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A statistical review of world energy sources has demonstrated that the
global oil production is not enough for current global oil consumption. Accordingly,
this problem leads to the consideration of unconventional energy resources,
especially heavy oil. This research investigated the efficiency and comparative
evaluation of three oil recovery processes based on previous experiments and
simulations. In previous experiment, two types of heavy oil with different viscosities
were performed in the two sand pack permeabilities at the injection pressure of 345
kPaand 25 ¢. In this study, simulation models were built by using IMEX CMG. A
hybrid grid system was used and grid refinement was applied to model the radial
How, which is parallel to a horizontal well. Homogeneous porosity and permeability
were assumed for all directions. The simulation indicated that the waterflooding
method could produce the highest recovery factor for both types of oil and
permeabilities. Oil viscosity had more impact on oil recovery than the absolute
permeability. Simulation outcomes were in good agreement with the experimental
results.
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