PHYSICAL AND ELECTROCHROMIC PROPERTIES OF POLY (2,5-DIMETHOXY ANILINE) SYNTHESIZED IN OXALIC, NITRIC, AND HYDROCHLORIC ACIDS

Bureerat Suephatthima

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University

2012

128373248

Thesis Title:	Physical and Electrochromic Properties of Poly (2,5-
	dimethoxy aniline) Synthesized in Oxalic, Nitric, and
	Hydrochloric Acids
By:	Bureerat Suephatthima
Program:	Polymer Science
Thesis Advisor:	Prof. Dr. Anuvat Sirivat

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Master of Science.

College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

Anuvationed

(Prof. Dr. Anuvat/Sirivat) mili the

(Assoc. Prof. Dr. Sujitra Wongkasemjit)

D. Patlavara korn

(Dr. Datchanee Pattavarakorn)

ABSTRACT

5272018063:	Polymer Science program
	Bureerat Suephatthima: Physical and Electrochromic Properties of
	Poly (2,5-dimethoxy aniline) Synthesized in Oxalic, Nitric, and
	Hydrochloric Acids
	Thesis Advisor: Prof. Anuvat Sirivat 159 pp.
Keywords:	Electrochromic polymer/ Poly (2,5-dimethoxyaniline)/
	Electrochemical polymerization

One of the promising electrochromic polymers is polyaniline, which possess a high environmental stability and fast response time. Nonetheless, the low solubility in common organic solvents restricts processibility. A derivative of polyaniline, poly (2,5-dimethoxy aniline) or PDMA, shows higher solubility and a faster response time than polyaniline. In this work, poly (2,5-dimethoxy aniline) was electrochemically deposited on flexible indium tin oxide in oxalic, nitric and hydrochloric acids at various dipping times. Under different applied potentials, the optical contrast and response time of the PDMA coated plastic indium tin oxide were determined by a UV-visible spectroelectrometer . The fastest response times in all acids occurred at 3.5 volts, where the response time was only 3.7 seconds in case of 6 minutes synthesis of PDMA in hydrochloric acid. The Fourier transform infrared (FTIR) spectroscopy indicated that the structure of PDMA coating via three acids were nearly the same except that the FTIR spectrum of PDMA from nitric acid showed an absorption peak at 1384 cm⁻¹ representing N-O vibration. The thermal stability of the electropolymerized PDMA films was investigated via thermogravimetric analysis and showed similar three steps of weight loss at ~160 °C, 310 °C, and 450 °C. The surface morphology of PDMA coating depended on the type of acids used for the electropolymerization process.

บทคัดย่อ

บุรีรัตน์ สือพัฒธิมา : สมบัติทางกายภาพและสมบัติการเปลี่ยนสีด้วยไฟฟ้าของพอลิ 2, 5 ใดเมทอกซีอะนิลีนที่สังเคราะห์ใน กรดออกซาลิก กรดในตริกและกรดไฮโดรคลอริก (Physical and Electrochromic Properties of Poly (2,5-dimethoxy aniline) Synthesized in Oxalic, Nitric, and Hydrochloric Acids) อ. ที่ปรึกษา : ศ. ดร. อนุวัฒน์ ศิริวัฒน์ 159 หน้า

พอลิอะนิลีนเป็นพอลิเมอร์ที่น่าสนใจสำหรับการนำไปใช้เป็นวัสดุที่เปลี่ยนสีด้วยไฟฟ้า ้เนื่องจากพอลิอะนิลีนมีความเสถียรในสภาวะแวคล้อมทั่วไป อีกทั้ง ยังมีอัตราการเปลี่ยนแปลงสีที่ รวดเร็ว แต่เนื่องจากการละลายที่ต่ำในตัวทำละลายอินทรีย์ส่งผลให้เกิดความจำกัดในกระบวนการ สังเคราะห์ ในขณะที่อนุพันธ์ชนิดหนึ่งของพอลิอะนิลีน คือพอลิ 2,5 ไดเมทอกซีอะนิลีน ซึ่งมี คุณสมบัติกือสามารถละลายได้ดี และสามารถตอบสนองได้รวคเร็วกว่าพอลิอะนิลีน ดังนั้นสำหรับ ้งานวิจัยนี้ พอถิ 2,5 ใคเมทอกซีอะนิลีน จึงถูกนำมาศึกษาผลของศักย์ไฟฟ้า และความเข้มข้นของ ้อิเล็กโตรไลท์ที่มีต่อเวลา ที่วัสคุใช้ในการเปลี่ยนแปลงสี โคย พอลิ 2,5 ใคเมทอกซีอะนิลีนนั้นถูก ้สังเคราะห์ด้วยไฟฟ้า ลงบนพลาสติกที่เคลือบด้วย อินเดียม ทินออกไซด์ โดยใช้เวลาในการ สังเคราะห์ที่แตกต่างกัน ในกรดออกซาถิก กรดในตริกและกรดไฮโครคลอริก จากนั้นพอลิ 2,5 ้ใดเมทอกซีอะนิลีนที่สังเคราะห์ได้ถูกนำมาศึกษาการเปลี่ยนแปลงสีที่ศักย์ไฟฟ้าต่างๆกัน พบว่า เมื่อศักย์ไฟฟ้าเพิ่มขึ้นการเปลี่ยนสีของพอลิ 2,5 ใคเมทอกซีอะนิลีนรวคเร็วขึ้นอย่างชัคเจน โคยที่ พอลิ 2,5 ใคเมทอกซีอะนิลีนที่สังเคราะห์จากกรคทั้งสามชนิคสามารถเปลี่ยนสีได้รวคเร็วที่สุดที่ 3.5 โวลต์ โดยพอลิ 2,5 ใดเมทอกซีอะนิลีนที่ถูกสังเคราะห์ขึ้นในกรดไฮโดรคลอริกด้วยเวลา 6 นาที ใช้เวลาเพียง 3.7 วินาทีในการตอบสนองการเปลี่ยนสีด้วยการรีดักชัน (เหลือง) รวมทั้ง ออกซิเคชัน (เขียวแกมน้ำเงิน) นอกจากนี้จากผลการทคลองพบว่าความเข้มข้นของสารละลาย กรคซัลฟูริกที่ถูกใช้เป็นอิเล็คโตรไลท์นั้น มีผลต่อความว่องไวในการเปลี่ยนแปลงสีด้วย โดยเมื่อ ความเข้มข้นของอิเล็คโตร ไลท์เพิ่มขึ้นจาก 10° เป็น 10⁻² M ส่งผลให้พอลิ 2,5 ไคเมทอกซีอะนิลีน ตอบสนองในการเปลี่ยนสีได้รวดเร็วขึ้นมากกว่า 20 เท่า

ACKNOWLEDGEMENTS

The author would like to thank all faculties who have offered valuable knowledge, especially, Prof. Dr. Anuvat Sirivat who is her main advisor offering several enlightening suggestions, discussions and problem solving directions during the course of her work. She would like to express thanks to Assoc. Prof. Dr. Sujitra Wongkasemjit and Dr. Datchanee Pattavarakorn for kindly being on her thesis committee.

Special thanks for all CEAP group members for their various helpful discussion and suggestions on this work.

The author is grateful for the scholarship and funding of the thesis work provided by the Petroleum and Petrochemical College, and by the Center of Excellence on Petrochemical and Materials Technology, Thailand.

Finally, she really would like to thank with sincerest appreciation for her parents and family for the love, understanding, encouragement, suggestions, helping, and cheering.

TABLE OF CONTENTS

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	ix
List of Figures	xi

PAGE

CHAPTER

I	INTRODUCTION	1
II	LITERATURE REVIEW	3
	2.1 Electrochromism	3
	2.2 Electropolymerization	5
	2.3 Electrolytes	6
	2.4 Electrochromic Device	7
	2.5 Electrochromic Polymers of the Previous Work	9
	2.5.1 Polyamide	9
	2.5.2 Carbazole – containing polymer	11
	2.5.3 Polyphenothiazine derivatives	11
	2.5.4 Polythiophene	12
	2.5.5 Polyaniline	15
III	METHODOLOGY	25
	3.1 Materials and Instruments	25
	3.2 Experimental Methods	25
	3.3 Characterizations and Testing	26
	3.3.1 Fourier Transform Infrared Spectrometer or FT-IR	26

IV

27

3.3.	3 UV-VIS Absorption Spectrophotometer	27
3.3.	4 Cyclic Voltammetry (CV) of PDMA	28
3.3.	5 Field-Emission Scanning Electron Microscopy	29
MANUS	SCRIPT	30
Abstract		31
l Introd	luction	32
2 Exper	imental	34
2.1	Materials	34
2.2	The solubility test of 2,5-dimethoxy aniline	
	monomer (DMA) in oxalic, hydrochloric, nitric,	
	sulfuric, and acetic acids	34
2.3	Electropolymerization of PDMA on ITO plastic for	
	the film appearance study	34
2.4	Electropolymerization of PDMA on ITO Plastic for	
	the Electrochromic Study	35
2.5	Characterization of PDMA/ITO film	35
2.6	The Thickness of PDMA on ITO Substrate	36
2.7	The Electrochromic study of PDMA Coated ITO Plastics	36
3 Resul	ts and Discussion	37
3.1	The Solubility of 2,5-Dimethoxy Aniline	
	Monomer (DMA) in Oxalic, Hydrochloric, Nitric,	
	Sulfuric, and Acetic Acids	37
3.2	Electropolymerization of PDMA on ITO Plastic for the	
	Film Appearance Study	38
3.3	FTIR spectra of PDMA/ITO film	38
3.4	Thermogravimetric Analysis	39
3.5	The Morphology of PDMA Surface	39
3.6	The Thickness of PDMA on ITO Substrate	39

3.3.2 Thermogravimetry Analysis or TGA

CHAPTER

 \mathbf{V}

PAGE

3.7 The .	Absorption spectrum of PDMA	40
3.8 The l	Kinetic Coloration of PDMA	40
3.8.1	The effect of the testing potentials on	
	the response time	40
3.8.2	The effect of the electrolyte concentration on	
	the response time	42
3.8.3	The effect of the type of acids and the dipping ti	me
	on the optical contrast	43
3.9 Cycl	ic Voltammetry (CV) of PDMA	44
4 Conclusion	S	45
Acknowledgn	nents	45
References		46
CONCLUSI	ONS	56
REFERENC	ES	58
APPENDIC	ES	62
Appendix A	Solubility	62
Appendix B	Electropolymerization	63
Appendix C	Identification of FTIR Spectra	65
Appendix D	Thermogravimetric Analysis or TGA	68
Appendix E	The Electrochromic Properties of PDMA	
	Coated ITO Plastics	71
Appendix F	Cyclic Voltammetry (CV) of PDMA	143
Appendix G	The Morphology and Thickness of	
	PDMA Surface	148

LIST OF TABLES

TABLE

PAGE

155

CHAPTER II

2.1	Comparison of glass and plastic substrates	9
2.2	Phenothiazine and its derivatives [temperature, melt point	
	(Mp), electrochromic color and yield]	12
2.3	The electrochromic properties of PDMA and PANI of the	
	previous studies	23

CHAPTER IV

4.1	Three weight loss steps of PDMA polymerized via the three	
	acids	53
4.2	Surface Morphology of PDMA polymerized for 6 and 10	
	minutes via various acids	53
4.3	Thickness of PDMA/ITO synthesized in various acids at 3, 6,	
	and 10 minutes dipping time	54
4.4	The optical contrast of PDMA coated ITO plastic via nitric,	
	oxalic and hydrochloric acids for 6 and 10 minutes	54
4.5	The peak potentials (E_{pc} , E_{pa}) and peak currents (I_{pc} , I_{pa}) of the	
	PDMA synthesized in oxalic, nitric, and hydrochloric acids	55

APPENDICES

A1	Solubility of 0.1 M PDMA in 0.1 M of acids	62
B1	The electropolymerization of PDMA on a plastic ITO	63
C1	FTIR band assignments for the PDMA synthesized in three	
	acids	66
D1	Three weight loss steps of PDMA polymerized via the three	
	acids	69

TABLE

E1	The reduction, oxidation and total response times of PDMA	
	synthesized in oxalic acid for 3 minutes at various testing	
	potentials	80
E2	The response time of PDMA/ITO synthesized in oxalic acid	
	for 3 minutes with testing potential 1.5 V from the repeating	
	experiments	81
E3	The reduction, oxidation and total response time of PDMA	
	synthesized in oxalic acid for 6 minutes at various testing	
	potentials	86
E4	The response time of PDMA/ITO synthesized in oxalic acid	
	for 6 minutes with testing potential 1.5 V in the repeating	
	experiments	87
E5	The reduction, oxidation and total response time of PDMA	
	synthesized in oxalic acid for 10 minutes at various testing	
	potentials	92
E6	The response times of PDMA/ITO synthesized in oxalic acid	
	for 10 minutes with testing potential 1.5 V. in the repeating	
	experiments	94
E7	The reduction, oxidation and response time of PDMA	
	synthesized in nitric acid for 3 minutes at various testing	
	potentials	100
E8	The response times of PDMA/ITO synthesized in nitric acid	
	for 3 minutes with the testing potential 1.5 V in the repeating	
	experiments	101
E9	The reduction, oxidation and total response times of PDMA	
	synthesized in nitric acid for 6 minutes at various testing	
	potentials	106

TABLE

E10	The response times of PDMA/ITO synthesized in nitric acid	
	for 6 minutes with testing potential 1.5 V in the repeating	
	experiments	107
E11	The reduction, oxidation and total response times of PDMA	
	synthesized in nitric acid for 10 minutes at various testing	
	potentials	112
E12	The response times of PDMA/ITO synthesized in nitric acid	
	for 10 minutes with testing potential 1.5 V in the repeating	
	experiments	113
E13	The reduction, oxidation and total response times of PDMA	
	synthesized in hydrochloric acid for 6 minutes at various	
	testing potentials	119
E14	The response times of PDMA/ITO synthesized in	
	hydrochloric acid for 6 minutes with testing potential 1.5 V	
	in the repeating experiments	120
E15	The reduction, oxidation and total response times of PDMA	
	synthesized in hydrochloric acid for 10 minutes at various	
	testing potentials	124
E16	The response times of PDMA/ITO synthesized in	
	hydrochloric acid for 10 minutes with testing potential 1.5 V	
	in the repeating experiments	126
E17	The optical contrast of PDMA at 6 and 10 minutes	
	synthesized in nitric acid with applied potentials of 1.0, 1.5,	
	2.0, 2.5, 3.0, and 3.5 V.	140
E18	The optical contrast of PDMA at 6 and 10 minutes synthesis	
	in oxalic acid with applied potentials of 1.0, 1.5, 2.0, 2.5, 3.0,	
	and 3.5 V	141

TABLE

E19	he optical contrast of PDMA synthesized for 6 and 10	
	minutes in hydrochloric acid with applied potentials of 1.0,	
	1.5, 2.0, 2.5, 3.0, and 3.5 V	141
F1	The peak potentials (E_{pc} , E_{pa}) and peak currents (I_{pc} , I_{pa}) of	
	the PDMA synthesized in oxalic, nitric, and hydrochloric	
	acids	146
G1	Surface Morphology of PDMA polymerized for 3 minutes	
	via various acids	148
G2	Surface Morphology of PDMA polymerized for 6 minutes	
	via various acids	149
G3	Surface Morphology of PDMA polymerized for 10 minutes	
	via various acids	150
G4	Thickness of PDMA/ITO synthesized in various acids at 3, 6,	
	and 10 minutes dipping time	153

LIST OF FIGURES

CHAPTER II

FIGURE

2.1	The structures of poly(2,5-dimethoxy aniline) under applied	
	potential.	5
2.2	Electrochemical polymerization of polypyrrole (PPy).	6
2.3	Optical transmittance spectra of four ITO/PANI/PEI-	
	H_2SO_4 /ITO ECDs under applied potentials of +1.2 V and 1.2 V.	
	The pH value of the polyelectrolytes is equal to: (a) 1, (b) $2-3$,	
	(c) 6 and (d) 9.	7
2.4	Multi-layers structure of ECD.	8
2.5	Structure of EC device.	8
2.6	The reactions forming polyamide: (1) diamine; (2a) terephthalic	
	acid, (2b) isophthalic acid; (2c) 2,6-naphthalenedicarboxylic	
	acid, (2d) 4,4'-biphenyldicarboxylic acid; (2e) 4,4'-	
	oxydibenzoic acid, (2f) 4,4'-sulfonyldibenzoic acid; and (3)	
	triphenylamine-containing polyamide.	10
2.7	Synthetic route of phenothiazine derivatives.	11
2.8	Structure of PProDOT-Me2.	12
2.9	CV curve of EC film deposited on ITO/PET substrate.	13
2.10	Schematical representation for the electrochemical	
	polymerization of FPTPy with EDOT.	14
2.11	Synthetic routes of: (A) monomer; and (B) copolymer.	
	Reagents: (i) Mg,Et ₂ O; (ii)1,4-dibromonaphthalene,	
	NiCl ₂ (PPh ₃) ₂ , THF.	14
2.12	Multichromic behavior of P(BTN-co-EDOT) film at 0.4V	
	(purplishred), 0 V (brownishred), 0.2V(orangeyellow),	
	0.4V(yellowishgreen), 0.6V(green) and 1.3V (blue).	15

The general structure of PANI conducting polymers. 16 2.13 17 2.14 Four redox forms of polyaniline. SEM images for the surface of PANI electrodes with different 2.15 electro-polymerization times: (a) 50 s, 60 s (b), and (c) 90 s. Each scale bar corresponds to 500nm. 17 2.16 Optical transmittance changes of: (a) components; and (b) electrochromic device under constant polarization at -2.25 V (Bleached States=BS) and 1.50 V (Colored States=CS). PANI -CA electrode vs. V₂O₅ electrode. 19 2.17 Optical response of the device during a double potential step chronoamperometry (Bleaching potentials = -2.25 V and coloring potentials = +1.5 V). PANI -CA electrode vs. V₂O₅ electrode. 20 2.18 Cyclicvoltammogram of PDMA-modified Pt electrode in 0.01 M 2,5-dimethoxy aniline monomer in 0.5 M H₂SO₄ solution 21 UV-VIS spectra of PDMA coated ITO electrode obtained at 2.19 22 different electrode potentials. **CHAPTER III** 3.1 The experiment setup for the PDMA electropolymerization 26 The UV-visible spectroelectrometer using for an 3.2 electrochromic experiment. 28 3.3 The schematic of PDMA electrochemical cell for 28 electrochromic study. 3.4 Schematic of a electrochemical cell of PDMA/ITO for the

FIGURE

3.5 The schematic for the investigation of PDMA surface morphology via FE-SEM.29

investigation of the redox properties via cyclic voltammetry.

PAGE

29

CHAPTER IV

4.1	FTIR spectra of PDMA electropolymerized in oxalic,	
	hydrochloric and nitric acids.	50
4.2	The effect of the testing potentials on the reduction time of	
	PDMA synthesized in oxalic acid at various dipping times.	50
4.3	The effect of the testing potentials on the oxidation time of	
	PDMA synthesized in oxalic acid at various dipping times.	51
4.4	The effect of the testing potentials on the response time of	
	PDMA synthesized in oxalic acid at various dipping times.	51
4.5	The effect of H_2SO_4 concentration on the response time at 3.5	
	V of PDMA coated ITO electropolymerized in each acid.	52
4.6	Cyclic voltammograms of PDMA/ITO synthesized in oxalic	
	acid at 3, 6, and 10 minutes.	52

APPENDICES

B1	The experiment setup for the PDMA electropolymerization.		63
B2	The PDMA synthesized on a ITO plastic with the dipping times		
	of 3, 5, 10 and 20 min in 0.1 M H_2SO_4 at 1.0 V (a), 0.1 M		
	oxalic acid at 1.0 V (b), and 0.1M HCl at 1.0 V(c).		64
C1	FTIR spectra of PDMA electropolymerized in oxalic,		
	hydrochloric and nitric acids.		65
C2	The structures of poly(2,5-dimethoxy aniline) under applied		
	potential.		66
Dl	TGA curve for PDMA synthesized in: (a) oxalic acid; (b)		
	hydrochloric acid; and (c) nitric acid.		69
E1	The UV-visible spectroelectrometer using for an		
	electrochromic experiment.		71
E2	The schematic of PDMA electrochemical cell for		
	electrochromic study.	•	71

FIGURE

E3 The absorption spectra of PDMA coated ITO plastic via oxalic acid for 3 minutes at (a) oxidized state applied potential of +1.072 V and (b) reduced state applied potential of -1.0 V. E4 The absorption spectra of PDMA coated ITO plastic via nitric acid for 3 minutes at (a) oxidized state applied potential of +1.0V and (b) reduced state applied potential of -1.0 V. 73 E5 The absorption spectra of PDMA coated ITO plastic via hydrochloric acid for 10 minutes at (a) oxidized state applied potential of +1.0 V and (b) reduced state applied potential of -1.0 V. 74 E6 The response times of PDMA synthesized in oxalic acid at 3 minutes with testing potentials (a) 0.5, (b) 1.0, (c) 1.5, (d) 2.0, (e) 2.5, (f) 3.0, (g) 3.5, (h) 4.0, (i) 5.0, and (j) 10 V via UV-Visible spectroelectrometer. 78 E7 The determination of the reduction and oxidation times of PDMA synthesized in oxalic acid at 3 minutes with testing potential 3.0 V. 79 E8 The response time of PDMA synthesized in oxalic acid at 6 minutes with testing potentials (a) 0.5, (b) 1.0, (c) 1.5, (d) 2.0, (e) 2.5, (f) 3.0, (g) 3.5, (h) 4.0, (i) 5.0, and (j) 10 V via UV-Visible spectroelectrometer. 81 E9 The response time of PDMA synthesized in oxalic acid at 6 minutes with testing potentials (a) 0.5, (b) 1.0, (c) 1.5, (d) 2.0, (e) 2.5, (f) 3.0, (g) 3.5, (h) 4.0, (i) 5.0, and (j) 10 V via UV-85 Visible spectroelectrometer. E10 The response time of PDMA synthesized in oxalic acid at 6 minutes with 3 times repeating experiments (a) to (c) at the

testing potential 1.5 V.

PAGE

87

FIGURE

E11	The response times of PDMA synthesized in oxalic acid at 10	
	minutes with testing potentials (a) 0.5, (b) 1.0, (c) 1.5, (d) 2.0,	
	(e) 2.5, (f) 3.0, (g) 3.5, (h) 4.0, (i) 5.0, and (j) 10 V via UV-	
	Visible spectroelectrometer.	91
E12	The response times of PDMA synthesized in oxalic acid at 10	
	minutes with 3 times repeating experiments (a) to (c) at testing	
	potential 1.5 V.	93
E13	The effect of the testing potentials on the reduction time of	
	PDMA synthesized in oxalic acid at various dipping times.	94
E14	The effect of the testing potentials on the oxidation time of	
	PDMA synthesized in oxalic acid at various dipping times.	95
E15	The effect of the testing potentials on the response time of	
	PDMA synthesized in oxalic acid at various dipping times.	95
E16	The response times of PDMA synthesized in nitric acid at 3	
	minutes with testing potentials (a) 0.5, (b) 1.0, (c) 1.5, (d) 2.0,	
	(e) 2.5, (f) 3.0, (g) 3.5, (h) 4.0, (i) 5.0, and (j) 10 V via UV-	
	Visible spectroelectrometer.	99
E17	The response times of PDMA synthesized in nitric acid at 3	
	minutes with 3 times repeating experiments (a) to (c) at testing	
	potential 1.5 V.	101
E18	The response times of PDMA synthesized in nitric acid at 6	
	minutes with testing potentials (a) 0.5, (b) 1.0, (c) 1.5, (d) 2.0,	
	(e) 2.5, (f) 3.0, (g) 3.5, (h) 4.0, (i) 5.0, and (j) 10 V via UV-	
	Visible spectroelectrometer.	105
E19	The response times of PDMA synthesized in nitric acid at 6	
	minutes with 3 times repeating experiments (a) to (c) at testing	
	potential 1.5 V.	107

PAGE

xviii

FIGURE

PAGE

E20	The response times of PDMA synthesized in nitric acid at 10	
	minutes with testing potentials (a) 0.5, (b) 1.0, (c) 1.5, (d) 2.0,	
	(e) 2.5, (f) 3.0, (g) 3.5, (h) 4.0, (i) 5.0, and (j) 10 V via UV-	
	Visible spectroelectrometer.	111
E21	The response times of PDMA synthesized in nitric acid at 10	
	minutes with 3 times repeating experiments (a) to (c) at testing	
	potential 1.5 V.	113
E22	The effect of the testing potentials on the reduction time of	
	PDMA synthesized in nitric acid at various dipping times.	114
E23	The effect of the testing potentials on the oxidation time of	
	PDMA synthesized in nitric acid at various dipping times.	114
E24	The effect of the testing potentials on the response time of	
	PDMA synthesized in nitric acid at various dipping times.	115
E25	The response times of PDMA synthesized in hydrochloric acid	
	at 6 minutes with testing potentials (a) 0.5, (b) 1.0, (c) 1.5, (d)	
	2.0, (e) 2.5, (f) 3.0, (g) 3.5, (h) 4.0, (i) 5.0, and (j) 10 V via UV-	
	Visible spectroelectrometer.	119
E26	The response times of PDMA synthesized in hydrochloric acid	
	at 6 minutes with 3 times repeating experiments (a) to (c) at	
	testing potential 1.5 V.	120
E27	The response times of PDMA synthesized in hydrochloric acid	
	at 10 minutes with testing potentials (a) 0.5, (b) 1.0, (c) 1.5, (d)	
	2.0, (e) 2.5, (f) 3.0, (g) 3.5, (h) 4.0, (i) 5.0, and (j) 10 V via UV-	
	Visible spectroelectrometer.	124
E28	The response times of PDMA synthesized in hydrochloric acid	
	at 10 minutes with 3 times repeating experiments (a) to (c) at	
	testing potential 1.5 V.	126

FIGURE		PAGE	
E29	The effect of the testing potentials on the reduction time of		
	PDMA synthesized in hydrochloric acid at various dipping		
	times.	126	
E30	The effect of the testing potentials on the oxidation time of		
	PDMA synthesized in hydrochloric acid at various dipping		
	times.	127	
E31	The effect of the testing potentials on the response time of		
	PDMA synthesized in hydrochloric acid at various dipping		
	times.	127	
E32	The absorption curves of PDMA synthesized in oxalic acid for		
	3 minutes tested at 3.5 V in (a) 10^{-6} , (b) 10^{-5} , (c) 10^{-4} , (d) 10^{-3} ,		
	(e) 10^{-2} , and (f) 10^{-1} M sulfuric acid.	130	
E33	The effect of sulfuric concentration on the reduction time of		
	PDMA synthesized in oxalic acid at 3 minutes.	130	
E34	The effect of sulfuric concentration on the oxidation time of		
	PDMA synthesized in oxalic acid at 3 minutes.	131	
E35	The effect of sulfuric concentration on the response time of		
	PDMA synthesized in oxalic acid at 3 minutes.	131	
E36	The absorption curves of PDMA synthesized in nitric acid for 3		
	minutes tested at 3.5 V (a) 10^{-6} , (b) 10^{-5} , (c) 10^{-4} , (d) 10^{-3} , (e)		
	10^{-2} , and (f) 10^{-1} M sulfuric acid.	134	
E37	The effect of sulfuric concentration on the reduction time of		
	PDMA synthesized in nitric acid at 3 minutes.	134	
E38	The effect of sulfuric concentration on the oxidation time of		
	PDMA synthesized in nitric acid at 3 minutes.	135	
E39	The effect of sulfuric concentration on the response time of		
	PDMA synthesized in nitric acid at 3 minutes	135	

xix

FIGURE

E40 The absorption curves of PDMA synthesized in hydrochloric acid for 6 minutes tested at 3.5 V in (a) 10^{-6} , (b) 10^{-5} , (c) 10^{-4} , (d) 10^{-3} , (e) 10^{-2} , and (f) 10^{-1} M sulfuric acid. 137 E41 The effect of sulfuric concentration on the reduction time of PDMA synthesized in hydrochloric acid at 6 minutes. 138 The effect of sulfuric concentration on the oxidation time of E42 PDMA synthesized in hydrochloric acid at 6 minutes. 138 E43 The effect of sulfuric concentration on the response time of PDMA synthesized in hydrochloric acid at 6 minutes. 139 E44 The effect of H₂SO₄ concentration on the response time at 3.5 V of PDMA coated ITO electropolymerized in each acid. 139 E45 The optical contrast (ΔAbs) determination of PDMA synthesized in hydrochloric acid at 6 minutes with testing potential 2.0 V. via UV-Visible spectroelectrometer. 140 E46 The optical contrast of PDMA coated ITO plastic via nitric, oxalic and hydrochloric acids for 6 and 10 minutes. 142 A typical cyclic voltammogram. F1 143 F2 Schematic of a electrochemical cell of PDMA/ITO for the investigation of the redox properties via cyclic voltammetry. 144 F3 Cyclic voltammograms of PDMA/ITO synthesized in oxalic acid at 3, 6, and 10 minutes. 145 F4 Cyclic voltammograms of PDMA/ITO synthesized in nitric acid at 3, 6, and 10 minutes. 145 F5 Cyclic voltammograms of PDMA/ITO synthesized in hydrochloric acid at 6 and 10 minutes. 146 Gl The schematic for the investigation of PDMA surface morphology via FE-SEM. 149

G2Cross-sectional FE-SEM of PDMA/ITO synthesized in nitric
acid at (a) 3 min, (b) 6 min, and (c) 10 min.151

PAGE

FIGURE

G3	Cross-sectional FE-SEM of PDMA/ITO synthesized in oxalic	
	acid at (a) 3 min, (b) 6 min, and (c) 10 min.	152
G4	Cross-sectional FE-SEM of PDMA/ITO synthesized in	
	hydrochloric acid at (a) 6 min and (b) 10 min.	153