	Concentration (ppm)	Peak Area	Concentration (ppm)	Peak Area	Concentration (ppm)		
imidazole	y = 0.6926x + 8.8387	520.12	369.07	529.17	375.34	555.36	393.48		
N-acethylethanolamine	y = 0.7095x + 2.2352	687.32	489.89	681.16	485.52	660.21	470.66		
2-oxazolidone	y = 1.033x - 0.8573	27.16	27.20	28.77	28.86	24.18	24.12		
N-(2-hydroxyethyl)-succinimide	y = 0.7584x	4.71	3.57	4.83	3.66	4.66	3.53		

131

 Table D18
 Calculation extraction efficiency of neutral MEA degradation products without MEA at 60 °C

Components	% Extraction Efficiency of Neutral MEA Degradation Products without MEA at 60 °C								
Components	1 st Extraction 2 nd Extraction 3 rd Extraction		Average Extraction Efficiency	SD	Avg ±SD				
imidazole	63.60	62.98	61.19	62.59	1.25	62.59±1.25			
N-acethylethanolamine	51.45	51.88	53.35	52.23	1.00	52.23±1.00			
2-oxazolidone	97.30	97.13	97.60	97.34	0.24	97.34±0.24			
N-(2-hydroxyethyl)-succinimide	99.65	99.64	99.66	99.65	0.01	99.65±0.01			

Extraction of Neutral MEA Degradation Products Solution with MEA at 25 °C, 40 °C and 60 °C

 Table D19
 Concentration of neutral MEA degradation products in aqueous solution before extraction with MEA

Components	V = aY + b	Before Extraction of Neutral MEA Degradation Products with MEA				
	1 - 4 - 0	Peak Area	Concentration (ppm)			
imidazole	y = 0.8203x - 14.811	1226.07	990.94			
N-acethylethanolamine	y = 0.7516x - 8.6533	1329.05	990.26			
2-oxazolidone	y = 1.7254x - 20.889	586.66	991.34			
N-(2-hydroxyethyl)-succinimide	y = 4.1302x	239.61	989.66			

<u>Note</u> X = Peak Area, Y = Concentration

 Table D20
 GC-FID Analysis of the extraction of neutral MEA degradation products with MEA at 25 °C

0

117

				· · · · · · · · · · · · · · · · · · ·					
	Extraction of Neutral MEA Degradation Products with MEA at 25 °C								
Components	1 st		2 nd		3 rd	<u>3</u> rd			
	Retention Time (min)	Peak Area	Retention Time (min)	Peak Area	Retention Time (min)	Peak Area			
imidazole	17.19	1038.64	17.18	1035.64	17.17	1008.72			
N-acethylethanolamine	20.21	1077.97	20.23	1064.96	20.23	1046.65			
2-oxazolidone	23.03	264.81	23.05	252.66	23.05	261.27			
N-(2-hydroxyethyl)-succinimide	26.17	61.29	26.19	64.63	26.19	73.09			

Table D21 Remain concentration of neutral MEA degradation products in aqueous solution after extraction with MEA at 25 °C

Components	Y = aX + b	Extraction of Neutral MEA Degradation Products with MEA at 25 °C					
		1 st		2 nd		3 rd	
		Peak Area	Concentration (ppm)	Peak Area	Concentration (ppm)	Peak Area	Concentration (ppm)
imidazole	y = 0.8203x - 14.811	1038.64	837.19	1035.64	834.72	1008.72	812.64
N-acethylethanolamine	y = 0.7516x - 8.6533	1077.97	801.55	1064.96	791.77	1046.65	778.01
2-oxazolidone	y = 1.7254x - 20.889	264.81	436.01	252.66	415.06	261.27	429.91
N-(2-hydroxyethyl)-succinimide	y = 4.1302x	61.29	253.16	64.63	266.93	73.09	301.90
Table D22
 Calculation extraction efficiency of neutral MEA degradation products with MEA at 25 °C

0

£

Components	% Extraction Efficiency of Neutral MEA Degradation Products with MEA at 25 °C								
	1 st Extraction	2 nd Extraction	3 rd Extraction	Average Extraction Efficiency	SD	Avg ±SD			
imidazole	15.52	15.76	17.99	16.42	1.36	16.42±1.36			
N-acethylethanolamine	19.06	20.04	21.43	20.18	1.19	20.18±1.19			
2-oxazolidone	56.02	58.13	56.63	56.93	1.09	56.93±1.09			
N-(2-hydroxyethyl)-succinimide	74.42	73.03	69.49	72.31	2.54	72.31±2.54			
	6	· · · · · · · · · · · · · · · · · · ·	L	L	J	L			

 Table D23
 GC-FID Analysis of the extraction of neutral MEA degradation products with MEA at 40 °C

	Ext	raction of Neu	tral MEA Degradat	ion Products v	vith MEA at 40 °C	
Components	1 st		2 nd		3 rd	
	Retention Time (min)	Peak Area	Retention Time (min)	Peak Area	Retention Time (min)	Peak Area
imidazole	17.16	866.84	17.16	893.82	17.15	870.36
N-acethylethanolamine	20.23	980.79	20.24	985.53	20.23	916.46
2-oxazolidone	23.05	169.43	23.06	177.05	23.05 •	170.03
N-(2-hydroxyethyl)-succinimide	26.20	63.56	26.23	48.78	26.22	48.78

0

Table D24 Remain concentration of neutral MEA degradation products in aqueous solution after extraction with MEA at 40 °C

Components		Extraction of Neutral MEA Degradation Products with MEA at 40 °C								
	$\mathbf{V} = \mathbf{a}\mathbf{Y} + \mathbf{b}$	1 st		2 nd		3 rd				
	1 - 4A + 0	Peak Area	Concentration (ppm)	Peak Area	Concentration (ppm)	Peak Area	Concentration (ppm)			
imidazole	y = 0.8203x - 14.811	866.84	696.26	893.82	718.39	870.36	699.15			
N-acethylethanolamine	y = 0.7516x - 8.6533	980.79	728.51	985.53	732.07	916.46	680.16			
2-oxazolidone	y = 1.7254x - 20.889	169.43	271.44	177.05	284.59	170.03	272.49			
N-(2-hydroxyethyl)-succinimide	y = 4.1302x	50.56	208.82	48.78	201.47	48.78	201.46			

 Table D25
 Calculation extraction efficiency of neutral MEA degradation products with MEA at 40 °C

Components	% Extraction Efficiency of Neutral MEA Degradation Products with MEA at 40 °C								
	1 st Extraction	2 nd Extraction	3 rd Extraction	Average Extraction Efficiency	SD	Avg ±SD			
imidazole	29.74	27.50	29.45	28.90	1.21	28.90±1.21			
N-acethylethanolamine	26.43	26.07	31.32	27.94	2.93	27.94±2.93			
2-oxazolidone	72.62	71.29	72.51	72.14	0.74	72.14±0.74			
N-(2-hydroxyethyl)-succinimide	78.90	79.64	79.64	79.40	0.43	79.40±0.43			

 Table D26
 GC-FID Analysis of the extraction of neutral MEA degradation products with MEA at 60 °C

Components	Extraction of Neutral MEA Degradation Products with MEA at 60 °C								
	l st		2 nd		3 rd				
	Retention Time (min)	Peak Area	Retention Time (min)	Peak Area	Retention Time (min)	Peak Area			
imidazole	17.15	676.31	17.15	676.01	17.13	681.41			
N-acethylethanolamine	20.21	720.19	20.21	706.58	20.24	716.89			
2-oxazolidone	23.03	132.85	23.03	117.43	23.06	139.83			
N-(2-hydroxyethyl)-succinimide	26.20	38.98	26.21	34.65	26.25	45.84			

 Table D27
 Remain concentration of neutral MEA degradation products in aqueous solution after extraction with MEA at 60 °C

Components		Extraction of Neutral MEA Degradation Products with MEA at 60 °C							
	$\mathbf{V} = \mathbf{a}\mathbf{X} + \mathbf{b}$	1 st		2 nd		3 rd			
	$1 - a \Lambda + 0$	Peak Area	Concentration (ppm)	Peak Area	Concentration (ppm)	Peak Area	Concentration (ppm)		
imidazole	y = 0.8203x - 14.811	676.31	539.97	676.01	539.72	681.41	544.15		
N-acethylethanolamine	y = 0.7516x - 8.6533	720.19	532.65	706.58	522.42	716.89	530.16		
2-oxazolidone	y = 1.7254x - 20.889	132.85	208.33	117.43	181.72	139.83	220.37		
N-(2-hydroxyethyl)-succinimide	y = 4.1302x	38.98	161.00	34.65	143.13	45.84	189.34		

Components	% Extraction Efficiency of Neutral MEA Degradation Products with MEA at 60 °C								
	1 st Extraction	2 nd Extraction	3 rd Extraction	Average Extraction Efficiency	SD	Avg ±SD			
imidazole	45.51	45.53	45.09	45.38	0.25	45.38±0.25			
N-acethylethanolamine	46.21	47.24	46.46	46.64	0.54	46.64±0.54			
2-oxazolidone	78.98	81.67	77.77	79.47	1.99	79.47±1.99			
N-(2-hydroxyethyl)-succinimide	83.73	85.54	80.87	83.38	2.35	83.38±2.35			

Table D28Calculation extraction efficiency of neutral MEA degradation products with MEA at 60 °C

[0, 1]

Extraction of Neutral MEA Degradation Products Solution with CO₂ loading 0.05, 0.10 and 0.30 kmol/m³ at 25 °C

Table D29 Concentration of neutral MEA degradation products in aqueous solution before extraction with CO₂ loading at 25 °C

Components	Y = aX + b	Before Extraction of Neutral MEA Degradation Products with CO ₂ Loading 0.05, 0.10 and 0.30 kmol/m ³ at 25 °C				
		Peak Area	Concentration (ppm)			
imidazole	y = 0.8203x - 14.811	1226.07	990.94			
N-acethylethanolamine	y = 0.7516x - 8.6533	1329.05	990.26			
2-oxazolidone	y = 1.7254x - 20.889	586.66	991.34			
N-(2-hydroxyethyl)-succinimide	y = 4.1302x	239.61	989.66			

<u>Note</u> X = Peak Area, Y = Concentration

٥

Table D30 GC-FID Analysis of the extraction of neutral MEA degradation products with CO₂ loading 0.05 kmol/m³ at 25 °C

.

¢

0

1

	Extraction of Neutral MEA Degradation Products with CO ₂ Loading 0.05 kmol/m ³ at 25 °C								
Components	1 st		2 nd		3 rd				
	Retention Time (min)	Peak Area	Retention Time (min)	Peak Area	Retention Time (min)	Peak Area			
imidazole	17.83	1079.70	17.82	1092.11	17.77	1075.74			
N-acethylethanolamine	20.24	1092.70	20.24	1094.56	20.18	1088.25			
2-oxazolidone	23.06	374.05	23.05	352.61	23.02	366.03			
N-(2-hydroxyethyl)-succinimide	26.56	101.98	26.55	113.87	26.56	116.84			

140

Table D31Remain concentration of neutral MEA degradation products in aqueous solution after extraction with CO_2 loading0.05 kmol/m³ at 25 °C

0

F.

		Extraction of Neutral MEA Degradation Products with CO ₂ Loading 0.05 kmol/m ³ at 25 °C								
Components	$\mathbf{V} = \mathbf{a}\mathbf{X} + \mathbf{b}$	1 st		2 nd		3 rd				
	\$	Peak Area	Concentration	Pcak Area	Concentration	Peak Area	Concentration			
			(ppm)		(ppm)		(ppm)			
imidazole	y = 0.8203x - 14.811	1079.70	870.86	1092.11	881.04	1075.74	867.62			
N-acethylethanolamine	y = 0.7516x - 8.6533	1092.70	812.62	1094.56	814.02	1088.25	809.28			
2-oxazolidone	y = 1.7254x - 20.889	374.05	624.49	352.61	587.50	366.03	610.66			
N-(2-hydroxyethyl)-succinimide	y = 4.1302x	101.98	421.18	113.87	470.30	116.84	482.57			

Table D32 Calculation extraction efficiency of neutral MEA degradation products with CO₂ loading 0.05 kmol/m³ at 25 °C

Components	% Extraction Efficiency of Neutral MEA Degradation Products with CO2 Loading 0.05 kmol/m ³ at 25 °C								
	1 st Extraction	2 nd Extraction	3 rd Extraction	Average Extraction Efficiency	. SD	Avg ±SD			
imidazole	12.12	11.09	12.44	11.88	0.71	11.88±0.71			
N-acethylethanolamine	17.94	17.80	18.28	18.00	0.25	18.00±0.25			
2-oxazolidone	37.01	40.74	38.40	38.71	1.89	38.71±1.89			
N-(2-hydroxyethyl)-succinimide	57.44	52.48	51.24	53.72	3.28	53.72±3.28			

141

 Table D33
 GC-FID Analysis of the extraction of neutral MEA degradation products with CO2 loading 0.10 kmol/m³ at 25 °C

	Extraction of Neutral MEA Degradation Products with CO ₂ Loading 0.10 kmol/m ³ at 25 °C								
Components	1 st		2 nd		3 rd				
Components	Retention Time (min)	Peak Area	Retention Time (min)	Peak Area	Retention Time (min)	Peak Area			
imidazole	17.79	1092.66	17.76	1111.50	17.76	1098.96			
N-acethylethanolamine	20.21	1138.26	20.17	1148.26	20.16	1159.02			
2-oxazolidone	23.05	422.05	23.01	416.61	23.01	427.03			
N-(2-hydroxyethyl)-succinimide	26.60	135.18	26.55	148.25	26.55	142.12			

.

ą

Table D34 Remain concentration of neutral MEA degradation products in aqueous solution after extraction with CO_2 loading 0.10 kmol/m³ at 25 °C

		Extraction of Neutral MEA Degradation Products with CO2 Loading 0.10 kmol/m ³ at 25 °C							
Componente	$\mathbf{V} = \mathbf{a}\mathbf{V} + \mathbf{b}$	1 st		2 nd		3 rd			
Components	1 - aA + U	Peak Area	Concentration (ppm)	Peak Area	Concentration (ppm)	Peak Area	Concentration (ppm)		
imidazole	y = 0.8203x - 14.811	1092.66	881.50	1111.50	896.95	1098.96	886.66		
N-acethylethanolamine	y = 0.7516x - 8.6533	1138.26	846.86	1148.26	854.38	1159.02	862.47		
2-oxazolidone	y = 1.7254x - 20.889	422.05	707.31	416.61	697.92	427.03	715.91		
N-(2-hydroxyethyl)-succinimide	y = 4.1302x	135.18	558.32	148.25	612.29	142.12	586.99		

Table D35Calculation extraction efficiency of neutral MEA degradation products with CO_2 loading 0.10 kmol/m³ at 25 °C

.

.

Components	% Extraction Efficiency of Neutral MEA Degradation Products with CO ₂ Loading 0.10 kmol/m ³ at 25 °C								
Components	1 st Extraction	2 nd Extraction	3 rd Extraction	Average Extraction Efficiency	SD	Avg ±SD			
imidazole	11.04	9.48	10.52	10.35	0.79	10.35±0.79			
N-acethylethanolamine	14.48	13.72	12.91	13.70	0.79	13.70±0.79			
2-oxazolidone	28.65	29.60	27.78	28.68	0.91	28.68±0.91			
N-(2-hydroxyethyl)-succinimide	43.58	38.13	40.69	40.80	2.73	40.80±2.73			

Table D36 GC-FID Analysis of the extraction of neutral MEA degradation products with CO₂ loading 0.30 kmol/m³ at 25 °C

...

0

	Extraction of Neutral MEA Degradation Products with CO ₂ Loading 0.30 kmol/m ³ at 25 °C							
Components	1 st		2 nd		3 rd			
	Retention Time (min)	Peak Area	Retention Time (min)	Pcak Area	Retention Time (min)	Peak Area		
imidazole	17.79	1112.66	17.76	1131.50	17.76	1158.96		
N-acethylethanolamine	20.21	1198.26	20.17	1179.26	20.16	1191.02		
2-oxazolidone	23.05	508.47	23.01	502.49	23.01	516.41		
N-(2-hydroxyethyl)-succinimide	26.60	175.18	26.55	195.25	26.55	176.12		

Table D37Remain concentration of neutral MEA degradation products in aqueous solution after extraction with CO2 loading 0.30kmol/m³ at 25 °C

Components	Y = aX + b	Extraction of Neutral MEA D		Degradation Products with CO ₂ I		Loading 0.30 kmol/m ³ at 25 °C	
		Peak Area	Concentration (ppm)	Peak Area	Concentration (ppm)	Peak Arca	Concentration (ppm)
imidazole	y = 0.8203x - 14.811	1112.66	897.91	1131.50	913.35	1158.96	935.88
N-acethylethanolamine	y = 0.7516x - 8.6533	1198.26	891.96	1179.26	877.68	1191.02	886.52
2-oxazolidone	y = 1.7254x - 20.889	508.47	942.70	502.49	932.37	516.41	956.39
N-(2-hydroxyethyl)-succinimide	y = 4.1302x	175.18	723.53	195.25	806.41	176.12	727.41

Table D38 Calculation extraction efficiency of neutral MEA degradation products with CO₂ loading 0.30 kmol/m³ at 25 °C

\$

0

1

Componente	% Extraction Efficiency of Neutral MEA Degradation Products with CO2 Loading 0.30 kmol/m ³ at 25 °C							
Components	1 st Extraction	2 nd Extraction	3 rd Extraction	Average Extraction Efficiency	SD	Avg ±SD		
imidazole	9.39	7.83	5.56	7.59	1.93	7.59±1.93		
N-acethylethanolamine	9.93	11.37	10.48	10.59	0.73	10.59±0.73		
2-oxazolidone	13.61	14.65	12.23	13.50	1.22	13.50±1.22		
N-(2-hydroxyethyl)-succinimide	26.89	18.52	26.50	23.97	4.73	23.97±4.73		

Appendix E The Neutral MEA Degradation Products Equilibrium Extraction

The neutral MEA degradation products equilibrium extraction was investigated under constant of distribution coefficient or partition coefficient and equilibrium constant (weak acid-amine). First of all, the constants of equilibrium extraction must be determined by undissociation molecule concentration in (ppm) remains in aqueous phase and organic phase.

The concentration of undissociation in organic phase as follow

$$[HA]_{Initial} - [HA]_{aq} = [HA]_{org}$$
E1

Where $[HA]_{initial}$ is represented the initial concentration of undissociation (ppm) before extraction, $[HA]_{aq}$ and $[HA]_{org}$ is concentration of undissociation (ppm) in aqueous phase and organic phase after extraction.

 Table E1 Calculation concentration of neutral MEA undissociation (ppm) in organic

 phase with diluent alone

÷

	Concentration of Undissociation at 25 °C						
Components	[HA]Initial	[HA] _{aq}	[HA] _{org}				
	(ppm)	(ppm)	(ppm)				
imidazole	1007.69	592.61	415.08				
N-acethylethanolamine	1000.63	955.14	45.49				
2-oxazolidone	995.23	966.43	28.80				
N-(2-hydroxyethyl)-succinimide	1022.84	855.18	167.66				

o

 Table E2
 Calculation concentration of neutral MEA undissociation (ppm) in organic

 phase without MEA
 •

	Concentration of Undissociation at 25 °C					
Components	[HA]Initial	[HA] _{aq}	[HA] _{org}			
	(ppm)	(ppm)	(ppm)			
imidazole	1013.8	610.60	403.20			
N-acethylethanolamine	1009	728.22	280.78			
2-oxazolidone	1005.97	160.09	845.88			
N-(2-hydroxyethyl)-succinimide	1024.69	5.74	1018.95			
	Concentrat	ion of Unc	lissociation at 40 °C			
Components	[HA]Initial	[HA] _{aq}	[HA] _{org}			
	(ppm)	(ppm)	(ppm)			
imidazole	1013.8	597.57	416.23			
N-acethylethanolamine	1009	725.37	283.63			
2-oxazolidone	1005.97	158.55	847.42			
N-(2-hydroxyethyl)-succinimide	1024.69	4.29	1020.40			
	Concentrat	ion of Unc	lissociation at 60 °C			
^{co} Components	[HA]Initial	[HA] _{aq}	[HA] _{org}			
	(ppm)	(ppm)	(ppm)			
imidazole	1013.8	379.30	634.50			
N-acethylethanolamine	1009	482.02	526.98			
2-oxazolidone	1005.97	26.73	979.24			
N-(2-hydroxyethyl)-succinimide	1024.69	3.59	1021.10			

-

	Concentration of Undissociation at 25 °C					
Components	[HA]Initial	[HA] _{aq}	[HA] _{org}			
	(ppm)	(ppm)	(ppm)			
imidazole	990.94	828.18	162.76			
N-acethylethanolamine	990.26	790.44	199.82			
2-oxazolidone	991.34	426.99	564.35			
N-(2-hydroxyethyl)-succinimide	989.66	273.99	715.67			
	Concentrat	ion of Und	lissociation at 40 °C			
Components	[HA]Initial	[HA] _{aq}	[HA] _{org}			
	(ppm)	(ppm)	(ppm)			
imidazole	990.94	704.60	286.34			
N-acethylethanolamine	990.26	713.58	276.68			
2-oxazolidone	991.34	276.17	715.17			
N-(2-hydroxyethyl)-succinimide	989.66	203.92	785.74			
	Concentrat	ion of Und	issociation at 60 °C			
Components	[HA] _{Initial}	[HA] _{aq}	[HA] _{org}			
	(ppm)	(ppm)	(ppm)			
imidazole	990.94	541.28	449.66			
N-acethylethanolamine	990.26	528.41	461.85			
2-oxazolidone	991.34	203.47	787.87			
N-(2-hydroxyethyl)-succinimide	989.66	164.49	825.17			

 Table E3
 Calculation concentration of neutral MEA undissociation (ppm) in organic

 phase with MEA
 •

	Concentration of Undissociation at				
Components	0.05	i (mol/mol	amine)		
Components	[HA] _{Initial}	[HA] _{aq}	[HA] _{org}		
	(ppm)	(ppm)	(ppm)		
imidazole	990.94	873.18	117.76		
N-acethylethanolamine	990.26	811.97	178.29		
2-oxazolidone	991.34	607.55	383.79		
N-(2-hydroxyethyl)-succinimide	989.66	458.02	531.64		
	Concentra	tion of Un	dissociation at		
Components	0.10	(mol/mol	amine)		
components	[HA]Initial	[HA]aq	[HA] _{org}		
	(ppm)	(ppm)	(ppm)		
imidazole	990.94	888.37	102.57		
N-acethylethanolamine	990.26	854.57	135.69		
2-oxazolidone	991.34	707.05	284.29		
N-(2-hydroxyethyl)-succinimide	989.66	585.87	403.79		
	Concentration of Undissociation at				
Components	0.30 (mol/mol amine)				
	[HA] _{Initial}	[HA] _{aq}	[HA] _{org}		
	(ppm)	(ppm)	(ppm)		
imidazole	990.94	915.71	75.23		
N-acethylethanolamine	990.26	885.39	104.87		
2-oxazolidone	991.34	857.55	133.79		
N-(2-hydroxyethyl)-succinimide	989.66	752.45	237.21		

-

Table E4 Calculation concentration of neutral MEA undissociation (ppm) in organicphase with CO_2 loading

•

E1. Distribution Ratio

The undissociation molecule can be extracted by extractant in organic phase measured by distribution in between aqueous and organic phases is referring "the distribution or partition coefficient" as refer to K_D which is a ratio of the solubility of undissociation dissolved in organic phase to the solubility of undissociation dissolved in aqueous phase. Which K_D was calculated by undissociation molecule in organic phase [HA]_{org} divide by undissociation molecule in aqueous phase [HA]_{org} from GC-FID analysis as follow

$$K_{D} = \frac{[HA:R_{4}N^{+}OH^{-}]_{org}}{[HA]_{aq}} = \frac{[HA]_{org}}{[HA]_{aq}} E2$$

Companyata	Extraction Neutral MEA Degradation Products with Diluent Alone at 25 °C					
Components	[HA] _{aq} (ppm)	[HÁ] _{org} (ppm)	K _D			
imidazole	592.61	415.08	0.70			
N-acethylethanolamine	955.14	45.49	0.05			
2-oxazolidone	966.43	28.80	0.03			
N-(2-hydroxyethyl)-succinimide	855.18	167.66	0.20			

 Table E5
 Calculation distribution ratio of neutral MEA degradation with diluent alone

σ

	Extraction Neutral MEA Degradation Products						
Componente	without MEA at 25 °C						
Components	[HA] _{aq}	[HA] _{org}	V				
	(ppm)	(ppm)	N])				
imidazole	610.60	403.20	0.66				
N-acethylethanolamine	728.22	280.78	0.39				
2-oxazolidone	160.09	845.88	5.28				
N-(2-hydroxyethyl)-succinimide	5.74	1018.95	177.52				
	Extractio	n Neutral	MEA Degradation Products				
Components		without MEA at 40 °C					
Components	[HA] _{aq}	[HA] _{org}	K				
	(ppm)	(ppm)	I K[)				
imidazole	597.57	416.23	0.70				
N-acethylethanolamine	725.37	283.63	0.39				
2-oxazolidone .	158.55	847.42	5.34				
N-(2-hydroxyethyl)-succinimide	4.29	1020.40	237.95				
	Extractio	n Neutral I	MEA Degradation Pfoducts				
Components	without MEA at 60 °C						
Components	[HA] _{aq}	[HA] _{org}	Kp				
	(ppm)	(ppm)	A E [)				
imidazole	379.30	634.50	1.67				
N-acethylethanolamine	482.02	526.98	1.09				
2-oxazolidone	26.73	979.24	36.64				
N-(2-hydroxyethyl)-succinimide	3.59	1021.10	284.58				

0

+

 Table E6
 Calculation distribution ratio of neutral MEA degradation without MEA

	Extraction Neutral MEA Degradation Products					
Componente	with MEA at 25 °C					
Components	[HA]aq [HA]org		V			
	(ppm)	(ppm)	К])			
imidazole	828.18	162.76	0.20			
N-acethylethanolamine	790.44	199.82	0.25			
2-oxazolidone	426.99	564.35	1.32			
N-(2-hydroxyethyl)-succinimide	273.99	715.67	2.61			
	Extractio	n Neutral N	IEA Degradation Products			
Components	with MEA at 40 °C					
Components	[HA] _{aq}	[HA] _{org}	V			
	(ppm)	(ppm)	Λ []			
imidazole	704.60	286.34	0.41			
N-acethylethanolamine	713.58	276.68	0.39			
2-oxazolidone	276.17	715.17	2.59			
N-(2-hydroxyethyl)-succinimide	203.92	785.74	3.85			
	Extractio	n Neutral N	1EA Degradation Products			
Components	with MEA at 60 °C					
Components	[HA] _{aq}	[HA] _{org}	K-			
	(ppm)	(ppm)	IX [)			
imidazole	541.28	449.66	0.83			
N-acethylethanolamine	528.41	461.85	0.87			
2-oxazolidone	203.47	787.87	3.87			
N-(2-hydroxyethyl)-succinimide	164.49	825.17	5.02			

Table E7	Calculation distribution ratio	of neutral MEA degradation wi	th MEA

σ

	Extraction Neutral MEA Degradation Products			
Componente	with CO ₂ Loading 0.05 (mol/mol amine).			
Components	[HA] _{aq}	[HA] _{org}	V	
	(ppm)	(ppm)	KD	
imidazole	873.18	117.76	0.13	
N-acethylethanolamine	811.97	178.29	0.22	
2-oxazolidone	607.55	383.79	0.63	
N-(2-hydroxyethyl)-succinimide	458.02	531.64	1.16	
3	Extraction Neutral MEA Degradation Products			
Components	with CO ₂ Loading 0.10 (mol/mol amine).			
Components	[HA] _{aq}	[HA] _{org}	Kn	
	(ppm)	(ppm)	IX [)	
imidazole	888.37	102.57	0.12	
N-acethylethanolamine	854.57	135.69	0.16	
2-oxazolidone	707.05	284.29	0.40	
N-(2-hydroxyethyl)-succinimide	585.87	403.79	0.69	
0	Extraction Neutral MEA Degradation Products			
Components	with CO ₂ Loading 0.30 (mol/mol amine).			
components	[HA] _{aq}	[HA] _{org}	Kn	
	(ppm)	(ppm)	¥()	
imidazole	915.71	75.23	0.08	
N-acethylethanolamine	885.39	104.87	0.12	
2-oxazolidone	857.55	133.79	0.16	
N-(2-hydroxyethyl)-succinimide	752.45	237.21	0.32	

-

 Table E8
 Calculation distribution ratio of neutral MEA degradation with CO2 loading

-

E2. Equilibrium Extraction

* When only undissociate molecule was involved in equilibrium extraction. The extraction of neutral MEA degradation products by extractant thus can be correspond to as

.

$$[HA]_{aq} + [R_4N^+OH^-]_{org} \leftrightarrow [HA: R_4N^+OH^-]_{org} \qquad E3$$

Therefore, extraction the undissociated molecule of neutral MEA degradation by tetra amine interaction is equilibrium complexation equal to

$$K_{E} = \frac{[HA:R_{4}N^{+}OH^{-}]_{org}}{[HA]_{aq}[R_{4}N^{+}OH^{-}]_{org}} E4$$

Where K_E is equilibrium extraction of neutral MEA degradation products and $[R_4N^+OH^-]$ is concentration of extractant which base on 1 M. Therefore, equilibrium extraction can be assumed equal to distribution ratio as follow

÷

$$K_{D} = \frac{[HA:R_{4}N^{+}OH^{-}]_{org}}{[HA]_{aq}}$$
 E5

$$K_{E} = \frac{K_{D}}{[R_{4}N^{+}OH^{-}]_{org}} E6$$

$$K_{E} = \frac{K_{D}}{1}$$
 E7

$$K_{E} = K_{D}$$
 E8

	Extraction Neutral MEA Degradation		
Components	Products with Diluent Alone at 25 °C		
	K _E		
imidazole	0.65		
N-acethylethanolamine	0.37		
2-oxazolidone	5.22		
N-(2-hydroxyethyl)-succinimide	177.20		

 Table E9
 Calculation equilibrium extraction of neutral MEA degradation with diluent alone

Table E10Calculation equilibrium extraction of neutral MEA degradation withoutMEA

Components	Extraction Neutral MEA Degradation Products without MEA		
Components	25 °C	40 °C	60 °C ·
	K _E	K _E	K _E
imidazole	0.66	0.70	1.67
N-acethylethanolamine	0.39	0.39	1.09
2-oxazolidone	5.28	5.34	36.64
N-(2-hydroxyethyl)-succinimide	177.52	237.95	284.58

Computer	Extraction Neutral MEA Degradation Products with MEA		
Components	25 °C	40 °C	60 °C
	K _E	K _E	K _E
imidazole	0.20	0.41	0.83
N-acethylethanolamine	0.25	0.39	0.87
2-oxazolidone	1.32	2.59	3.87
N-(2-hydroxyethyl)-succinimide	2.61	3.85	5.02

 Table E11
 Calculation equilibrium extraction of neutral MEA degradation with MEA

 Table E12
 Calculation equilibrium extraction of neutral MEA degradation with CO2

 loading

	Extraction Neutral MEA Degradation Products with CO ₂ Loading			
Components	0.05 (mol/mol amine)	0.10 (mol/mol amine)	0.30 (mol/mol amine)	
	K _E	K _E	K _E	
imidazole	0.13	0.12	0.08	
N-acethylethanolamine	0.22	0.16	0.12	
2-oxazolidone	0.63	0.40	0.16	
N-(2-hydroxyethyl)-succinimide	1.16	0.69	0.32	

σ

CURRICULUM VITAE

Name: Ms. Wallapa Krajangpit

Date of Birth: October 11, 1990

Nationality: Thai

University Education:

2009–2013 Bachelor of Engineering, Petrochemicals and Polymeric Materials, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhonpathom, Thailand

Proceeding:

- Krajangpit, W.; Saiwan, C.; and Supap, T. (2015, April 21) Liquid-liquid extraction of degradation products in monoethanolamine (mea) absorption solution used in carbon dioxide (co₂) capture. Paper presented at <u>The 6th</u> <u>Research Symposium on Petroleum, Petrochemicals and Advanced Materials</u> <u>and The 21st PPC Symposium on Petroleum, Petrochemicals, and Polymers,</u> Bangkok, Thailand.
- Krajangpit, W.; Saiwan, C.; and Supap, T. (2015, May 20 23) Extraction of degradation products in monoethanolamine absorption solution used in carbon dioxide capture. Paper presented at <u>EST - the International Conference and Exhibition on Energy, Science & Technology</u>, Karlsruhe, Germany. (Poster presentation)

0

-