FABRICATION OF CAPACITOR THIN FILM UTILIZING GREEN POLYMERS AND BARIUM STRONTIUM TITANATE NANOPARTICLES

Kittichin Plungpongpan

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University

2014

Thesis Title:	Fabrication of Capacitor Thin Film Utilizing Green Polymers
	and Barium Strontium Titanate Nanoparticles
By:	Kittichin Plungpongpan
Program:	Polymer Science
Thesis Advisors:	Asst. Prof. Hathaikarn Manuspiya
	Asst. Prof. Apirat Laobuthee
	-

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

..... College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

4

Hathaikarn M.

(Asst. Prof. Hathaikarn Manuspiya)

Apirat Loosuthee

(Asst. Prof. Apirat Laobuthee)

Thought Ch.

(Asst. Prof. Thanyalak Chaisuwan)

Chatchai Veranitisagul

(Dr. Chatchai Veranitisagul)

ABSTRACT

5572008063 : Polymer Science Program

Kittichin Plungpongpan : Fabrication of Capacitor Thin Film Utilizing Green Polymers and Barium Strontium Titanate Nanoparticles.

Thesis Advisors: Asst. Prof. Hathaikarn Manuspiya, and Asst. Prof. Apirat Laobuthee 87 pp.

Keywords: Poty(butylene succinate)/ Magnesium-doped barium strontium-

titanate/ Microwave frequency/ Thin-film capacitor

Magnesium-doped barium strontium titanate powder with various mole ratio of strontium and magnesium ions $(Ba_{1-x-y}Sr_xMg_yTiO_3 \text{ when } x = 0.3, 0.4, 0.5 \text{ and}$ y = 0, 0.005, 0.010, 0.020) were prepared by a low-temperature sol-gel method to study their phase formation, frequency-dependent and temperature-dependent dielectric properties. Additionally, barium strontium titanate powder with strontium content of 30 mol% or Ba_{0.7}Sr_{0.3}TiO₃ was incorporated in poly(butylene succinate) (PBS), matrix in various volume fraction of filler in order to improve dielectric properties of polymeric material. The solution mixing method was used to mix each compounds altogether, followed by compression molding to obtain thin-film of 200 μ m – 300 μ m. Along with the determination of thermal, mechanical and dielectric properties at microwave frequency of PBS-composite. Furthermore, the experimental data of dielectric constant of PBS/BST composite as a function of BST function were predicted with 0-3 connectivity models. The dispersion state of PBS-composite were also investigated by using Scaning Electron Microscope (SEM). Finally, the PBS-composite thin films with good dielectric properties, flexibility, and processability are possible to be processed as a biodegradable thin film capacitor for high-frequency electronic devices.

บทคัดย่อ

กิตติชิน ปลั่งพงษ์พันธ์ : การเตรียมตัวเก็บประจุแบบฟิล์มบางจากพอลิเมอร์ที่เป็นมิตร กับธรรมชาติและผงแบเรียมสตรอนเทียมใตตาเนต (Fabrication of Capacitor Thin Film Utilizing Green Polymers and Barium Strontium Titanate Nanoparticles) อ. ที่ปรึกษา : ผศ.ดร. หทัยกานต์ มนัสปิยะ และ ผศ.ดร.อภิรัตน์ เลาห์บุตรี 87 หน้า

ผงแบเรียมสตรอนเทียมไตตาเนต (BST) ได้ถูกนำมาเจือด้วยแมกนีเซียมในสัดส่วนของ แบเรียม สตรอนเทียมและแมกนีเซียมที่แตกต่างกัน (Ba_{1-xy}Sr_xMg_yTiO₃ โดยที่ x = 0.3, 0.4, 0.5 และ y = 0, 0.005, 0.010, 0.020) โดยเตรียมจากกระบวนการโซล-เจลที่อุณหภูมิต่ำเพื่อศึกษาการ เกิดเฟส (phase formation) สมบัติทางไดอิเล็กตริกเชิงความถี่และเชิงอุณหภูมิ นอกจากนี้ผง แบเรียมสตรอนเทียมไททาเนตที่มีสัดส่วนแบเรียมต่อสตรอนเทียม 70:30 ได้ถูกนำมาผสมกับ พอลิบิวทิลีนซัคซิเนตในสัดส่วนต่างๆเพื่อปรับปรุงสมบัติทางไดอิเล็กตริกให้กับวัสดุพอลิเมอร์ ซึ่งถูกเตรียมได้จากการผสมแบบละลาย จากนั้นนำไปขึ้นรูปด้วยวิธีการอัดขึ้นรูป (compression molding) เพื่อให้ได้แผ่นฟิล์มบางที่มีความหนาประมาณ 200 – 300 ไมครอน จากนั้นทำการศึกษา สมบัติทางกวามร้อน สมบัติเชิงกล สมบัติทางไดอิเล็กตริก และค่าคงที่ไดอิเล็กตริกที่เป็นฟังก์ชั่น

ของปริมาณของผงแบเรียมสตรอนเทียมไททาเนตในวัสคุกอมพอสิตของพอลิบิวทิลีนซักซิเนตยัง ได้ถูกพยากรณ์โดยสมการทางทฤษฎีของวัสดุกอมพอสิตแบบ 0-3 นอกจากนั้นได้มีการศึกษา สภาพการกระจายตัวของผงแบเรียมสตรอนเทียมไททาเนตในวัสดุกอมพอสิตของพอลิบิวทิลีนซัก ซิเนตโดยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราค ท้ายที่สุดแล้วสมบัติทางไดอิเล็กตริก กวาม ยืดหยุ่น และกวามสามารถในการขึ้นรูปของวัสดุกอมพอสิตพอลิบิวทิลีนซักซิเนต สามารถนำมา ประยุกต์ใช้ในการผลิตตัวเก็บประจุที่เป็นลักษณะฟิล์มบางในย่านกวามถี่สูง

iv

ACKNOWLEDGEMENTS

I am thankful for the scholarship and funding of this thesis work provided by the Petroleum and Petrochemical College, the national center of excellence for petroleum, petrochemicals, and advanced materials, Thailand, and Kasetsart University research and development institute (KURDI).

This thesis work could not be accomplished without the facilities and financial supports of the following organizations as well as these individual assistances.

First of all, I would like to give special thanks to my advisors, Asst. Prof. Hathaikarn Manuspiya for her intensive suggestion, valuable guidance, encouragement and vital help throughout this research work and Asst. Prof. Apirat Laobuthee for his constructive suggestions and beneficial recommendations. I also would like to thank to all other committee members, Asst. Prof. Thanyalak Chaisuwan and Dr. Chatchai Veranitisagul for taking time to serve as the committees and give their valuable comments on thesis including their patient to proofread my thesis.

Moreover, the author appreciates national metal and materials technology center (MTEC) for electrical measurement and MTEC staffs for providing useful suggestion. As well as the department of materials engineering, Kasetsart University for providing lab instruments.

Finally, the author wishes to take this opportunity to thank my friends, my seniors, and the college staff at the Petroleum and Petrochemical College for their friendly help, cheerfulness, and creative suggestions. And especially thanks to my parents who have always support and encourage throughout this thesis work.

v

TABLE OF CONTENTS

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	ix
List of Figures	Х
List of Schematics	xiv
Abbreviations	XV
List of Symbols	xvi

CHAPTER

-

I	INTRODUCTION	1
II	THEORETICAL BACKGROUND AND	
	LITERATURE REVIEW	
	2.1 Poly(Butylene Succinate)	4
	2.2 Dielectric Materials	8
	2.3 Polymer-Ceramic Composites	14
Ш	EXPERIMENTAL	
	3.1 Materials	21
	3.2 Equipment	21
	3.3 Experimental Procedures	22

CHAPTER		PAGE	
IV	PREPARATION AND CHARACTERIZATION OF		
	MAGNESIUM-DOPED BARIUM STRONTIUM TITANATE		
	VIA SOL-GEL METHOD		
	4.1 Abstract	25	
	4.2 Introduction	25	
	4.3 Experimental	26	
	4.4 Results and Discussion	29	
	4.5 Conclusions	49	
	4.6 Acknowledgements	50	
	4.7 References	50	
V	DIELECTRIC AND MECHANICAL PROPERTIES OF		

POLY(BUTYLENE SUCCINATE) THIN-FILM COMPOSITE INCORPERATED WITH BARIUM STRONTIUM TITANATE POWDERS

5.1 Abstract	52
5.2 Introduction	52
5.3 Experimental	53
5.4 Results and Discussion	55
5.5 Conclusions	63
5.6 Acknowledgements	63
5.7 References	63

VII CONCLUSIONS AND RECOMMENDATIONS 65

REFERENCES

69

APPENDICES

Appendix ALattice Parameter Calculations72

.

.

Appendix B Frequency-dependent Dielectric Properties of	
Magnesium-doped Barium Strontium Titanate	
Powder and PBS-Composite Thin Film	77
Appendix C Data Sheet of Poly(Butylene Succinate) Grade	
Blown Film Extrusion (AZ91TN)	79
Appendix D Breakdown Strength and Effects of Corona-poling	
of Poly(Butylene Succinate)/Barium Strontium	
Titanate Thin-film Composites on	
Dielectric Constant at Low-Frequency	80
Appendix E Experimental Data Fitting of Poly(Butylene	
Succinate)/Barium Strontium Titanate Thin-film	
Composites	81
Appendix F Poly(Butylene Succinate)/modified - Barium	
Strontium Titanate Composite Thin-film	
Characterizations	82

-

CURRICULUM VITAE

-

.

LIST OF TABLES

TABLE

PAGE

-

CHAPTER II

2.1	Chemical structure of the polymers in poly(alkylene	
	dicarboxylate) family -	5
2.2	Properties of PBS compare to those of PLA and some	
	common plastics	5
2.3	Comparative data of the investigations on polymer-ceramic	
	composite -	18
2.4	Values of thermal properties, dielectric constant and Impulse	
	breakdown	19
2.5	Comparative data of the investigations on PBS-composite	
	dielectric properties at room temperature	20

CHAPTER IV

4.1	The overall mole ratio of barium ions, strontium ions,	
	magnesium ions and titanium ions	27
4.2	Lattice parameters of Ba _{1-x-y} Sr _x Mg _y TiO ₃ powder and	
	quantitative analysis of Ba ²⁺ , Sr ²⁺ , Mg ²⁺ ,	
	and Ti ⁴⁺	37
4.3	Crystallite size magnesium-doped barium strontium titanate	
	particles calculated on 110 plane	38
4.4	Dielectric properties of magnesium-doped barium strontium	
	titanate, $Ba_{1-x-y}Sr_xMg_yTiO_3$ powder were measured at	
	10 MHz	49

CHAPTER V

5.1	Degradation temperature and %Residue of PBS-composite	56

•

ix

LIST OF FIGURES

FIGURE

,

-

. .

х

CHAPTER II

	CHALLEN II		
2.1	Crystal structures of PBS of the a) α form and b) β form.		7
2.2	The variation of the dielectric constant ε_r and the		
	spontaneous polarization of Ps with temperature for barium		
	titanate		7
2.3	The unit cell, the ion displacement and the temperature		
	dependence of the structure of the unit cell of BaTiO ₃ .	-	10
2.4	The effects on transition temperature by substituting Ba ²⁺		
	with Sr^{2+} or Pb^{2+} .		11
2.5	Dielectric properties of Ba0 8Sr0.2TiO3 ceramic with different		
	Mg-dopant Concentrations.		12
2.6	Mg ²⁺ content dependent of lattice constant of		
	$Ba_{0.65-x}Sr_{0.35}Mg_{x}TiO_{3}$ ceramic.		12
2.7	The effect of Mg ²⁺ with different content on the perovskite		-
	ABO ₃ structure		13
2.8	Ten connectivity patterns for a diphasic solid		14
2.9	Comparison of the frequency characteristic of dielectric		
	constant and loss tangent of 30% BaTiO ₃ /polymer		
	composites		16
2.10	Dielectric constant of the composite material as the function		
	of volume fraction of BaTiO ₃		17
2.11	Dielectric constant of the PPS-BaTiO ₃ composite material as		
	the function of volume fraction of BaTiO ₃		17

CHAPTER III

÷

3.1	Two-step thermal decomposition temperature profile	24

-

PAGE

CHAPTER IV

4.1	The temperature profile of 2-step decomposition method.		28	
4.2	FTIR-spectra of (a) Barium acetate (b) Strontium acetate (c)			
	Magnesium acetate (d) Titanium-n-butoxide and (e) Barium			
	strontium titanate gel.		30	
4.3	TGA thermogram of barium strontium titanate,			
	$Ba_{0.7}Sr_{0.3}TiO_3$ gel.		31	-
4.4	DTA thermogram of barium strontium titanate,	-		
	$Ba_{0.7}Sr_{0.3}TiO_3$ gel.		31	
4.5	FTIR-spectrum of barium strontium titanate gel.		32	
4.6	FTIR-spectrum of barium strontium titanate powder.		33	
4.7	SEM image of barium strontium titanate powder.		33	
4.8	The X-Ray diffraction patterns of (a) barium strontium			
	titanate gel and (b) barium strontium titanate powder.		34	
4.9	XRD patterns of $Ba_{1-x-y}Sr_xMg_yTiO_3$ powder (where x = 0.3			
	and $y = (a) 0$, (b) 0.005, (c) 0.010, (d) 0.020).		35	
4.10	XRD patterns of $Ba_{1-x-y}Sr_xMg_yTiO_3$ powder (where $x = 0.4$			
	and $y = (a) 0$, (b) 0.005, (c) 0.010, (d) 0.020).		35	
4.11	XRD patterns of $Ba_{1-x-y}Sr_xMg_yTiO_3$ powder (where $x = 0.5$			
	and $y = (a) 0$, (b) 0.005, (c) 0.010, (d) 0.020).		36	
4.12	Frequency-dependent dielectric constant of			
	$Ba_{1-x-y}Sr_xMg_yTiO_3$ powder (where x = 0.3 and y = 0, 0.005,			
	0.010, 0.020).		39	
4.13	Frequency-dependent dielectric constant of			
	$Ba_{1-x-y}Sr_xMg_yTiO_3$ powder (where x = 0.4 and y = 0, 0.005,			
	0.010, 0.020).		40	

÷

-

4.14	Frequency-dependent dielectric constant of	
	$Ba_{1-x-y}Sr_xMg_yTiO_3$ powder (where x = 0.5 and y = 0, 0.005,	
	0.010, 0.020).	40
4.15	Frequency-dependent loss tangent of Ba _{1-x-y} Sr _x Mg _y TiO ₃	
	powder (where $x = 0.3$ and $y = 0, 0.005, 0.010, 0.020$).	41
4.16	Frequency-dependent loss tangent of Ba _{1-x-y} Sr _x Mg _y TiO ₃	
	powder (where $x = 0.4$ and $y = 0, 0.005, 0.010, 0.020$).	42
4.17	Frequency-dependent loss tangent of Ba _{1-x-y} Sr _x Mg _y TiO ₃	
	powder (where $x = 0.5$ and $y = 0, 0.005, 0.010, 0.020$).	42
4.18	Temperature-dependent dielectric constant of	
	$Ba_{1-x-y}Sr_xMg_yTiO_3$ powder (where x = 0.3 and y = 0, 0.005,	
	0.010, 0.020).	43
4.19	Temperature-dependent dielectric constant of	
	$Ba_{1-x-y}Sr_xMg_yTiO_3$ powder (where $x = 0.4$ and $y = 0, 0.005$,	
	0.010, 0.020).	44
4.20	Temperature-dependent dielectric constant of	
	$Ba_{1-x-y}Sr_xMg_yTiO_3$ powder (where x = 0.5 and y = 0, 0.005,	
	0.010, 0.020).	44
4.21	Temperature-dependent loss tangent of Ba _{1-x-y} Sr _x Mg _y TiO ₃	
	powder (where $x = 0.3$ and $y = 0, 0.005, 0.010, 0.020$).	45
4.22	Temperature-dependent loss tangent of Ba _{1-x-y} Sr _x Mg _y TiO ₃	
	powder (where $x = 0.4$ and $y = 0, 0.005, 0.010, 0.020$).	46
4.23	Temperature-dependent loss tangent of Ba _{1-x-y} Sr _x Mg _y TiO ₃	
	powder (where $x = 0.5$ and $y = 0, 0.005, 0.010, 0.020$).	46
4.24	Dielectric constant and lattice parameter relationship of	
	$Ba_{1-x-y}Sr_xMg_yTiO_3$ powder (which x = 0.3 and y = 0, 0.5, 1.0,	
	2.0).	47

.

FIGURE

-

÷.

PAGE

4.25	Dielectric constant and lattice parameter relationship of	
	$Ba_{1-x-y}Sr_xMg_yTiO_3$ powder (which x = 0.4 and y = 0, 0.5, 1.0,	
	2.0).	48
4.26	Dielectric constant and lattice parameter relationship of	
	$Ba_{1-x-y}Sr_xMg_yTiO_3$ powder (which x = 0.5 and y = 0, 0.5, 1.0,	
	2.0).	48

CHAPTER V

5.1	Two-step thermal decomposition temperature profile	54
5.2	SEM images of PBS-composite in various composition of	
	BST powder (a) 0 wt% (b) 10 wt% (c) 20 wt% (d) 30 wt%	
	(e) 40 wt% (f) 50 wt%.	56
5.3	TGA curves of neat PBS and PBS-composite samples.	57
5.4	Tensile strength of PBS-composite.	58
5.5	Percentage elongation at break of PBS-composite.	58
5.6	Young's modulus of PBS-composite.	59
5.7	Stress-strain curve of PBS-composite.	59
5.8	Frequency-dependent dielectric constant PBS-composite.	60
5.9	Frequency-dependent loss tangent PBS-composite.	61
5.10	Temperature-dependent dielectric constant of PBS-	
	composite.	62
5.11	Temperature-dependent loss tangent of PBS-composite.	62

CHAPTER VI

6.1	SEM image of surface treated BST/PBS composite a) non-
	treated b) Triethoxyvinyl silane-treated c) Ethylene glycol-
	treated and d) Propylene glycol-treated.

-

LIST OF SCHEMATICS

SCHEMATICS

1.1

7

-

•

, ×

.

.

-

CHAPTER II

2.1	Preparation of polyesters by stepwise polycondensation		4
2.2	Flow chart of PBS synthesis	-	6

CHAPTER III

3.1	Preparation of magnesium-doped barium strontium titanate powders.	23

PAGE

-

ABBREVIATIONS

BST Barium strontium titanate

PBS Poly(butylene succinate)

-

SYMBOLS

-

А	Area
а	Weight of the sample in air
b	Weight of the sample immersed in deionized water
с	Weight of the damp sample after being wiped off excess water
С	Capacitance
D	Electric displacement
D	Distance between the plate
D _{water}	Density of deionized water
E	Electric intensity applied
E ₀	Amplitude
tan δ	Loss tangent
Q	Charge
Q	Quality factor
V	Potential difference
α	Total polarizability
α _e	Electronic polarization
α_a	Atomic polarization
αο	Dipole orientation polarization
ε ₀	Permittivity of free space ($8.854 \times 10^{-12} \text{ C}^2/\text{m}^2$ or F/m)
ε'	Dielectric constant
"ع	Dielectric loss
3	Dielectric constant of the composites
٤ _p	Dielectric constants of the polymer matrix
ε _c	Dielectric constants of the BST ceramic
п	Refractive index
Ø	Volume fraction
φc	Volume fraction of the ceramic
ϕ_p	Volume fraction of the polymer

-