Production of Ethanol from Mission Grass Darin Khumsupan A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University 2014 Thesis Title: Production of Ethanol from Mission Grass By: Darin Khumsupan Program: Polymer Science Thesis Advisors: Assoc. Prof. Sujitra Wongkasemjit Asst. Prof. Thanyalak Chaisuwan Assoc. Prof. Apanee Luengnaruemitchai Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science. College Dean (Asst. Prof. Pomthong Malakul) **Thesis Committee:** (Assoc. Prof. Sujitra Wongkasemjit) (Assoc. Prof. Apanee Luengnaruemitchai) (Asst. Prof. Thanyalak Chaisuwan) Theyald Chaisuwa (Asst. Prof Manit Nithitanakul) (Asst. Prof. Bussarin Ksapabutr) #### **ABSTRACT** 5572003063: Polymer Science Program Darin Khumsupan: Production of Ethanol from Mission Grass Thesis Advisors: Assoc. Prof. SujitraWongkasemjit, Asst. Prof. ThanyalakChaisuwan, Assoc. Prof. ApaneeLuengnaruemitchai, 79 pp. Keywords: Bioethanol, Mission grass, Lignocellulosic biomass, Overliming, Saccharomyces cerevisiae Mission grass (Pennisetumpolystachion) is one of the lignocellulosic biomass candidates for the production of bioethanol. After the grass underwent through milling and alkaline pretreatment, it was subjected to acid and enzymatic hydrolysis. Glucose, the source of ethanol fermentation, was obtained after the hydrolysis process. The grass hydrolyzate was overlimed at various pH; and then sodium sulfite was added to remove inhibitory compounds and degradation products such as furfural hydroxymethylfurfural. Overliming at pH 10 gave the highest ethanol yield. Among various strains of baker's yeasts, Saccharomyces cerevisiaeTISTR 5596 could produce the highest concentration of ethanol at 16 g/l within 24 h. Yeast population count was studied under a microscope. The change of glucose concentration in the hydrolyzate was detected by high performance liquid chromatography (HPLC), and the production of ethanol was determined using gas chromatography (GC). ## บทคัดย่อ นางสาวคารินทร์ คุ้มสุพรรณ: การผลิตเอทานอลจากหญ้าขอรจบคอกเล็ก (The production of Ethanol from Mission Grass)อ. ที่ปรึกษา: รองศาสตราจารย์ คร. สุจิตรา วงศ์เกษม จิตต์ ผู้ช่วยศาสตราจารย์ คร. ธัญญูลักษณ์ ฉายสุวรรณ์และ รองศาสตราจารย์ คร. อาภาณี เหลือง นฤมิตชัย 79 หน้า - หญ่างจรงบดอกเล็กเป็นหนึ่งในชีวมวลที่สามารถนำมาเป็นวัตถุดิบในการผลิตใบโอเอ ทานอลได้ หลังจากที่หญ้าถูกนำมาผ่านกระบวนการปรับสภาพด้วยการบดและการใช้ด่าง เซลลูโลสของหญ้าจะถูกนำมาย่อยสลายด้วยกรดและเอนไซม์เซลลูเลสเพื่อให้ได้น้ำตาลกลูโคสที่ สามารถนำไปผลิตเอทานอลจากยืสต์ น้ำหญ้าที่ถูกสกัดออกมาจะนำมาผ่านกระบวนการโอเวอร์ ไลม์ในกวามเป็นกรดค่างที่กำหนดและใส่โซเดียมซัลไฟด์หลังจากนั้น เพื่อเอาสารที่ยับยั้งการผลิต เอทานอลจากยีสต์ เช่นเฟอร์ฟูรอลและไฮดรอกซี่เมททิลเฟอร์ฟิวรัลออกจากน้ำหญ้าโอเวอร์ไลม์ที่ มีความเป็นกรดค่างที่ 10 ได้ถ่าเอทานอลที่สูงที่สุด เชื้อยีสต์ที่สามารถหมักเอทานอลได้เยอะที่สุด และเร็วที่สุดคือ Saccharomyces cerevisiae TISTR 5596 ซึ่งสามารถผลิตเอทานอลได้มากถึง 16 กรัมต่อลิตรภายใน 24 ชั่วโมง การเปลี่ยนแปลงของประชากรของยีสต์ ความเข้มข้นของน้ำตาล กลูโคสและเอทานอลนั้นถูกศึกษาโดยใช้กล้องจุลทรรสน์ ไฮเปอร์ฟอร์แมนซ์ลิควิดโครมาโตกราฟี และก๊าซโครมาโตกราฟี ตามลำดับ #### **ACKNOWLEDGEMENTS** I owe my deepest gratitude to my advisor, Assoc. Prof. Sujitra Wongkasemjit. The enormous thoughtfulness behind terrifying voice and stern face has transcended me to exceed above my expectation. Her never-ending persistence in telling me that hard work is rewarding has proven correct once again. She is a perfect epitome of a teacher. This work would not be possible without helpful hints, caring supports, and constructive criticisms from my co-advisors, Asst. Prof. Thanyalak Chaisuwan and Assoc. Prof. Apanee Luengnaruemitchai. Your useful advices and recommendations are priceless to this project. I dedicate this thesis to my parents who have equipped me with confidence, perseverance, compassion, and most importantly, integrity. With those qualities, I have already considered myself successful; anything beyond those is exclusively profits. I consider it an honor to work with "Grass Group"; lab work has never been so full of laughter and hugs. Lastly, I am grateful for the scholarship and funding of the thesis work provided by the Petroleum and Petrochemical College; and the Center of Excellence for Petrochemical and Materials Technology, Thailand. ### TABLE OF CONTENTS | | | PAGE | | | | |-------|---|------|--|--|--| | Ti | tle Page | i | | | | | A | Abstract (in English) | | | | | | A | Abstract (in Thai) | | | | | | A | Acknowledgements | | | | | | Та | Table of Contents | | | | | | Li | List of Tables List of Figures | | | | | | Li | | | | | | | | | 7 | | | | | CHAPT | TER | | | | | | I | INTRODUCTION | 1 | | | | | II | LITERATURE REVIEW | 3 | | | | | П | I EXPERIMENTAL | 20 | | | | | | 3.1 Materials | 20 | | | | | | 3.2 Equipment | 20 | | | | | | 3.3 Methodology | 21 | | | | | | 3.3.1 Mission Grass Preparation | 21 | | | | | | 3.3.2 Pretreatment of Mission Grass | 21 | | | | | | 3.3.3 Hydrolysis of Mission Grass | 22 | | | | | | 3.3.4 Detoxification of Mission Grass Hydrolyzate | 22 | | | | | | 3.3.5 Fermentation of Mission Grass Hydrolyzate | 22 | | | | | IV | RESULTS AND DISCUSSION | 24 | | | | | | 4.1 Particle Size Analysis of Mission Grass | 24 | | | | | | 4.2 Chemical Composition of Mission Grass | 24 | | | | | | 4.3 Alkaline Pretreatment of Mission Grass | 25 | | | | | | 4.4 Acid Hydrolysis of Mission Grass | 27 | | | | | | | | | | | | CHAPTER | | | PAGE | |---------|--------------|--|------| | | 4.5 Enzymat | ic hydrolysis of mission grass | 27 | | | 4.6 Optimiza | ation of Detoxification Process on | 29 | | | Mission | Grass Hydrolyzate | | | | 4.6.1 Ph | ysical Detoxification | 29 | | | 4.6.2 Ch | nemical Detoxification | 30 | | | 4.7 Fermenta | ative Microorganism | 32 | | | 4.8 Optimiza | ation of Saccharomyces cerevisiae | 36 | | | strains fo | or ethanol production | | | V | CONCLUSI | ONS AND RECOMMENDATIONS | 42 | | • | REFERENC | CES | 43 | | | APPENDIC | ES _ | 49 | | | Appendix A | Detection of glucose by HPLC before and after enzymatic hydrolysis | 49 | | | Appendix B | Detection of glucose during overliming process | 50 | | | Appendix C | Yeast population count at various overliming pH | 51 | | | Appendix D | Detection of glucose when mission grass | 56 . | | 7 | | hydrolyzate was overliming at various pH | | | | Appendix E | Detection of ethanol when mission grass | 61 | | | | hydrolyzate was overliming at various pH | | | | Appendix F | Yeast population count at various yeast strains | 66 | | | - | (Saccharomyces cerevisiae) | | | | Appendix G | Detection of glucose consumption by each strain | 70 | | | | of S. cerevisiae | | | | Appendix H | Detection of ethanol produced by various strains | 74 | | | | of Saccharomyces cerevisiae | | | | CURRICUL | UM VITAE | 78 | ### LIST OF TABLES | TABLE | | PAGE | |--------------|--|------| | 2.1 | Cellulose, hemicelluloses, and lignin contents in some | 5 | | | lignocellulosic materials | | | 4.1 | The chemical compositions of mission grass obtained from | 25 | | | Tak and Nakornratchasima Provinces Thailand | | # LIST OF FIGURES | FIGURE | | PAGE | |--------|---|------| | 2.1 | Ethanol production process from lignocellulosic biomass | 3 | | 2.2 | Detailed model of plant cell wall | 4 | | 2.3 | Structural formula of cellulose | 6 | | 2.4 | A model of cellulases: endoglucanases (endo-1-4-β- | 10 | | | glucanase), exoglucanase (cellobiohydrolase), and β- | | | | glucosidase | | | 2.5 | A model of xylanases and the accessory enzymes in wood | 11 | | | xylans | | | 2.6 | Sugar and lignin can further be degraded to form compounds | 13 | | | that may decrease ethanol yield | | | 4.1 | The SEM images in each treatment stage of mission grass | 26 | | | (1000x) | | | 4.2 | Glucose concentration obtained after acid hydrolysis and | 28 | | | after enzymatic hydrolysis | | | 4.3 | The effect of overliming in comparison to the hydrolyzate | 31 | | | before overliming | | | 4.4 | Yeast (S. cerevisiae TISTR 5049) population at various | 33 | | | overliming pH per incubation time | | | 4.5 | Glucose consumption of <i>S. cerevisiae</i> TISTR 5049 per | 34 | | | incubation time | | | 4.6 | Ethanol production of mission grass hydrolyzate by S. | 35 | | | cerevisiae TISTR 5049 at overliming pH 8-12 | | | 4.7 | Various strains of baker's yeast (S. cerevisiae) count per | 37 | | | incubation time at pH 10 overliming | | | 4.8 | Glucose concentration per incubation time for various strains | 38 | | | of baker's yeast S. cerevisiae at pH 10 overliming | | 4.9 The production of ethanol from various strains of *S. cerevisiae* in 96 h 40