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LITERATURE REVIEW

2.1 General Reservoir Fluids Physical Properties

Physical properties of reservoir fluids can either describe physical behavior 
of the fluids in the reservoir or relate the surface volumes to reservoir volumes. 
These properties can be determined through laboratory testing on fluid samples, and 
field production data. In addition, they can be calculated from empirical correlations 
with respect to available information. Some general reservoir fluids properties are 
described as follow.

2.1.1 Bubble Point Pressure (Ph. psia)
Pb is the pressure at which the first bubble of gas evolves from the 

reservoir fluid as the crude oil pressure decreases. It can also be called as saturation 
pressure. Pb is various depending on temperature and type of the reservoir fluid 
system (Beggs, 1987).

2.1.2 Oil Formation Volume Factor (Bn, bbl/STB)
B0 is the ratio between the volume of oil plus solution gas occupied at 

the reservoir conditions and the volume of the oil at stock-tank conditions 
(atmospheric pressure of 14.696 psi, temperature of 60 °F). B0 is a measure of the 
oil-shrinkage as from the reservoir conditions to the surface conditions (Cosentino, 
2001).

2.1.3 Viscosity (น1 cp)
p is known as internal resistance of fluid to flow. For reservoir fluids, 

viscosity parameter is needed to describe how the fluids flow in reservoir. It is 
expressed in centipoises (cp). There are two categories of oil viscosity, which are 
dead oil viscosity (Pod) and live oil viscosity (Pol). The Pol can be classified into two 
types, which are bubble point oil viscosity (Pob) and undersaturated oil viscosity (p0). 
Moreover, the viscosity of oil in saturated pressure range is called saturated oil 
viscosity (Psat).
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2.1.4 Solution Gas Oil Ratio (Rs, scf/stb)
Rs is the production ratio between the volume of gas evolving from 

the oil and the volume of the oil at the surface with standard conditions.
2.1.5 Oil and Gas Specific Gravity (Yn, Yg)

Yo is ratio of the crude oil density to the water density, while Yg is the 
ratio of the gas density to the air density. They both are measured at the same 
condition.

2.1.6 API Gravity (American Petroleum Institute. °API)
API is an inverse measure of the Yo- It is used to compare the crude oil 

as the different type of crude oil can have different value of API. It is defined as 
Equation 2.1.

°A P l = —  -  131.5

2.2 Fluid Samplings

For determining crude oil properties through laboratory testing, it is 
essential to have a good sample. In order to obtain the crude oil sample representing 
Its reservoir conditions, care must be taken. Firstly, the reservoir must be checked for 
sampling in the early life of the reservoir before the occurrence of significant loss in 
pressure and the well should have steady productivity with stabilized gas oil ratio and 
no water cut (Moses, 1986). Secondly, these wells should be checked if they are 
properly conditioned before sampling for original fluid flow (Reudelhuber, 1957). 
There are two main methods to collect reservoir fluid samples as follow.

2.2.1 Subsurface or Bottom Hole Sample
This type of sample is collected by wire line equipment in the bore 

hole at the actual depth of reservoir where it can represent the bottom hole condition. 
For the accurate result, the sample must retain the reservoir conditions at all time 
using special chambers within the sampling tube to compensate the pressure of the 
sample while the sample is being returned to the surface. In case of undersaturated
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reservoir (reservoir with pressure is staying above bubble point pressure) with the 
flowing pressure at the wellbore above bubble point pressure, it would be considered 
as simple sampling case since the sample can be collected when the well is still 
flowing. Nevertheless, this is not the case for the saturated reservoir or slightly 
undersaturated reservoir, which is the major problem in subsurface sampling, the 
well may have to be shut-in to allow the accumulated excess gas caused by pressure 
drop in the bore hole (Katz, 1938) to be reabsorbed before the sample can be 
collected (Consentino, 2001).

2.2.2 Surface or Recombined Fluid Sample
This type of sample can be obtained faster and more convenient than 

subsurface sample. Oil and gas, which are collected separately at the wellhead 
condition, separator condition, or stock tank condition, will be recombined in the 
laboratory. However, it is difficult to obtain the result that corresponding to the 
reservoir conditions. Some of the gas could be liberated from the oil at the surface 
pressure and large sample of separator gas is required to be collected. Therefore, to 
ensure that recombined fluid samples can represent its original characteristic, the 
accuracy of the separator flow measurements and the stability of separator conditions 
are required.

2.3 Laboratory Testing

2.3.1 PVT Analysis
PVT analysis will be performed at laboratory where the reservoir fluid 

sample will be tested for its phase behavior through different expansion stages as it 
undergoes from the reservoir to the stock tank conditions. There are three main PVT 
laboratory tests for reservoir fluid samples, which are:

2.3.1.1 Flash Expansion
Flash expansion or flash vaporization test is used to define Pb 

or PVT properties at different pressure step in isothermal expansion process. First, 
the sample is filled into the PV cell and the pressure and temperature will be 
increased to the initial reservoir conditions as the gas will be dissolved into the oil. 
Then the pressure in the cell is decreased through isothermal expansion process
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while the data is being recorded. When Pb is reached, the first bubble of gas will be 
liberated from the oil. The pressure will be decreased continuously and phase 
behavior of the sample will be observed until there is no additional gas liberated 
from the oil. Thus, for the flash expansion test, no fluid will be withdrawn from the 
cell for the entire experiment (Cosentino, 2001).

2. ร. 1 .2  D i f f e r e n t i a l  V a p o r i z a t io n
Differential vaporization test is used to determine B0, Rs, yo, 

and Yg. The procedure of this test is similar to the flash expansion test from the 
beginning until the bubble point pressure is reached. The gas liberated from the oil at 
each pressure step is removed from the cell as the changing in composition of the 
sample causes the oil to shrink (Cosentino, 2001).

2 . ร. 1. ร F la s h  S e p a r a t o r  T e s ts
Flash separator tests are used to determine the phase behavior 

of the reservoir fluid at the surface as it travels through the separator(s) to the stock 
tank as it is not isothermal expansion process. First, the PVT cell is connected to 
separator(s) system. Then, the sample is flashed through the system to stock tank 
conditions. At the end of the experiment, the volume of gas and oil will be measured 
(Cosentino, 2001).

2.3.2 Viscosity Test
Viscosity of crude oil can be measured within laboratory using 

viscometer or in the bore hole using wire line equipments. In case of laboratory 
measurement, for oil viscosity, rolling ball viscometer or capillary viscometer is 
usually used. Since the viscosity is a strong function of pressure and temperature, 
crude oil should be tested at constant conditions repeatedly for accurate result. 
Therefore, it is very tedious to obtain gas viscosity since it is difficult to obtain the 
accurate result. Thus, gas viscosity is usually estimated using correlations as function 
of specific gravities data obtained from differential vaporization (Mccain, 1990).
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2.3.3 Compositional Analysis
Compositional data as well as physical data in separator or stock tank 

conditions are needed for determining physical properties of reservoir fluid using 
equation of state or correlation involving composition data as input parameters. Gas 
or liquid chromatography techniques are commonly used in laboratory in order to 
measure fluid composition, specific gravity, and molecular weight of oil and gas.

2.4 Empirical Models and Correlation Evaluations

Since the last century, many empirical correlations have been developed and 
used for determining crude oil properties. Generally, there are two main types of 
correlations for predicting crude oil properties. The first type is those correlations 
that use available oil field data as the input parameters, such as reservoir temperature 
(Très), Pb, API, Yg, and Rs. The second type is the correlations that use some 
parameters apart from the first type, such as reservoir fluid composition, pour point 
temperature, molecular weight, normal boiling point, critical temperature, and 
acentric factor of components (Coats and Smart, 1986; Houpeurt and Thelliez, 1976; 
Lasater, 1958; Little and Kennedy, 1968; Lohrenz et ah, 1964; Ng and Egbogah, 
1983); พน and Rosenegger (1999, 2000); (พน et al., 2003). Nevertheless, the 
availability of the composition data is usually insufficient initially, and even the data 
are available, they could not fully identify all of the components in the crude oil. The 
input parameters for the correlations from the first type are typically used to 
approximate the effect of the composition on these PVT properties (Almehaideb, 
1997). There are three main approaches for developing these correlations, such as 
universal correlation based on worldwide data sets, regional empirical correlation 
based on data set in each region, and correlations based on specific type of crude oil 
or range of crude oil conditions. Since characteristic of the crude oil and the range of 
data in each region are different as the global correlations are very difficult to obtain 
(Dokla and Osman, 1992; Dokla and Osman, 1991), large volume of correlation 
developments and evaluation studies have been presented to outperform each other.

D.L.Katz (1942) introduced graphical correlations based from PVT 
measurements on 117 crude oils for predicting B0 as functions of P, T, Rs, Yo and Yg-
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However, the correlations were hard to use since the correlations were combination 
of calculations and graphs.

Beal (1946) presented graphical correlations for determining Pod, Pob, and Rs 
based on data mostly from the United States.

Standing (1947) developed correlations and charts for determining Pb, Bob 
and total formation volume factor (Bt) using 105 data samples from 22 crude oils 
obtained from California, United States. These correlations are the most widely used 
in the petroleum industry since they are the first correlations to use Très, Yo, Yg, and Rs 
as input parameters. Later, Lasater (1958) used Standing’s basic assumption with 
additional of derived gas mole fraction term based on standard physical chemical 
equations of solution to develop Pb correlation (presented in lookup chart form) for 
black oil systems based on 158 data points collected from 137 reservoirs from 
Canada, United States, and South America.

Chew and Connally Jr. (1959) presented a Pol correlation as a function of Pod 
and Rs based on crude oil data from the United States, Canada, and South America. 
The relation between Pol and corresponding Pod at fixed Rs was reported to be a 
straight line on logarithmic coordinate.

Braden (1966) used data set collected from 8 crude oils and 7 processed oils 
to develop Pod correlation as a function of API measured at 60 ๐F and viscosity at one 
temperature.

Cronquist (1973) presented a dimensionless graphical correlations based on 
80 data points from 30 Gulf Coast reservoirs for analysis of depletion-drive 
reservoirs.

Beggs and Robinson (1975) presented Pod and Pol correlations following the 
methods from Beal (1946) and Chew and Connally Jr. (1959) respectively. The 
developed Pod correlation was a function of API and T, while the developed Pol 
correlation was a function of Rs and Pod-

Glaso (1980) developed Pb, Bob, and B( correlations using data from 45 flash 
separator oil samples mostly from the North Sea. These correlations were functions 
of T, Rs, Yg, and API. Correction factors from some non-hydrocarbon gases and a 
correction factor for paraffinicity of oil were used with these equations in order to be 
valid for all types of reservoir fluids worldwide.
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Vazquez and Beggs (1980) categorized crude oils into two ranges (oil with 
API above and below 30 °API) and developed correlations for predicting Rs, Po, and 
B0. The Yg was stated to be a strong correlating factor for PVT properties but it was 
very sensitive to the conditions where it was determined. More than 6,000 data points 
from 600 laboratory test were used. All the Yg measurements were converted into the 
reference separator conditions of 100 psig as the method to develop these 
correlations.

Ostermann and Owolabi (1983) employed crude oil data from Alaska to 
evaluate various correlations for prediction of Pb, Bob, Pod, and Pol.

Khan (1987); Khan et al. (1987) developed correlations for determining Pob, 
Psat, and Pob of Saudi Arabian crude oil based on flash separation data obtained from 
75 bottom-hole samples. Based on the data used in the work, their correlations (Khan 
(1987); Khan et al. (1987)) were reported to be the most accurate. However, the Pob 
correlation from Beggs and Robinson (1975) was found to be acceptable, and the Po 
correlation from Beal (1964) was reported to have good estimation performance.

Saleh et al. (1987) evaluated the accuracy of the existed PVT correlations in 
that time to determine Pb, B0, Rs, Bt, and Pod employing data from Gulf of Suez and 
Western Desert field, Egypt.

Al-Marhoun (1988) proposed regional correlations and nomographs 
developed from 160 data points obtained from 69 Middle Eastern reservoirs for 
estimation of Pb, Bob, and Bt as the functions of T, Yg, Rs, and Yo-

Abdul-Majeed et al. (1988) presented Bob correlation as a function of Rs, Yg, 
Yo, and T, using 420 experimental data points resulted from 119 samples obtained 
from different unpublished sources in Iraq.

Sutton and Farshad (1990) compared the accuracy of various PVT 
correlations for application in Gulf of Mexico. Correlations from Glaso (1980) 
including Pb correlation for crude oil with Pb below 7,000 psi, Rs correlation for 
crude oil with Rs below 1,400 scf/stb, B0 correlation, and Pod correlation were 
recommended. Correlations from Vazquez and Beggs (1980) including Pob and Po 
correlations were recommended for crude oil with Pb above 7,000 psi and Rs above 
1,400 scf/stb. Moreover, Pod correlation from Beggs and Robinson (1975) were also 
recommended.
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Abdul-Majeed et al. (1990) presented Pod correlation as a function of p, Pb, 
Pob, bubble point Rs, and API using data from North Africa and Middle East.

Labedi (1990b) used crude data from Libya, Nigeria and Angola to generate 
Yg, Pb, Rs, and composition correlations. The developed correlations are functions of 
measurable production parameters. Later, Labedi also presented Pod, Pob, Psat, and Po 
correlations for light oil (Labedi, 1992).

Dokla and Osman (1991) used original form of Al-Marhoun (1988)’ร 
correlations to develop Pb and B0 correlations for UAE crude based on 51 data 
points. However, the modified Pb correlation was later found to contradict physical 
trends (Al-Shammasi, 2001; Dokla and Osman, 1992).

Al-Marhoun (1992) presented correlations for predicting Bob, B0, and Bt as 
functions of T, p, Rs, Yg, and Yo using experimentally obtained field data from all over 
the world.

Miadonye et al. (1992) presented one-parameter equation for estimating 
viscosity of bitumen, heavy crude oil, and high viscosity oil using viscosity 
measurement at reference temperature of 30°c generated from on data from Alberta, 
Canada.

Omar and Todd (1993) presented black oil correlations based on Standing’s 
approaches (Standing, 1947) for predicting Pb and Bob using data from Malaysian 
crudes.

Petrosky Jr. and Farshad (1993) employed 81 laboratory PVT analyses on 
crude samples obtained from offshore Texas and Louisiana to develop correlations 
for estimating Pb, Rs, Bob, and Co for crude oil from Gulf of Mexico.

Kartoatmodjo and Schmidt (1994); Kartoatmodjo and Schmidt (1991) used 
global data to develop PVT correlations for determining B0, Rs, Pb, Pod, Psat, Po, and 
isothermal compressibility of undersaturated oil (c0, psi"') as functions of field 
parameters. In addition, a correction factor of Yg and a conversion factor from flash 
data to differential data were also developed.

De Ghetto and Villa (1994) developed modified correlations for determining 
of Pb, Rs, B0, Co, Pod, Pob, and Po for four different API classes using data from 
Mediterranean Basin, Africa, Persian Gulf, and North Sea. Since the extra-heavy oil
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correlations except viscosity were reported to be unavailable, the new equations for 
extra-heavy oil were proposed.

Petrosky and Farshad (1995) proposed Pod, Pob, and Po correlations based on 
126 bubble point data from differential liberation and two-stage separation tests. 
These correlations were developed especially for predicting Gulf of Mexico crude 
oils.

De Ghetto et al. (1995) presented heavy and extra heavy oil correlations for 
predicting Pb, Rs, Co, Pod, Pob, and Po using data from Mediterranean Basin, Africa 
and Persian Gulf.

Frashad et al. (1996) presented correlations for estimating Pb, Rs, Bo, and Co 
of Columbian crude oil using different sets of data obtained from Columbian crude 
analyses.

Mahmood and Al-Marhoun (1996) evaluated empirical correlations for 
predicting Pb, Bob, Co, and Po using a total of 185 data points collected from 22 
bottom hole samples of Pakistan.

Velarde et al. (1997) introduced Pb, Rs, Bob, and B0 correlations developed 
from differential vaporization and separator data.

Almehaideb (1997) used crude oil data of U.A.E. to evaluate PVT 
correlations and developed correlations for estimation of Bob, c0, Pb, Pob, and Po-

Hanafy et al. (1997a) evaluated various correlations for predicting 
properties of crude oil using 324 data points collected from 75 fields from Egypt 
including the oil fields from Gulf of Suez, Western Dessert, and Sinai. These areas 
were reported the necessity for regional correlations to be developed. Therefore, 
Hanafy et al. (1997b) used the same data to develop correlations for determining Pb, 
Rs, Bo, Co, Po, and Pob of Egyptian crude oil. Moreover, the developed correlations 
were later improved by Hanafy et al. (2005).

Elsharkawy and Alikhan (1999) presented regional correlations for 
predicting Pod, Pob and Po using 254 data points collected from Middle East.

Boukadi et al. (2002) presented correlations for predicting Pb, Rs, B0, and 
Pob based on crude oil data from Oman. However, for Pb correlation, Standing (1947) 
correlation gave better result.
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Valkô and Mccain Jr (2003) stated that it was not necessary to develop 
geographical correlations since carefully prepared universal correlations could give 
adequate results. Therefore, Valkô and Mccain Jr (2003) used large set of fluid 
property data obtained from a service company and presented universal correlations 
for predicting Pb (developed from a total of 1,745 data points), Rs (developed from a 
total of 881 data points), and Yg (developed from a total of 618 data points).

Hashim and Hassaballah (2003) proposed viscosity-temperature correlation 
based on published viscosity measurements data. The correlation shown absolute 
average errors of 2.8% after it was applied to 64 viscosity measurements data points 
from Ahrabi et al. (1989).

Al-Marhoun (2004) evaluated correlations for Middle East crude oil using 
data obtained from flash vaporization, separator tests, viscosity measurements, and 
gas analysis on 186 bottom hole samples. Al-Marhoun (1988) correlations for pb and 
Rs prediction were the recommended approaches. The B0 and Bt correlations from 
Al-Marhoun (1992) were recommended. For Co correlation, Al-Marhoun (2003) 
correlation was recommended. For oil viscosities, Al-Marhoun (2004) also proposed 
go correlation, and recommended gob correlation from Beggs and Robinson (1975) 
and god correlation from Glaso (1980). However, since high errors of gob and god 
correlations for Middle East crude oil, these properties were recommended for more 
research.

Dindoruk and Christman (2004) correlations for predicting Pb, Rs, B0, Co, 

god, gob, and go for Gulf of Mexico crude oils. Although these correlations were 
similar to the correlations from Standing (1947), Petrosky Jr. and Farshad (1993), 
and Petrosky and Farshad (1995), these correlations gave better results over wider 
applicable range.

Naseri et al. (2005) used Iranian reservoirs data to develop god, gob, and go 
correlations for Iranian crude oils.

Hossain et al. (2005) developed correlations for predicting god, gob, and go 
for heavy oil (crude oils with API ranging from 10-22.3 °API) using three data sets 
from Chevron, Kartoatmodjo and Schmidt (1994), and De Ghetto et al. (1995). They 
also investigated the influences of wax, asphaltene, and resin contents on oil
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viscosity. However, Chevron data did not confirm the effects of these components as 
found in the experiment from Argillier et al. (2002).

Isehunwa et al. (2006) developed Pod, Po, and Po correlations for light crude 
oil using data collected from over 400 oil reservoirs of the Niger Delta.

Ikiensikimama et al. (2006) evaluated numerous correlations for predicting 
oil properties of the Niger Delta crude. Al-Shammasi (2001 )’ร Bob correlation, 
Lasater (1958)’s Pb correlation, and Dindoruk and Christman (2004)’s Co correlation 
gave the best results. Petrosky Jr. and Farshad (1993)’ร c0 correlation and 
Kartoatmodjo and Schmidt ( 1991 ) 'ร B0 correlation were reported to give the best 
results. Glaso (1980)’s Bt correlation was reported to give the best results, however, 
still lack of accuracy. Dindoruk and Christman (2004)’s Pod correlations, Petrosky Jr. 
and Farshad (1993)’ร Pob correlation, Beal (1946)’ร Po correlation, and Khan 
(I987)’s Psat correlation were reported to give the best results.

Sutton and Bergman (2006) evaluated Po correlations based on 10,248 data 
points from 1,399 oil samples and found that the correlations from De Ghetto and 
Villa (1994) and Kartoatmodjo and Schmidt (1991) could give negative value of Po 
under high Pob value and high differential pressure. Moreover, Pod correlation was 
proposed to use with the wider range of Pob and differential pressure.

Sutton (2006); Sutton (2008) presented correlations for bubble point oil 
density, undersaturated oil densitiy, Bob, and Co based on 11,960 data points obtained 
from 1,099 worldwide oil PVT reports. However, Bob correlations from Velarde et al. 
(1997) and Frashad et al. (1996) were found to be more accurate.

Ugbe et al. (2006) developed generalized correlations with one adjustable 
parameter for predicting Pob and p0. The correlations were employed with Niger 
Delta crudes.

Hemmati and Kharrat (2007) presented Pb, Bob, and Rs correlations for 
Iranian crude oil based on 287 data points collected from more than 30 oil fields.

Bergman and Sutton (2007a); Bergman and Sutton (2009) constructed a 
large database of 9,837 data points from 3,047 samples of crude oil, petroleum 
fractions, and pure component properties collected from both public and private 
sources to evaluate 23 Pod correlations. Bergman’s Pod correlation (Whitson et ah,
2000) was recommended. New Pod method was also developed from the constructed
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database for results over a wide range of conditions. Another large worldwide 
database of 12,474 data points from 1,849 oils samples was also used by Bergman 
and Sutton (2007b) to evaluate 21 Pob methods. Bergman’s Pob correlations (Whitson 
et ah, 2000) were also recommended. However, another Pob method was also 
developed.

Zhang et al. (2007) proposed a simple correlation for predicting Pod at 
different pressures as a function of T and Pod measured at 50°c using heavy crude oil 
data from Liaohe Basin, NE China.

Bello et al. (2008) evaluated correlations for predicting Pb (Al-Marhoun, 
1988; Dokla and Osman, 1992; Glaso, 1980; Lasater, 1958; Standing, 1947) and Bob 
(Al-Marhoun, 1992; Dokla and Osman, 1992; Glaso, 1980; Labedi, 1990a; Standing, 
1947) using 23 black oil PVT data points obtained from different oil fields in the 
Niger Delta. Since the errors resulted from this evaluation work, development of 
more accurate Pb and Bob correlations were recommended for Niger Delta oils (Bello 
et ah, 2008).

Ikiensikimama and Ogboja (2009) used functional form of the Lasater 
(1958) correlation with general relationship from Standing (1947) to develop 
correlation for predicting Pb for the Niger Delta crude based on 250 differential 
liberation reports from oil fields in the Niger Delta.

Okoduwa and Ikiensikimama (2010) divided Niger Delta crudes data into 5 
different API ranges and developed correlations for determination of Pb at each API 
ranges.

Elmabrouk et al. (2010) proposed correlations in the absence of PVT 
analysis based on 476 data points collected from separator(s) tests with 118 reservoir 
fluid studies from Libyan oil fields in the Sirte Basin for predicting Pb and Bob as 
functions of separator Rs (Rsp), separator pressure (Psp), Yo, and Très.

Moradi et al. (2010) used a total of 1,801 global data sets (1,170 data sets 
from 9 published literature, 634 unpublished data sets from Iranian reservoirs) to 
develop Pb correlation.

Abedini et al. (2010) employed PVT data from 5 oil samples obtained from 
Iranian oil reservoirs and developed Po correlation as a function of Pb and pod.
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Nikpoor and Khanamiri (2011) presented correlations for predicting Pb, Rs, 
and Bob of Iranian crudes based on 421 differential liberation data points of 
southwestern Iranian oilfields. Nikpoor and Khanamiri (2012) also developed 
correlation for predicting Po using 572 data points from Iranian oilfields.

Alomair et al. (2011) presented Pod correlation for Kuwaiti oils based on 360 
data points from 33 heavy oil samples.

Singh and Hosein (2012) evaluated correlations for predicting Pb, Bob, and 
Rs for Trinidad oils offshore the Southwest Coast. Velarde et al. (1997) correlations 
were recommended as they stated that there was no need to develop new correlations 
for Trinidad oils offshore the Southwest Coast.

Zahaby et al. (2012) used 35 Egyptian crude data to develop guidelines for 
choosing the best correlation for predicting black oil properties at bubble point, 
saturated, and undersaturated conditions.

Godefroy et al. (2012) compared and evaluated over 30 published 
correlations for predicting Pb, Rs, and Bob to show how different parameters could 
affect the result with different correlations.

2.5 Artificial Neural Network
This section introduces artificial neural network, one of the most widely used 

artificial intelligent approaches for crude oil properties prediction. It has 
interconnected group of artificial neurons organized in a series of layers in order to 
transfer connection weights, which are the memory of the system between its 
processing elements (nodes) working in parallel. ANN is useful and robust method to 
solve numerous problems dealing with uncertain, inexact and obscure data where the 
relations between each parameter are unknown as formal analysis by human or 
conventional computer is difficult or impossible. ANN can be a tool for functional 
approximation, pattern recognition, nonlinear system identification, and control.

2.5.1 Inspiration of ANN
ANN is inspired by practical working aspect of the biological 

structure of nervous system as shown in Figure 2.1. A biological neuron comprises 
three components including cell body, dendrite, and axon. The dendrites are branches 
of nerve fibers that transfer and integrate electrical signals (synaptic inputs) received
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through other upstream neural cells at synapses areas (point of contacts) into the cell 
body (soma) hence the neuron is activated. The cell body has a role to sum the 
received synaptic inputs. Finally, the axon delivers the sum of signals from the cell 
body to dendrites of other neurons connected at their synapses (Hagan et al., 1996).

Nucleus D end rite

Figure 2.1 Biological structure of nervous system (Engelbrecht, 2007)

2.5.2 ANN Architecture
Generally, ANN is supervised system that can be adjusted or trained based 

on a given set of data to find patterns between its input and output as a result to 
desired target output. Like the human brain, in learning phase, ANN can accumulate 
knowledge and learn from the past experience from flows of information through the 
learning algorithm (Dutta and Gupta, 2010). Typically, large data set with input and 
output pairs is needed to train a network efficiently. ANN structure and a single 
neuron model are depicted in Figure 2.
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Inpul la y e r H idden  la y e rs  O u tp u t lay e r

Figure 2.2 FFNN structure and a single neuron model (Dutta and Gupta, 2010)
Figure 2 presents feed-forward neural network (FFNN), one of the most 

popular ANN structures for function estimation. From the single neuron illustrated in 
Figure 2, input of the neuron (X j )  is multiplied by neuron weight (Wji) and added with 
bias (bj) to form net input (aj). Then aj is passed through transfer function (f(aj)), 
which gives the neuron output (hk). hk can either be the input to other neurons in the 
next layer or the output of the ANN for the hk from the output layer depending on the 
position of the neuron. During training phase, network error will be computed using 
selected training algorithm. Therefore, back propagation algorithm with momentum 
is the most commonly used as training algorithm for this type of FFNN for function 
estimation. Therefore, Wji in each neuron will be adjusted depending on magnitude 
of error. Training will stop when neuron weights are adjusted until error cannot be 
further decreased; hence good agreement between input and output is achieved. 
Different types of transfer function, number of hidden-layer, number of neuron in 
each hidden-layer, and training algorithm, can be chosen at the beginning by the user 
for different objective (Hagan et ah, 1996).

The ANN architecture has to be optimized with the size of the training data 
to avoid any overfitting ANN, which could give good results for only the data used 
in training phase. However, the overfiting ANN (or overtrained ANN) could not give 
a generalized result from the data from other sources (Al-Marhoun and Osman,
2002).
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2.5.3 Transfer Functions
Different transfer function (f(aj)) can be selected based on the problem 

of the particular ANN. Some of the transfer functions including linear transfer 
function (Purelin), Log-Sigmoid transfer function (Logsig), and Hyperbolic Tangent 
Sigmoid transfer function (Tansig), are the most widely used for function estimation.

2.6 Artificial Intelligence Techniques

As described in the Section 2.4, large volume of empirical correlations was 
developed to estimate crude oil properties. Most of them were developed based on 
specific data source and previous works, which attempted to change coefficients and 
equations to be applied with each situations (Asadisaghandi and Tahmasebi, 2011). 
However, artificial intelligence approaches can be used as powerful tools with large 
degrees of freedom and ability to solve complex, non-linear problems where the 
relation between each parameter is unknown (Al-Marhoun et ah, 2012; Gharbi et al.,
1999).

Gharbi and Elsharkawy (1999) presented two back-propagation neural 
networks (BPNN) with two hidden layers for prediction of Pb and Bob of Middle East 
crude oil. The models used Rs, Yg, Yo, and Très as input parameters. 498 data points 
were used for training and additional of 22 data points were used for cross-validation 
both ANN models. The Pb ANN had 8 neurons in the first hidden layer and 4 neurons 
in the second hidden layer. For the Bob ANN, 6  neurons in both hidden layers were 
used. The developed ANN models outperformed the conventional correlation 
methods in term of average error. These developed Pb and Bob ANNs by Gharbi and 
Elsharkawy (1999) were later validated using data by Al-Shammasi (2001) and Al- 
Shammasi (1999), and were reported to give physical trend. Again, Gharbi and 
Elsharkawy (2003); Gharbi and Elsharkawy (1997); Gharbi et al. (1999) presented 
another universal BPNN model with three hidden layers for predicting Pb and Bob 
using data sets from 350 different crude oils from all over the world. 5,200 data 
points were used for training process, and 234 data points for verifying the model. 
The model used back propagation with momentum as learning algorithm. Comparing 
to the conventional correlation methods, the universal Pb ANN model was reported to



19

be lower in term of average error, and the universal Bob ANN model was reported to 
be better in term of correlation coefficient (R-value). However, both universal ANNs 
had less improvement over the Middle East ANNs (Gharbi and Elsharkawy, 1999).

Al-Shammasi (2001) and Al-Shammasi (1999) presented universal Pb and 
Bob correlations as well as ANNs. Pb correlation from Standing (1947) and B0 

correlation from Petrosky Jr. and Farshad (1993) were the recommended methods. 
However, the developed ANNs were reported to give small improvements similar to 
the developed correlations. Therefore, the limitation of the data used in developing 
ANNs was reported culprit (Al-Shammasi, 1999; Al-Shammasi, 2001).

Elsharkawy (1998, 2003) presented a radial basis function (RBF) neural 
network model for predicting Bob, Rs, P o ,  F o b , Co, and evolved Yg (more detail of RBF 
concept can be found in Chen et al. (1991)). The input parameters are Pres, T, API, 
and separator Yg. The presented model used 90 differential PVT data points for 
training, and 10 data points for testing the model.

Varotsis et al. (1999) presented a novel ANN approach, two hidden-layers 
BPNN for predicting the complete PVT behavior of reservoir oil and gas condensate 
using reservoir fluid composition and field measurements as the input parameters. A 
total of 650 PVT data points including 400 oil data and 250 gas condensate data were 
used. The data were randomly classified into training data set (80%), testing data set 
(10%), and validation data set (10%).

Elsharkwy and Gharbi (2000) presented a comparison between classical 
regression techniques (CRT) and ANN techniques for prediction of p as a function of 
Pres, Très, API. and Yg- The using 805 viscosity measurements of crude oil samples 
(700 data points for training and 105 data points for cross-validation). General 
regression neural network (GRNN) was selected to simulate behavior of crude oil 
viscosity better than other CRT, BP, Ward and Levenberg-Marquardt (LM) back- 
propagation techniques.

Alcocer and Rodrigues (2001) used data visualization and ANN modeling 
for predicting P o  and API gravity based on nuclear magnetic resonance signal data 
from 24 Venezuelan oil samples. Moreover, specific models were also created using 
15 oil samples from the same origin for verifying the presented model.
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Osman et al. (2001) used 803 published data sets from the Middle East, 
Malaysia, Colombia, and the Gulf of Mexico to develop an ANN model for 
predicting Bob with 402 data used for training, 201 data for cross validation and 
remaining 200 data for testing the model. The model was one hidden-layer feed
forward neural network (FFNN) with 4 nodes in input layer, 5 nodes in a hidden 
layer, and one node in the output layer (4-5-1).

Osman and Abdel-Aal (2002) presented abductive network model based on 
self-organizing group method of data handling (GMDH) approach as an alternative 
model for predicting Pb and Bob. A total of 283 data sets were split into a set of 198 
data points for training, and another set of 85 data points for testing the model. These 
283 data sets were reported to be the data collected from Saudi crude oils by Al- 
Marhoun and Osman (2002). The developed network was different from other neural 
networks since the GMDFl-based abductive network produced a set of high-degree 
polynomial correlations instead of estimated figures. The same data sets were also 
used to develop two BPNN models for predicting these properties separately (4-7-1 
for Pb, 4-8-1 for bubble oil FVF) using 142 data points for training, 71 data points for 
cross-validation, and remaining 70 data points for testing both models.

Goda et al. (2003) developed four-layer BPNNs for predicting Pb and Bob- 
The Pb model used Très, API, yg, and Yo as input parameters, two hidden-layers with 
10 nodes in each hidden-layer, and an output layer of Pb (4-10-10-1). The network 
was trained with 160 datasets and tested with other 20 data sets collected from 
Middle East crude oils. However, the Bob model was different from other works since 
the estimated Pb from the first model was used with Très, Rs, API, and Yg as the input 
parameters in 4-8-8-1 ANN architecture.

Osman and Al-Marhoun (2005) presented two BPNN with RBF models for 
predicting PVT properties of oil field brines using 1,040 published data points. The 
data set were divided for training, cross-validation, and testing for both models at the 
ratio of 2:1:1. The first model had 3-38-3 ANN architecture for predicting brine 
compressibility factor, brine formation volume factor, and brine density using Très, p, 
and salinity as input parameters, while the second model had 2-2-1 architecture for 
predicting brine viscosity using Très and salinity as input parameters.
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El-Sebakhy (2009b); El-Sebakhy et al. (2007) used 782 data sets after 
dropping the redundant data from the total of 803 used in Osman et al. (2001) and 
Goda et al. (2003) to develop support vector regression (SVR) modeling scheme (see 
Cortes and Vapnik (1995) for more detail in SVR technique) for predicting Pb and 
Bob based on Rs, Très, Xo and Xg as input parameters. They claimed that the developed 
SVR model was better than both abductive networks and FFNNs in term of stability 
and accuracy. Moreover, the same data sets were used in El-Sebakhy (2009a) for 
predicting these properties using type-1 fuzzy inference system with the same input 
parameters as El-Sebakhy (2009b); El-Sebakhy et al. (2007). Details for type-1 fuzzy 
inference system concept can be found in Zadeh (1965). The developed type-1 fuzzy 
model gave high accuracy in predicting Bob with stable performance.

Flajizadeh (2007b) presented generic algorithms for predicting viscosity of 
crude oils using 89 data points collected from 2 PVT reports and 3 fluid 
characterization reports from Iranian oil fields. The input parameters were Rs, 
pressure, temperature, and oil density. The model took about 18 hours to run. 
Hajizadeh (2007a) used the same data sets to develop type-1 fuzzy inference system 
and two-layer FFNNs for predicting crude oil viscosity. These two approaches were 
reported to be successful to predict and model crude oil viscosity with capability to 
recognize possible relations between input and output parameters in large volume of 
data, in the case where the system architecture was not known.

Obanijesu and Araromi (2008) presented FFNN with LM and BP algorithms 
for predicting Pb and Bob of Niger Delta crudes using 542 published data sets. The 
model used Rj, Tres, Yo and Xg as input parameters. The model could predict Pb and 
Bob accurately within the range of data.

Dutta and Gupta (2009) present SVR models for predicting Rs, Bob, B0, gob, 
and go of Indian crudes based on 372 data points for Pb model and Rs model, 530 
data points for Bob model, 263 data points for B0 model, 435 data points for gob 
model, and 252 data points for go models. All the developed models outperformed 
most other conventional correlations. The same data sets were used by Dutta and 
Gupta (2010) to develop ANN models with BP and BR algorithms for predicting 
these PVT properties. Each model used 80% of each data for training, and remaining 
20% of each data for testing. The developed ANNs had different architecture
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including 4-6-4-1 for Pb model, 4-6-5-1 for Rs model, 4-9-1 for Bob model, 7-6-1 for 
B0 model, 4-6-4-1 for Pob model, and 4-9-1 for Po model. All the ANN models gave 
better performance compared to most other conventional correlations as well.

Ahmadloo et al. (2009) presented response surface methodology (RSM) 
based approach for predicting Pod, Pi, and Po of extra heavy to heavy crude oils using 
45 medium-heavy crude oil PVT data sets selected from a total of 170 data sets from 
Alberta and Saskatchewan, and 63 heavy-extra heavy data sets selected from 110 
data points reported by De Ghetto et al. (1995). The data selected were analyzed, 
normalized, and divided into training, testing and validation sets in the ratio of 4:1:1. 
The RMS-based approach could successfully predict Pod and p0. However, the 
developed correlation for Po was outperformed by the correlation from Beal (1946) 
as it gave higher average absolute error (24.4% to 19.4%).

Oloso et al. (2009) developed ANN models, SVR models, and functional 
network (FN) models for predicting fitting coefficients for crude oil viscosity and Rs 
curves using crude oil compositions and reservoir properties. The 12-12-5-1 ANN 
structures and SVR models were used for predicting fitting coefficients. 12-12-6-1 
ANN structures were used to predict oil viscosity and Rs. FN models were used for 
predicting fitting coefficients and oil viscosity. 99 composition data points, 1706 
viscosity-pressure data points and 841 Rs -pressure data points were used. SVR and 
FN models gave the better performances than ANN models while SVR gave the best 
result for predicting Rs curves.

Khoukhi et al. (2011a); Khoukhi et al. (2011b) used 99 composition data 
sets to develop SVR models, FN models, and 12-12-5-1 FFNN model for predicting 
fitting coefficients of viscosity and Rs curves. In addition, two 12-13-6-1 FFNN 
models were used for predicting Pob and Rs. Similarly, both SVR and FN models 
were reported to outperform the developed FFNNs.

Abedini et al. (2011) employed data from five Iranian oil samples to 
develop type-1 fuzzy model for determination of Po. The model used p, pb, and Pob 
as input parameters. After using 86 experimental data sets for testing, the developed 
type-1 fuzzy as reported to give better results compared to the published correlations 
from Beal (1946), Kartoatmodjo and Schmidt (1994), Khan (1987), and Vazquez and 
Beggs (1980).
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Olatunji et al. (2011a) introduced sensitivity based linear learning method 
(SBLLM) for predicting Pb and Bob- The model used T, Rs, Yg, and Yo as input 
parameters. The data used for developing this model were the same data used in the 
published works from Al-Marhoun (1988), Al-Marhoun and Osman (2002), Goda et 
al. (2003), El-Sebakhy et al. (2007), and El-Sebakhy (2009a, 2009b). In addition, 
Olatunji et al. (201 lb) also employed the similar data with to develop adaptive type- 
2 fuzzy logic inference system for prediction of Pb and Bob- The developed SBLLM 
and type-2 fuzzy logic inference system from Olatunji et al. (201 lb) and Olatunji et 
al. (201 la) were reported to give competitive results comparing to ANNs developed 
in their work with better performance compared with those correlations from 
Standing (1947), Glaso (1980) and Al-Marhoun (1992).

Asadisaghandi and Tahmasebi (2011) presented two ANN models for 
predicting Pb and Pob of Iranian crudes using 130 data sets from 23 different oilfields 
in Iran. Reservoir temperature, Rs, Yo, and Yg were normalized to be input parameters 
in the models. Both models used back propagation (BP) and Bayesian regularization 
(BR) as training algorithms. The model architecture for Pb was 4-10-1, while for the 
Bob model was 4-8-1. The results shown that both ANN models gave the best result 
as well as Glaso ( 1980)’ร correlation for Pb prediction and Al-Marhoun ( 1988)’ร 
correlation for Bob prediction.

Torabi et al. (2011) developed three ANN models with LM training 
algorithm for predicting Pod, Pob, and Po using data sets from five Iranian oil 
reservoir. These models worked in parallel with each other. Firstly, the Pod ANN 
used API and T as input parameters. Secondly, Rs, Pb, and the predicted Pod, (which 
was the output from the Pod ANN model) were used as input parameters for Pob ANN 
model. Last, the Po model then used the Pod and Pob obtained from the Pod ANN and 
the Pob ANN, and p as input parameters. These ANN models were reported to 
outperform the regional correlations from Beal (1946), Beggs and Robinson (1975), 
Glaso (1980), Labedi (1992), Kartoatmodjo and Schmidt (1994), Elsharkawy and 
Alikhan (1999), Chew and Connally Jr. (1959), Vazquez and Beggs (1980).

Al-Marhoun et al. (2012) presented artificial intelligent techniques for 
predicting oil viscosity curve using data from 42 PVT reports obtained from
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Canadian oil fields. Functional network forward selection (FNFS) technique was 
reported to give the best results followed by SVR.

Khoukhi (2012) proposed adaptive neuro-fuzzy inference system (ANFIS), 
generic adaptive neuro-fuzzy inference system (GANFIS), genetically optimized 
neural networks (GONN) as hybrid soft computing systems for predicting Pb and Bob 
based on the data used in Emad A. El-Sebakhy (2009b). According to comparative 
results between hybrid systems, neural network as well as correlations by Al- 
Marhoun (1988), Osman and Al-Marhoun (2005), and Al-Marhoun and Osman 
(2002), GANFIS and GONN gave the best results with very competitive 
performance.

Asoodeh and Bagheripour (2012) utilized ANN, fuzzy logic system and 
ANFIS with power law committee with intelligent systems (PLCIS) for predicting Pb 
using worldwide 361 PVT data points taken from Ostermann and Owolabi (1983), 
Dokla and Osman (1991), Omar and Todd (1993), and De Ghetto and Villa (1994). 
PLCIS could integrate and enhance the precision results from multiple prediction 
systems.

Finally, Ikiensikimama and Azubuike (2012) presented BPNN with LM 
algorithm with 4-5-1 network architecture for predicting Bob of Niger Delta crudes 
using 802 data sets collected from Niger Delta region. 482 data sets were used for 
training, 160 data sets were used for cross-validation, and remaining 160 data sets 
were used for testing the model. The input parameters were reservoir temperature, oil 
API gravity, Yg, and Rs. The results from statistical and trend analyses shown that the 
developed neural model had good agreement with physical trend with better 
performance compared to other empirical correlations.
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