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APPENDICES
Appendix A Specification of Untreated Activated Carbon

Table AL Specification of untreated activated carbon from Carbokam

TECHNICAL SPECIFICATION
Granular Activated Coconut Shell Based Carbon Grade PHO 60 X200
PHYSICAL PROPERTIES SPECIFICATION
Particle Size Distribution + 60 ( 0.25 mm.) MAX. 5%
(ASTM MESH/MM.) - 60 X200 (0.25- 0.075 mm,) MIN. 90 %
-200 (0.075 mm.) MAX. 5%

Apparent Density ( g/ cc) MIN. 0.45
Moisture (% [ ) MAX. 5
Ash (% | ) MAX. 35
pH 9-11
Surface Area (m2/ ¢ ) ( Calculated ) MIN.1100
lodine Number (mg/q) MIN. 1050

Hardness Number (% ) MIN. 98
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Appendix B Calculation for Benzoxazine Synthesis Ratio

From the synthesis method that was modified from the work of  and
Chang (2003), briefly, phenol: formaldehyde: amine in the mole ratio of 24:1
convert to benzoxazine one mole and the target is 20 g of benzoxazine in each hatch.

Molecular weight of phenol =91
Molecular weight of formaldehyde = 30.03
Molecular weight of DETA = 10317
Molecular weight of PEHA =232.31
Density of formaldehyde = 109 g/mL
Density of DETA = 0,955 g/mL
Density of PEHA = 0.95 g/mL
Aming; DETA

2[[~T +4cHO + Ao %

o X rIX o)

Molecular weight of benzoxazine = (20xC) +(3xN) + (2x0) + (25xH)
= (20x12) +(3x 14) + (2x 16) + (25x )

=339
Benzoxazine 3399 = 1mol
209 =006mal

Phenol =006x2  =0.12mol
Formaldehyde = 0.06x4  =0.24 mol
DETA =0.06x1  =0.06 mol
Use in gram:
Phenol =0.12x94.11 =1129¢
Use inmL.;
Formaldehyde = 0.24x30.03 =721 g
But formaldehyde 37wt% = (7.21x100)-(37x1.091 = 17.87 mL
DETA =0.06x103.17=0.955 = 6.48 mL
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Amine; PEHA

+4CHO + _O C u .CO

Molecular weight of benzoxazine = (26xC) + (6XN) + (2x0) + (40xH)
= (26x12) + (6x14) + (2x16) + (40x1)

=468
Benzoxazine 4689 = 1mol
209 =0.043 mol

Phenol =0.043x2  =0.086 mol
Formaldehyde = 0.043x4  =0.172 mal
DETA =0.043x1  =0.043 mal
Use in gram:
Phenol =0.086x94.11=8.09 ¢
Use inmL;
Formalcenyde = 0.172x30.03=5.16
But formaldehyae 37wt%  =(5.16x100) - (37x 1.09) = 1281 mL
DETA =0.0043x232.37-0.95 = 10.52 mL
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Appendix C Decomposition of All Adsorbents
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Figure CI' Decomposition of untreated activated carbon.
105
— TGA
100 -
S 97
- %
<
é 2
85
80 T T T T
0 200 400 600 800 1000

Temperature (°C)

Figure C2 Decomposition of Iwt% of DETA-derived polybenzoxazine impregnat-
ing on activated carbon.
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Figure C3 Decomposition of 5wt% of DETA-derived polybenzoxazine impregnat-

Ing on activated carbon.
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Figure C4 Decomposition of 10wt% of DETA-derived polybenzoxazine impregnat-

ing on activated carbon.
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Figure C5 Decomposition of Iwt% of PEHA-derived polybenzoxazine impregnat-
ing on activated carbon.
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Figure C6 Decomposition of 5wt% of PEHA-derived polybenzoxazing impregnat-
ing on activated carbon.
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ing on activated carbon.



Appendix D XPS Spectra of All Adsorbents
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Figure D1 Cls XPS spectra of activated carbon,
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Figure D2 Ol XPS spectra of activated carbon.
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Activated carbon with lwt% PBZ derived from DETA
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Figure D3 Cls XPS spectra of lwt% PBZ derived from DETA impregnating on ac-
tivated carbon.
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Figure D4 Qls XPS spectra of Iwt% PBZ derived from DETA impregnating on
activated carbon.
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Figure D5 Nls XPS spectra of Iwt% PBZ derived from DETA impregnating on
activated carbon.
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Figure D6 Cls XPS spectra of 5Swt% PBZ derived from DETA impregnating on ac-
tivated carbon.
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Figure D7 ois XPS spectra of 5wt% PBZ derived from DETA impregnating on
activated carbon.
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Figure D8 NIs XPS spectra of 5wt% PBZ derived from DETA impregnating on
activated carbon,
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Figure D9 Cls XPS spectra of 10wt% PBZ derived from DETA impregnating on
activated carbon.
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Figure DIO O1ls XPS spectra of 10wt% PBZ derived from DETA impregnating on
activated carbon.
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Figure DIl Nls XPS spectra of 10wt% PBZ derived from DETA impregnating on
activated carbon.
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Figure D12 Cls XPS spectra of lwt% PBZ derived from PEHA impregnating on
activated carbon,
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Figure D13 ois XPS spectra of lwt% PBZ derived from PEHA impregnating on
activated carbon.
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Figure D14 Nls XPS spectra of lwt% PBZ derived from PEHA impregnating on
activated carbon.
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Activated carbon with 5wt% PBZ derived from PEHA
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Figure D15 Cls XPS spectra of 5wt% PBZ derived from PEHA impregnating on
activated carbon.
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Figure D16 Ols XPS spectra of 5wt% PBZ derived from PEHA impregnating on

activated carbon.
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Figure D17 N1ls XPS spectra of 5wt% PBZ derived from PEHA impregnating on
activated carbon.
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Figure D18 Cls XPS spectra of 10wt% PBZ derived from PEHA impregnating on
activated carbon.
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Figure D19 ois XPS spectra of 10wt% PBZ derived from PEHA impregnating on
activated carbon.
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Figure D20 NIs XPS spectra of 10wt% PBZ derived from PEHA impregnating on
activated carbon.



Polybenzoxazine derived from DETA

—————— Cls at 284 407
— Cls at 285514 ya \

~  Cls at 286.579 / \
B —— Cls at 287450 75 \
Cls at 288921
J — ——  Total

300 295

Bindmg Energy(eV)

Figure D21 C s XPS spectra of polybenzoxazine derived from DETA.,
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Figure D22 01s XPS spectra of polybenzoxazine derived from DETA.,
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Figure D23 N1s XPS spectra of polybenzoxazine derived from DETA.
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Figure D24 Cls XPS spectra of polybenzoxazine derived from PEHA.
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Figure D25 ois XPS spectra of polybenzoxazine derived from PEHA.,
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Figure D26 N1 XPS spectra of polybenzoxazine derived from PEHA.



Activated carbon from DETA-derived polybenzoxazine at 200 ¢
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Figure D27 C s XPS spectra of activated carbon from DETA-derived
. 0
polybenzoxazine at 200 C.
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Figure D28 Ols XPS spectra of activated carbon from DETA-derived
polybenzoxazine at 200 °c.
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Figure D29 N1s XPS spectra of activated carbon from DETA-derived
polybenzoxazine at 200 c.
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Figure D30 C1 XPS spectra of activated carbon from DETA-derived
. 0
polybenzoxazine at 300 C.
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Figure D31 ois XPS spectra of activated carbon from DETA-derived
polybenzoxazine at 300 °C.
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Figure D32 NIs XPS spectra of activated carbon from DETA-derived
polybenzoxazine at 300 °c.



Activated carbon from DETA-derived polybenzoxazine at 400 °c
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Figure D33 C s XPS spectra of activated carbon from DETA-derived
polybenzoxazine at 400 c.
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Figure D34 Qls XPS spectra of activated carbon from DETA-derived
polybenzoxazine at 400 °c.
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Figure D35 N Is XPS spectra of activated carbon from DETA-derived
polybenzoxazine at 400 c.
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Figure D36 CIs XPS spectra of activated carbon from PEHA-derived

polybenzoxazine at 300 °C.
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Figure D37 ois XPS spectra ofactivated carbon from PEHA-derived
polybenzoxazine at 300 °C.
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Figure D38 Nls XPS spectra of activated carbon from PEHA-derived
polybenzoxazine at 300 °c.
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Appendix E %Burn Off of Carbonization and Activation Polybenzoxazines

Table EI' Comparison of %bum offofactivated carbon from polybenzoxazine vary-

ing carbonization temperature

Carbonization. %Bum off %Bum off
temperature ( C) after carbonization after activation
200- 6.40% 70.15%
300 28.41% 70.20%
400 52.73% 70.25%
120
e T GA
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"g 80 4
ﬁ- 60
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20 T T T T
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Figure EI %bum offofactivated carbon from polybenzoxazine at 200 °C.



— TGA

100

Mass (Wt%)

60 =

40 A

20

0 50 100 150 200
Time (min)

Figure E2 %bum off ofactivated carbon from polybenzoxazine at 3(0 C.
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Figure E3 %bum off of activated carbon from polybenzoxazine at 400 c.



Appendix F Isotherm and HK Pore Size Distribution of All Adsorbents
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Figure FI Isotherm of untreated activated carbon.
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Figure F3 Isotherm of lwt% PBZ derived from DETA impregnating on activated
carbon.
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Figure F4 Horvath and Kawazoe pore size distribution of Iwt% PBZ derived from
DETA impregnating on activated carbon.
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Figure F5 Isotherm of 5wt% PBZ derived from DETA impregnating on activated
carbon.
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Figure F6 Horvath and Kawazoe pore size distribution of 5wt% PBZ derived from
DETA impregnating on activated carbon.
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Figure F7 Isotherm of 10wt% PBZ derived from DETA impregnating on activated

carbon.
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Figure F8 Horvath and Kawazoe pore size distribution of 10wt% PBZ derived from
DETA impregnating on activated carbon.
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Figure F9 Isotherm of 10wt% PBZ derived from PEHA impregnating on activated
carbon.
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Figure F10 Horvath and Kawazoe pore size distribution of 10wt% PBZ derived
from PEHA impregnating on activated carbon.  *
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Figure FII Isotherm of activated carbon from DETA-derived polybenzoxazine at
200 °C.
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Figure F12 Horvath and Kawazoe pore size distribution of activated carbon from
DETA-derived polyhenzoxazine at 200 °c.
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Figure F13 Isotherm of activated carbon from DETA-derived polybenzoxazine at
300 °c.
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Figure F14 Horvath and Kawazoe pore size distribution of activated carbon from
DETA-derived polybenzoxazine at 300 c.
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Figure F15 Isotherm of activated carbon from DETA-derived polybenzoxazine at
400 °c.
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Figure F16 Horvath and Kawazoe pore size distribution of activated carbon from
DETA-derived polybenzoxazine at 400 c.
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Figure F17 Isotherm of activated carbon from PEHA-derived polybenzoxazine at
300 °c.
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