ETHYLENE EPOXIDATION IN A LOW-TEMPERATURE PARALLEL PLATE DIELECTRIC BARRIER DISCHARGE SYSTEM WITH TWO DIELECTRIC LAYERS OF Ag CATALYST: EFFECTS OF CALCINATION TEMPERATURE AND OPERATING CONDITIONS

Satita Sotananan

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University, and Institut Français du Pétrole 2014

.014

570045

I28340016

Thesis Title:	Ethylene Epoxidation in a Low-Temperature Parallel Plate
	Dielectric Barrier Discharge System with Two Dielectric Layers
	of Ag Catalyst: Effects of Calcination Temperature and
	Operating Conditions
By:	Satita Sotananan
Program:	Petrochemical Technology
Thesis Advisors:	Prof. Sumaeth Chavadej

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

...... College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

Sumaith aunder

(Prof. Sumaeth Chavadej)

Τ,

(Asst. Prof. Siriporn Jongpatiwut)

Malu Sm

(Asst. Prof. Malee Santikunaporn)

ABSTRACT

5571028063: Petrochemical Technology Program Satita Sotananan: Ethylene Epoxidation in a Low-Temperature Parallel Plate Dielectric Barrier Discharge System with Two Dielectric Layers of Ag catalyst: Effects of Calcination Temperature and Operating Conditions Thesis Advisor: Prof. Sumaeth Chavadej, 78 pp.
Keywords: Ethylene Oxide/ Epoxidation/ Parallel Plate/ Dielectric Barrier Discharge / Calcination Temperature

In this research work, ethylene oxide production performance under a lowtemperature parallel plate dielectric barrier discharge (DBD) system with two dielectric glass plates and the upper glass plate coated with 0.1 wt% Ag catalyst calcined at different temperatures was investigated. Under optimum conditions (an applied voltage of 19 kV, an input frequency of 500 Hz, a total feed flow rate of 50 cm³/min, a gap distance of 0.7 cm, and a N₂O:C₂H₄ feed molar ratio of 0.17:1), the highest EO selectivity of 48.9% and the highest EO yield of 8.6% were achieved at a calcination temperature of 550 °C. The use of N₂O as oxygen source provided comparatively better ethylene epoxidation performance than O₂ under their own optimum conditions.

iii

บทคัดย่อ

สาธิตา โสธนนันทน์ : ปฏิกิริยาอิพีอกซิเคชันของเอทิลีนภายใต้ระบบพลาสมาอุณหภูมิ ต่ำชนิคไคอิเล็กทริกแบร์ริเออคิสชาร์จโคยใช้แผ่นไคอิเล็กทริกสองแผ่นและตัวเร่งปฏิริยาชนิคซิล เวอร์: ผลของอุณหภูมิที่ใช้ในการเผาไหม้ให้เป็นเถ้าและภาวะที่ใช้ในการคำเนินการ (Ethylene Epoxidation in a Low-Temperature Parallel Plate Dielectric Barrier Discharge System with Two Dielectric Layers and Ag Catalyst: Effects of Calcination Temperature and Operating Conditions) อาจารย์ ที่ปรึกษา: ศ. สเมธ ชวเคช 78 หน้า

ในงานวิจัยนี้ ปฏิกิริยาอิพ็อกซิเดชันของเอทิลีนได้ถูกสำรวจภายใต้ระบบพลาสมา อุณหภูมิด่ำชนิดไดอิเล็กทริกแบร์ริเออดิสชาร์จพร้อมทั้งการเคลือบบนผิวตัวรองรับแผ่นกระจก ด้านบนด้วยตัวเร่งปฏิกิริยาชนิดซิลเวอร์ในปริมาณร้อยละ 0.1 โดยน้ำหนัก ภายใต้สภาวะที่ เหมาะสมที่สุด (ความต่างศักย์ไฟฟ้า 19 กิโลโวลด์ ความถี่ไฟฟ้า 500 เฮิรต์ซ อัตราการไหลของสาร ตั้งด้น 50 ถูกบาศก์เซนติเมตรต่อนาที ระยะทางของช่องว่าง เท่ากับ 0.7 เซนติเมตร และอัตราส่วน โดยโมลของก๊าซไนตรัสออกไซค์ต่อเอทิลีน 0.17:1) การเลือกเกิดของเอทิลีนออกไซค์เป็น 8.6 เปอร์เซ็นต์ เกิดขึ้นเมื่อใช้อุณหภูมิในการเผาไหม้ให้เป็นเถ้าที่ 550 องศาเซลเซียส และนอกจากนี้เมื่อ เปรียบเทียบผลของการใช้แหล่งกำเนิดออกซิเจนที่แตกต่างกันแล้วนั้นพบว่า ภายใต้ภาวะที่ เหมาะสมของมันเอง การใช้ก๊าซไนตรัสออกไซด์เป็นแหล่งกำเนิดก๊าซออกซิเจนก่อให้เกิด ประสิทธิภาพของปฏิกิริยาอิพ็อกซิเดชันของเอทิลีนได้ดีกว่าการใช้ก๊าซออกซิเจน

ACKNOWLEDGEMENTS

This research work would not be possible successful with out the support of many people as follows.

First of all, the author would like to thank and deep regards to my advisor, Prof. Sumaeth Chavadej, who provided creative comments, useful recommendations, offered invaluable assistance, and encouragement throughout the course of my research work.

Moreover, this thesis work is funded by The Petroleum and Petrochemical College; and The National Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials, Thailand.

Furthermore, I was appreciative the members of the committees, Asst. Prof. Siriporn Jongpatiwut and Asst. Prof. Malee Santikunaporn. If the author is without whose knowledge and assistance, this study will not have been successful.

In addition, the author deeply thank to all my PPC friends for creative suggestions, good helping, and encouragement. Especially, Miss Thitiporn Suttikul for her valuable suggestions throughout this research work.

Last, the author greatly indebted to my family for their understanding and cheerfulness, through the duration of my studies.

TABLE OF CONTENTS

		PAGE
Т	itle Page	i
А	bstract (in English)	iii
А	bstract (in Thai)	iv
А	cknowledgements -	v
T	able of Contents	vi
L	ist of Tables -	viii
L	ist of Figures	x
CHAP	ΓER	
I	INTRODUCTION	1
II	LITERATURE REVIEW	3
	2.1 Basic Principles of Plasma	3
	2.2 Applications of Non-Thermal Plasma	20
	2.3 Combination between Plasma and Catalytic Processing	21
	2.4 Catalysts Used in Ethylene Epoxidation	24
	2.5 Oxidants for Epoxidation Reaction	28
II	I EXPERIMENTAL	33
	3.1 Materials	33
	3.2 Catalyst Preparation Procedure	33
	3.3 Catalyst Characterization Techniques	34
	3.4 Catalytic Activity Experiment	36
	3.5 Power Supply Unit	39
	3.6 Experiment Procedure	40

-

.

-

.

1

- -

IV	RESULTS AND DISCUSSION	42
	4.1 Catalyst Characterization Results	42
	4.2 Reaction Activity Performance	45
	4.2.1 Effect of Applied Voltage	45
	4.2.2 Effect of Input Frequency	49
	4.2.3 Effect of Total Feed Flow Rate	53
	4.2.4 Effect of Calcination Temperatures	57
	4.2.5 Effect of Oxygen Sources	58
V	CONCLUSIONS AND RECOMMENDATIONS	63
	5.1 Conclusions	63
	5.2 Recommendations	63
	REFERENCES	64
	APPENDICES	72
	Appendix A Effect of Operating Conditions on Ethylene	
	Epoxidation Performance	72
	Appendix B Effect of Calcination-Temperature on Ethylene	
	Epoxidation Performance	75
	Appendix C Effect of Different Oxygen Source Types on	
	Ethylene Epoxidation Performance	76
	CURRICULUM VITAE	78

.

.

LIST OF TABLES

TABLE		P	AGE	
0.1			6	
2.1	Collision mechanisms in the plasma		6	
3.1	The detailed dimensions of the parallel BDB reactor		37	
4.1	Crystal size of Ag catalysts, particle size and ethylene			
	epoxidation performance at different temperatures		43	
4.2	Ethylene epoxidation performance of different oxygen			
	sources in the sole plasma systems and catalytic plasma			
	systems		61	
Al	Effect of applied voltage on ethylene and nitrous oxide			
	conversion, EO selectivity, and EO yield		72	
.A2	Effect of applied voltage on by products selectivity and			
	power cconsumption		72	
A3	Effect of input frequency on ethylene and nitrous oxide			
	conversion, EO selectivity, and EO yield		73	
A4	Effect of input frequency on by products selectivity		73	
A5	Effect of input frequency on power consumption and current		73	
A6	Effect of total feed flow rate on ethylene and nitrous oxide			
	conversion, EO selectivity, and EO yield		- 74	
- A7	Effect of total feed flow rate on by products selectivity and			
2	power consumption		74	
B1	Effect of calcinations temperature on ethylene and nitrous			
	oxide conversion, EO selectivity, and EO yield		75	
Cl	Effects of oxygen/ethylene feed molar ratio on ethylene and			
	nitrous oxide conversion, EO selectivity, and EO yield		76	
C2	Effect of oxygen/ethylene feed molar ratio on by product			
	selectivities		76	
C3	Effects of nitrous oxide/ethylene feed molar on ethylene and			
	nitrous oxide conversion, EO selectivity, and EO yield		77	

-

-

TABLE

-

PAGE

•

C4	Effects of nitrous oxide/ethylene feed molar ratio on by	
	products selectivity	77
C5	Comparison of ethylene epoxidation performance	77
-		

 \sim

.

LIST OF FIGURES

FIGURE		PAGE
2.1	Phase of matter consists of solid, liquid, gas, and the forth	
	state named "plasma".	3
2.2	Schematic view of a discharge.	4
2.3	The various types of discharge classified according to	
	temporal behaviour, pressure, and electrode geometry.	8
2.4	General structure of a glow discharge.	9
2.5	Schematic drawing of Microwave discharge.	10
2.6	Schematic of various types of radio frequency discharge: (a)	
	and (b) contain capacitive coupling, normally used at low	
	pressure, (c) use inductive coupling instead of capacitive	
	coupling, which can be operated at pressure up to 1 bar.	11
2.7	Phases of gliding arc evolution: (A) initial gas break-down;	
	(B) equilibrium heating phase; (C) non-equilibrium reaction	
	phase.	11
2.8	The corona discharge generated by inhomogeneous	
	electrodes.	12
2.9	Schematic of various forms of corona discharge depending	
	upon applied voltage at constant electrode geometrical	
	configuration.	14
2.10	The mechanism of generated discharges.	16
2.11	The mechanism of generated discharges by applying	
	sinusoidal voltage in DBD.	17
2.12	Schematic for dielectric barrier discharge reactor.	18
2.13	Schematic diagrams of parallel-plate DBD plasma source	
	configurations.	18

х

FIGURE

PAGE

2.14		Schematic diagrams of cylindrical DBD plasma source	
		configurations.	19
2.15		Selective oxidation by low density charge of $O_{(a)}$.	29
2.16	•	Combustion reaction by high density charge of $O_{(a)}$	30
2.17		The directoxidation of benzene to phenol by dioxygen	31
2.18		The directoxidation of benzene to phenol by nitrous oxide.	31
3.1		Schematic of experimental setup for ethylene epoxidation	
		reaction using a DBD discharge reactor.	36
3.2	5	The configuration of the Parallel Dielectric Barrier	
		Discharge reactor.	37
3.3		Block diagram of the power supply unit.	40
4.1		XRD patterns of rough glass coated with 0.1 % Ag catalyst	
		at diferrent calcination temperatures: (a) 450 °C, (b) 500	
		°C, (c) 550 °C, (d) 600 °C, (e) 650 °C	43
4.2		SEM images of rough glass coated with 0.1 wt% Ag catalyst	
		at different calcination temperatures: (a) 450 °C, (b) 500	
		°C, (c) 550 °C, (d) 600 °C, (e) 650 °C (Accelerating	
		voltage of 15kV and Magnification of 4k)	44
4.3		C_2H_4 and N_2O yield in the DBD system with two dielectric	
		glass plates and the upper coated with 0.1 wt% Ag catalyst	
		conversions as a function of an applied voltage.	46
4.4		EO yield in the DBD system with two dielectric glass plates	
		and the upper coated with 0.1 wt% Ag catalyst as a function	
		of an applied voltage.	46
4.5		Product selectivities in the DBD system with two dielectric	
		glass plates and the upper coated with 0.1 wt% Ag catalyst	
		as a function of an applied voltage.	48

5

xi

. .

FIGURE

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

-

-

PAGE

EO and C_2H_4 power consumptions in the DBD system with	
two dielectric glass plates and the upper coated with 0.1	
wt% Ag catalyst as a function of an applied voltage.	48
C_2H_4 and N_2O conversions in the DBD system with two	
dielectric glass plates and the upper coated with 0.1 wt% Ag	
catalyst as a function of an input frequency.	50
Effect of input frequency on generated current in DBD	
system with 0.1 wt% Ag	50
Product selectivities in the DBD system with two rough-	
surfaced glasses coated with 0.1 wt% Ag catalyst as a	
function of an input frequency.	51
EO yield in the DBD system with two rough-surfaced	
glasses coated with 0.1 wt% Ag catalyst as a function of an	
input frequency.	52
EO and C_2H_4 power consumption in the DBD system with	
two rough-surfaced glasses coated with 0.1 wt% Ag catalyst	
as a function of an input frequency.	53
C_2H_4 and N_2O conversions in the DBD system with two	
dielectric glass plates and the upper coated with 0.1 wt% Ag	
catalyst as a function of total feed flow rate.	54
Product selectivities in the DBD system with two dielectric	
glass plates and the upper coated with 0.1 wt% Ag catalyst	
as a function of total feed flow rate.	55
EO yield in the DBD system with two dielectric glass plates	
and the upper coated with 0.1 wt% Ag catalyst as a function	
of total feed flow rate.	56
EO and C_2H_4 power consumptions in the DBD system with	
two dielectric glass plates and the upper coated with 0.1	

wt% Ag catalysts as a function of total feed flow rate.

.

.

56

-

.

FIGURE

-

.

4.16	EO selectivity and yield in the DBD system with two	
	dielectric glass plates and the upper coated with 0.1 wt% Ag	
	catalyst as a function of calcination temperature.	57
4.17	EO selectivity in the DBD system with two dielectric glass	
	plates and the upper coated with 0.1 wt% Ag catalyst as a	
	function of a O_2/C_2H_4 feed molar ratio.	58
4.18	EO selectivity in the DBD system with two dielectric glass	
	plates and the upper coated with 0.1 wt% Ag catalyst as a	
	function of a N_2O/C_2H_4 feed molar ratio.	59
4.19	Comparison of oxygen sources in term of ethylene	
	conversion ethylene oxide selectivity and yield: (a) sole	
	plasma system (b) catalytic plasma system (0.1 % Ag	
	catalyst).	60

-

xiii