DEVELOPMENT OF SULFONATED POLY(ETHER KETONE ETHER SULFONE) (S-PEKES) AS PROTON EXCHANGE MEMBRANE (PEM) FOR USING IN DIRECT METHANOL FUEL CELL (DMFC)

Sairung Changkhamchom

A Dissertation Submitted in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University

2013

I28372888

561 051

Thesis Title:	Development of Sulfonated Poly(ether ketone ether sulfo		
	(S-PEKES) as Proton Exchange Membrane (PEM) for Using		
	in Direct Methanol Fuel Cell (DMFC)		
By:	Sairung Changkhamchom		
Program:	Polymer Science		
Thesis Advisors:	Prof. Anuvat Sirivat		

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Doctor of Philosophy.

.... College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

(Asst. Prof. Pomthong Malakul)

freuetorn

(Prof. Anuvat Sirivat)

Ratona Rujisonanit

(Assoc. Prof. Ratana Rujiravanit)

Kitipart Siemannal

(Asst. Prof. Kitipat Siemanond)

Stmonman niamlang (Dr. Sumonman Niamlang)

ABSTRACT

4982003063: Polymer Science

Sairung Changkhamchom: Development of Sulfonated Poly(ether ketone ether sulfone) (S-PEKES) as Proton Exchange Membrane (PEM) for Using in Direct Methanol Fuel Cell (DMFC) Thesis Advisors: Prof. Anuvat Sirivat 149 pp.

Keywords: Sulfonated poly(ether ketone ether sulfone)/ Proton exchange membrane/ Degree of sulfonation/ Proton conductivity

Poly(ether ketone ether sulfone) (PEKES), was synthesized by nucleophilic aromatic substitution polycondensation between bisphenol S and 4,4'-difluorobenzophenone (system A), and between bisphenol S and 4,4'-dichlorobenzophenone (system B). Properties of both post-sulfonated polymers are compared with those of a commercial PEEK 150XF from Victrex and Nafion 117. Advantages of the synthesized PEKES is the better solubility of PEKES in H₂SO₄ relative to PEEK 150XF which results in higher sulfonation degrees, the carbonyl groups (-C=O) and the sulfone groups (-SO₂-) in polymer backbone, which promote the chain stiffness and thermal stability. The sulfonated polymer samples were characterized by FTIR, ¹H-NMR, TGA, and LCR meter, and the degree of sulfonation (DS) was determined. The ion exchange capacity (IEC), the water uptake (%), the dielectric permittivity (ε) , and the electrical conductivity increase monotonically with increasing DS. The proton conductivity values of S-PEKES of the highest DS are comparable with that of Nafion 117. The methanol, mechanical and oxidative stabilities of S-PEKES and S-PEEK 150XF membranes are relatively higher than those of Nafion 117. Furthermore, the composite proton exchange membranes based on S-PEKES incorporated various types of zeolite such as molecular sieve 3A, 4A, 5A, and ZSM-5 were developed for using as proton exchange membrane.

บทคัดย่อ

สายรุ้ง แฉ่งขำโฉม : การพัฒนาพอลีอีเทอร์คีโตนอีเทอร์ซัลโฟนที่ผ่านกระบวนการ ซัลโฟเนชันแล้วเพื่อเป็นเยื่อแลกเปลี่ยนโปรตอนสำหรับใช้งานในเซลล์เชื้อเพลิงแบบเมทานอล โดยตรง (Development of Sulfonated Poly(ether ketone ether sulfone) (S-PEKES) as Proton Exchange Membrane (PEM) for using in Direct Methanol Fuel Cell (DMFC)) อ. ที่ปรึกษา : ศ. คร. อนุวัฒน์ ศิริวัฒน์ 149 หน้า

พอลิอีเทอร์คีโทนอีเทอร์ซัลโฟน (PEKES) ได้ถูกสังเคราะห์ขึ้นจากปฏิกิริยา nucleophilic aromatic substitution polycondensation ระหว่าง bisphenol S และ 4,4'-difluorobenzophenone (ระบบ A) และระหว่าง bisphenol S และ 4,4'-dichlorobenzophenone (ระบบ B) คุณสมบัติของพอลิเมอร์ภายหลังทำปฏิกิริยาซัล โฟเนชันแล้วจะถูกวิเคราะห์เปรียบเทียบ กับพอลิอีเทอร์อีเทอร์คีโตน (PEEK 150XF) และแนฟีออน (Nafion 117) ที่มีขายในท้องตลาด คุณประโยชน์ของ PEKES ที่เหนือกว่า PEEK 150XF คือสามารถละลายในกรคซัลฟิวริกได้ ซึ่งทำให้หมู่ซัลโฟนิกเข้าไปติดที่สายโซ่พอลิเมอร์ได้ง่ายและเพิ่มขึ้น ดีกว่า หม่คาร์บอนิล และซัลโฟนที่อยู่ในสายโซ่พอลิเมอร์จะทำให้สายโซ่พอลิเมอร์มีความแข็งและมีความเสถียรต่อเชิง ความร้อน พอลิเมอร์ที่ผ่านกระบวนการซัลโฟเนชันแล้วจะถูกวิเคราะห์ด้วยเทคนิค FTIR, ¹H-NMR, TGA, และ LCR meter ระดับการยึดติดของหมู่ซัลโฟนิก (Degree of sulfonation, DS) และค่าการแลกเปลี่ยนอิออน (Ion Exchange Capacity, IEC) และค่าการดูดซับน้ำ (Water uptake %) และค่า dielectric permittivity (ɛ) มีค่าเพิ่มขึ้นเมื่อจำนวนหมู่ซัลโฟนิกที่ยึกเกาะ สายโซ่มีมากขึ้น ค่าการนำโปรตอนของ SPEKES ที่มีค่า DS สูงสุดมีค่าใกล้เคียงกันกับค่าของ Nafion 117 ส่วนค่าความทนทานต่อเมทานอล เสถียรภาพเชิงกลและเชิงความร้อนก็มีค่าสูงกว่า Nafion 117 อีกด้วย นอกจากนี้ในงานวิจัยของเราได้มีการพัฒนาคอมพอสิทเมมเบรนจาก S-PEKES ที่ทำการเติมสารซีโอไลท์หลายชนิด เช่น molecular sieve 3A, 4A, 5A และ ZSM-5 เพื่อนำมาเป็นเยื่อแลกเปลี่ยนโปรตอนด้วย

ACKNOWLEDGEMENTS

The authors would like to acknowledge the financial supports from the Conductive and Electroactive Research Unit of Chulalongkorn University, the Center of Excellence on Petrochemical and Materials Technology, Thailand, the Thailand Research Fund (TRF-RTA, PHD/0081/2549), the 90th Anniversary of Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund), the Royal Thai Government, and the Petroleum and Petrochemical College, Chulalongkorn University

TABLE OF CONTENTS

Page	i			
ract (in English)	iii			
ract (in Thai)	iv			
Acknowledgements				
e of Contents	vi			
of Tables	ix			
of Figures	xi			
R	1			
 THEORETICAL BACKGROUND AND LITERATURE SURVEY 2.1 Theoretical Background 2.2 Literature Survey 	7 7 14			
	Page ract (in English) ract (in Thai) sowledgements e of Contents of Tables of Figures			

III	SYNTHESIS AND PROPERTIED OF SULFONATED				
	POLY(ETHER KETONE ETHER SULFONE) (S-PEKES)				
	VIA BISPHENOL S: EFFECT OF SULFONATION	27			
	3.1 Abstract	27			
	3.2 Introduction	28			
	3.3 Experimental	30			
	3.4 Results and Discussion	34			
	3.5 Conclusions	40			

PAGE

IV	POLYMER ELECTROLYTE MEMBRANE BASED	ON
	SULFONATED POLY(ETHER KETONE ETHER	
	SULFONE) (S-PEKES) WITH LOW METHANOL	
	PERMEABILITY FOR DIRECT METHANOL FUEI	
	CELL APPLICATION	56
	4.1 Abstract	56
	4.2 Introduction	56
	4.3 Experimental	58
	4.4 Results and Discussion	62
	4.5 Conclusions	68
V	COMPOSITE PROTON EXCHANGE MEMBRANES	5
	OF SULFONATED POLY(ETHER KETONE ETHE	R
	SULFONE) (S-PEKES) AND MOLECULAR SIEVE	WITH
	HIGH MECHANICAL STRENGTH FOR DIRECT	
	METHANOL FUEL CELL	86
	5.1 Abstract	86
	5.2 Introduction	87
	5.3 Experimental	89
	5.4 Results and Discussion	92
	5.5 Conclusions	98
VI	HIGH PROTON CONDUCTIVITY ZSM-5/SULFON	ATED
	POLY(ETHER KETONE ETHER SULFONE) (S-PEI	KES)
	COMPOSITE PROTON EXCHANGE MEMBRANE	FOR
	USING IN DIRECT METHANOL FUEL CELL	111
	6.1 Abstract	111
	6.2 Introduction	111
	6.3 Experimental	113
	6.4 Results and Discussion	117

VIII	

CHAPTER		PAGE
	6.5 Conclusions	122
VII	CONCLUSIONS AND RECOMMENDATIONS	132
	REFERENCES	135
	CURRICULUM VITAE	145

LIST OF TABLES

TABLE

9

CHAPTER II

2.1	The	different	Fuel	Cells	that	have	been	realized	and	are	
	curre	ently in us	e and	develo	opme	nt (Ca	rrette	et al., 200	01)		

CHAPTER III

3.1	The ε' and σ'_{DC} of all sulfonated polymer systems (0, 12, 48,		
	and 84 h sulfonation) at a frequency of 20 Hz and at room		
	temperature (~27 °C). All samples are solids in the dry state		
	(Changkhamchom et al., 2010)	5	55

CHAPTER IV

4.1	The proton conductivities of all membranes of various water	
	uptakes (%) at a room temperature (27 °C) and 50% RH	82
4.2	Methanol permeability (P) of all membranes at the	
	temperatures of 27 °C, 50 °C, and 70 °C, respectively	83
4.3	Oxidative stabilities of the membranes immersed in Fenton's	
	reagent at room temperature (27 °C)	84
4.4	Mechanical properties of sulfonated polymer at room	
	temperature (27 °C) and 50% RH	85

CHAPTER V

5.1	The proton conductivities of all membranes with 10 and	
	50% water uptakes at a room temperature (27 $^{\circ}\mathrm{C})$ and 50%	
	RH	108
5.2	Methanol permeability (P) of all proton exchange	
	membranes at the temperatures of 27 °C, 50 °C, and 70 °C,	
	respectively	109

TABLE

5.3	Mechanical properties of all proton exchange membranes at		
	room temperature (27 °C) and 50% RH	110	

CHAPTER VI

6.1	Methanol permeability (P) of all proton exchange membranes			
	at the membranes at the temperatures of 27 $^{\circ}\mathrm{C}$	131		

LIST OF FIGURES

FIGURE

PAGE

CHAPTER I

1.1	Nafion chemical structure (Carrette et al., 2001).	2
-----	--	---

CHAPTER II

2.1	Schemetic of an individual fuel cell (EG&G Services	
	Parsons, Inc. Fuel Cell Handbook, 5th edition, 2000).	8
2.2	Schematic drawing of direct methanol fuel cell (DMFC).	12

CHAPTER III

3.1	Condensation polymerization of the PEKES	
	(Changkhamchom et al., 2010).	44
3.2	Chemical structure of PEEK 150XF from Victrex	
	(Changkhamchom et al., 2010).	44
3.3	Post-sulfonation of PEKES Systems A and B	
	(Changkhamchom et al., 2010).	45
3.4	Post-sulfonation of PEEK 150XF (Changkhamchom et	
	<i>al.</i> , 2010).	45
3.5	FTIR of the PEKES-A and post-S-PEKES-A	
	(Changkhamchom et al., 2010).	46
3.6	FTIR of the PEKES-B and post-S-PEKES-B	
	(Changkhamchom et al., 2010).	47
3.7	¹ H-NMR spectra of S-PEKES-A and S-PEKES-B	
	(Changkhamchom et al., 2010).	48
3.8	Thermograms of PEKES-A, S-PEKES-A, PEKES-B, and	
	S-PEKES-B (Changkhamchom et al., 2010).	49
3.9	Degrees of sulfonation of S-PEKES-A, S-PEKES-B, and	
	S-PEEK 150XF (Changkhamchom et al., 2010).	50

FIGURE

PAGE

3.10	Ion exchange capacity (IEC) of S-PEKES-A, S-PEKES-	
	B, S-PEEK 150XF, and Nafion 117 (Changkhamchom et	
	<i>al.</i> , 2010).	51
3.11	Water uptake (%) of S-PEKES-A, S-PEKES-B, and S-	
	PEEK 150XF (Changkhamchom et al., 2010).	52
3.12	Frequency dependence of the dielectric permittivities of	
	sulfonated polymer systems (48 h sulfonation time) at	
	room temperature (T~27 °C). All samples were in the dry	
	solid state (Changkhamchom et al., 2010).	53
3.13	Frequency dependence of the dielectric permittivities of	
	S-PEKES-B (12, 48, and 84 h sulfonation) at room	
	temperature (~27 °C). All samples were in the dry solid	
	state (Changkhamchom et al., 2010).	54

CHAPTER IV

4.1	S-PEKES-A, S-PEKES-B, and S-PEEK 150XF	
	(Changkhamchom et al., 2013).	73
4.2	Methanol diffusion cell (Changkhamchom et al., 2013).	74
4.3	Thermograms of Nafion 117, S-PEKES-A, S-PEKES-B,	
	and S-PEEK 150XF, with the sulfonation degrees of 1.0,	
	0.50, 0.51, and 0.52, respectively (Changkhamchom et	
	<i>al.</i> , 2013).	75
4.4	The proton conductivities of S-PEKES-B membranes of	
	the sulfonation degrees (DS) of 0.33, 0.51, and 0.66,	
	respectively, and of Nafion 117 at a room temperature (27	
	°C) and 50% RH (Changkhamchom et al., 2013).	76

FIGURE

4.5	The proton conductivities of S-PEKES-A, S-PEKES-B,	
	and S-PEEK 150XF membranes with the sulfonation	
	degrees (DS) of 0.50, 0.51, and 0.52, respectively, and of	
	Nafion 117 at a room temperature (27 °C) and 50% RH	
	(Changkhamchom et al., 2013).	77
4.6	Methanol concentration in compartment B (mol/L) vs.	
	time (s) of the membranes, with 2.5 mol/L initial feed	
	composition and at a room temperature (27 °C)	
	(Changkhamchom et al., 2013).	78
4.7	Methanol concentration in compartment B vs. time of S-	
	PEKES-B membranes, with 2.5 mol/L initial feed	
	composition, and at the temperatures of 27 °C, 50 °C, and	
	70 °C (Changkhamchom et al., 2013).	79
4.8	The storage modulus (G') of membranes of various	
	sulfonation degrees (DS) at a room temperature (27 °C)	
	(Changkhamchom et al., 2013).	80
4.9	Storage modulus (G') vs. frequency of S-PEKES-B	
	membranes with the DS of 0.66, at various temperatures	
	(Changkhamchom et al., 2013).	81

CHAPTER V

5.1	Sulfonated poly(ether ketone ether sulfone) (S-PEKES).	104
5.2	FTIR spectra of composite proton exchange membrane	
	incorporated with 12%v/v molecular sieves with the	
	highest degree of sulfonation S-PEKES (DS 0.66).	104
5.3	Thermograms of the pristine S-PEKES membrane,	
	Molecular Sieve 4A/S-PEKES composite membranes (3,	
	9, and 12 %v/v, respectively), and Nafion 117	
	membrane).	105

PAGE

5.4	The water uptake (%) of the Molecular Sieve 3A, 4A, and	
	5A/S-PEKES composite proton exchange membranes at	
	room temperature (27 °C).	106
5.5	The ion exchange capacities (IECs) of the Molecular	
	Sieve 3A, 4A, and 5A/S-PEKES composite proton	
	exchange membranes at room temperature (27 °C).	107

CHAPTER VI

6.1	FTIR spectra of composite proton exchange membrane	
	incorporated with 4%v/v ZSM-5 zeolites (various Si/Al	
	ratio) with the highest degree of sulfonation S-PEKES	
	(DS 0.66).	125
6.2	Thermograms of Nafion 117, pristine S-PEKES, 4%v/v	
	ZSM-5/S-PEKES composite membranes (various Si/Al	
	ratio).	126
6.3	The water uptake (%) of the pristine S-PEKES (DS =	
	0.66), and $4\% v/v$ of composite membranes based on S-	
	PEKES (DS = 0.66) including CBV 2314 (Si/Al =23),	
	CBV 5524G (Si/Al = 50), CBV 8014 (Si/Al = 80), and	
	CBV 28014 (Si/Al = 280).	127
6.4	The water uptake (%) of the pristine S-PEKES (DS =	
	0.66), and composite membranes based on S-PEKES (DS	
	= 0.66) including CBV 2314 (Si/Al =23) at various	
	zeolite contents: 2, 4, 6, 8, and 10 %v/v, respectively.	128
6.5	The proton conductivity of the pristine S-PEKES (DS =	
	0.66), and $4\% v/v$ of composite membranes based on S-	
	PEKES (DS = 0.66) including CBV 2314 (Si/Al =23),	
	CBV 5524G (Si/Al = 50), CBV 8014 (Si/Al = 80), and	
	CBV 28014 (Si/Al = 280) at room temperature.	129

FIGURE

6.6 The proton conductivity of Nafion 117, pristine S-PEKES (DS = 0.66), and composite membranes based on S-PEKES (DS = 0.66) including CBV 2314 (Si/Al =23) at various zeolite content: 2, 4, 6, 8, and 10 %v/v, respectively, at room temperature.

PAGE