CATALYTIC ACTIVITY OF METAL LOADED TITANIA NANOTUBES

Chanakarn Piwnuan

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University

2012

I2837~1

Thesis Title:	Catalytic Activity of Metal-Loaded Titania Nanatubes
By:	Chanakarn Piwnuan
Program:	Polymer Science
Thesis Advisors:	Assoc. Prof. Sujitra Wongkasemjit
	Assoc. Prof. Apanee Luengnaruemitchai
	Asst. Prof. Thanyalak Chaisuwan

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

(Assoc. Prof. Sujitra Wongkasemjit)

apam (Assoc. Prof. Apanee Luengnaruemitchai) Acthanha M

Thanyable Classer-

(Asst. Prof. Thanyalak Chaisuwan)

(Asst. Prof. Hathaikarn Manuspiya)

B. tim

.

(Asst. Prof. Bussarin Ksapabutr)

ABSTRACT

5372004063: Polymer Science Program
Chanakarn Piwnuan: Catalytic Activity of Metal Loaded Titania Nanotubes.
Thesis Advisors: Assoc. Prof. Sujitra Wongkasemjit, Assoc. Prof. Apanee Luengnaruemitchai, and Asst. Prof. Thanyalak Chaisuwan 40 pp.
Keywords: Titanium Oxide Nanotubes (TNTs)/ Iron Ions/ Chromium Ions/ Photocatalytic Activity

Fe- and Cr-doped titania nanotubes were prepared by hydrothermal treatment. After the calcination process, pure TNTs gave the best photocatalytic activity, comparing to M-loaded TNTs. The prepared catalysts were characterized by XRD, TEM, BET, and XRF. The photocatalytic activity of catalysts were evaluated though the photodegradation of methyl orange. When compared to the metal-loaded TNTs, the pure TNTs resulted in photocatalytic activity while the best optimum dopant amount of Fe found to be at 2% and 15% Cr-doped TNTs calcined at 500 °C possessed the best absorption in dark.

บทคัดย่อ

ชนากานต์ ผิวนวล : การเร่งปฏิกิริยาของท่อนาโนไททาเนียโดยการเติมโลหะ (Catalytic Activity of Metal Loaded Titania Nanotubes) อ. ที่ปรึกษา: รองศาสตราจารย์ คร. สุจิตรา วงศ์เกษมจิตด์, รองศาสตราจารย์ คร. อาภาณี เหลืองนฤมิตชัย และ ผู้ช่วยศาสตราจารย์ คร. ธัญญ ลักษณ์ ฉายสุวรรณ์ 40 หน้า

การสังเคราะห์ท่อนาโนไทเทเนียโดยการเติมเหล็กและโครเมียมประสบความสำเร็จด้วย วิธีการให้ความร้อนและสามารถพิสูจน์เอกลักษณ์ได้ด้วยเครื่อง XRD, TEM, BET และ XRF การเร่งปฏิกิริยาด้วยแสงของท่อนาโนไททาเนียโดยการเติมโลหะเกิดผ่านปฏิกิริยาการย่อยสลาย เมทิลออร์เรนจ์ จากผลการทดลองพบว่าท่อนาโนไททาเนียบริสุทธิ์ให้ประสิทธิภาพของการเร่ง ปฏิกิริยาด้วยแสงดีที่สุด ในขณะที่ปริมาณของเหล็กและโครเมียมซึ่งถูกเติมลงในท่อนาโนไท ทาเนียและถูกเผาด้วยอุณหภูมิ 500 องศาเซลเซียสเท่ากับ 2 และ 15 เปอร์เซ็นต์ ตามลำดับ ให้ ประสิทธิภาพของการดูดซับในที่มืดดีที่สุด

ACKNOWLEDGEMENTS

This thesis work is partially funded by the Petroleum and Petrochemical College, and the Center of Excellence on Petrochemical and Materials Technology, Thailand.

I wish to show gratitude to my advisors, Assoc. Prof. Sujitra Wongkasemjit, Assoc. Prof. Apanee Luengnaruemichai, and Asst. Prof. Thanyalak Chaisuwan for their kind suggestions, encouragement, and friendly assistance. I had a greatly enjoyable time with all seniors, my friends, and staffs for their assistance, sharing, and support. I had good remembrance with all of them.

Finally, the acknowledgements would not be complete without expressing special thanks to my family for the warm support that I have received while studying in Bangkok.

TABLE OF CONTENTS

		PAGE
Title	e Page	i
Abs	tract (in English)	iii
Abs	Abstract (in Thai)	
Ack	nowledgements	V
Tab	e of Contents	vi
List	of Tables	viii
List	of Figures	ix
Abb	reviations	xi
СНАРТЕ	R	
Ι	INTRODUCTION	1
II	LITERATURE REVIEW	2
	2.1 Titanium (IV) Oxide	2
	2.1.1 Polymorphs of TiO ₂	2
	2.1.2 Nanotube Structure	3
	2.1.3 Microwave Irradiation	4
	2.2 Photocatalytic Reactions	4
III	EXPERIMENTAL	10
	3.1 Materials	10
	3.2 Equipments	10
	3.2.1 Milestone ETHOS SEL Microwave Laboratory	
	Systems	10
	3.2.2 Hitachi FE-SEM S4800 /Scanning Electron	
	Microscope (SEM)	10
	3.2.3 JEOLJEM-2100/Transmission Electron	
	Microscope (TEM)	10

IV

 \mathbf{V}

3.2.4	Rigaku DMAX 2200 HV/X-Ray	
	Diffractrometer (XRD)	10
3.2.5	Quantachrome Autosorb-1/Surface Area	
	Analyzer (SAA)	11
3.2.6	AXIOS PW 4400/X-Ray Fluorescence	
	Spectrophotometer (XRF)	11
3.2.7	Shimadzu UV 1800/UV-Visible Spectrometer	11
3.2.8	Shimadzu UV 2500/UV-Visible Spectrometer	11
3.3 Meth	odology	11
3.3.1	Synthesis of Titania Nanotubes (TNTs)	11
3.3.2	Synthesis of Metal Doped Titania Nanotubes (TNTs)	12
3.4 Photo	ocatalytic Activity of Methyl Orange	13
RESULT	'S AND DISCUSSION	14
4.1 Chara	acterization of TNTs	14
4.2 Photo	ocatalytic Activity	25
4.2.1	Effect of Fe-Doped TNTs	25
4.2.2	Effect of Cr-Doped TNTs	27
4.2.3	Effect of Calcination Temperature	29
4.2.4	Kinetic Analysis	30
CONCLU	JSIONS AND RECOMMENDATIONS	34
REFERE	NCES	35
APPEND	IX	38
Appendix	A UV-visible spectrometer	38
CURRIC	ULUM VITAE	40

PAGE

LIST OF TABLES

TABLE

4.1	XRF analysis of M-doped TNTs	21
4.2	Specific surface area, pore volume, and pore diameter of	
	TNTs and metal-doped TNTs	24
4.3	Pseudo-first order kinetic constants (k) for photodegradation	
	of MO on M-doped TNTs calcined at 500 °C for 2 h	33

PAGE

LIST OF FIGURES

FIGURE		PAGE
2.1	Crystalline structures of rutile and anatase.	3
2.2	The excitation of an electron from the valence band to the	
	conduction band initiated by light absorption with energy	
	equal to or greater than the band gap of the semiconductor.	5
2.3	Mechanism of TiO ₂ photocatalytic reaction.	6
3.1	Flow diagram of TNTs' synthesis.	12
3.2	Flow diagram showing synthesis of M-doped TNTs.	13
4.1	SEM images of (a) undoped TNTs, (b) 2% Fe-doped TNTs,	
	and (c) 15% Cr-doped TNTs.	14
4.2	TEM images of TNTs, 2% Fe-doped TNTs, and 15% Cr-	
	doped TNTs without (a, b, c) and with calcination at 500 $^{\circ}\mathrm{C}$	
	for 2 h (d, e, f).	16
4.3	XRD patterns of 2% Fe-doped TNTs without (a), and with	
	calcinations at 300 ° (b); 500 ° (c); 600 ° (d); and 700 °C (e)	
	for 2 h.	17
4.4	XRD patterns of 15% Cr-doped TNTs without (a), and with	
	calcinations at 300 $^{\circ}$ (b); 500 $^{\circ}$ (c); 600 $^{\circ}$ (d); and 700 $^{\circ}\mathrm{C}$ (e)	
	for 2 h.	18
4.5	XRD patterns of Fe/TNTs calcined at 500 °C for 2 h with	
	various Fe doping contents.	19
4.6	XRD patterns of Cr/TNTs calcined at 500 °C for 2 h with	
	various Cr doping contents.	20
4.7	UV-visible absorption spectra of TNTs and Fe-doped TNTs.	22
4.8	UV-visible absorption spectra of TNTs and Cr-doped TNTs.	23

.

FIGURE

PAGE

4.9	The N_2 adsorption-desorption isotherms of TNTs (a), Fe-	
	doped TNTs (b), and Cr-doped TNTs (c) calcined at 500 °C.	25
4.10	Effect of the Fe doping content on the photodegradation of	
	methyl orange after the catalyst was calcined at 500 °C for	
	2 h.	26
4.11	Schematic mechanism diagram of the photocatalyic	
	mechanism of Fe-doped TNTs.	27
4.12	Effect of the Cr doping content on the photodegradation of	
	methyl orange after the samples were calcined at 500 °C for	
	2 h.	28
4.13	Photodegradation of methyl orange by 2% Fe/TNTs without	
	calcination (a) and with calcinations at 300 $^{\circ}$ (b); 500 $^{\circ}$ (c);	
	600 ° (d); and 700 °C (e).	30
4.14	Photodegradation of methyl orange by 15% Cr/TNTs	
	without calcination (a) and with calcinations at 300 $^{\circ}$ (b);	
	500 ° (c); 600 ° (d); and 700 °C (e).	30
4.15	Pseudo-first order kinetics for photodegradation of MO on	
	Fe/TNTs (a) and Cr/TNTs (b).	31

.

ABBREVIATIONS

TNTs	Titania nanotubes/ Titanium dioxide nanotubes
TEM	Transmission electron microscope
SAA	Surface area analysis
SEM	Scanning electron microscopy
XRD	X-ray diffractrometer
XRF	X-ray fluorescence spectrophotometer