SMART PACKAGING FROM PLASTIC/NANOCOPPER NANOCOMPOSITE

Pitchaya Naneraksa

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University

2012

128374514

mposite

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

..... College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

R. Maganyn

(Assoc. Prof. Rathanawan Magaraphan)

nothacha M

(Asst. Prof. Hathaikarn Manuspiya)

Dasa Dijun

(Dr. Orasa Onjun)

บทคัดย่อ

พิชญา เณรรักษา : บรรจุภัณฑ์ฉลาคจากวัสดุคอมพอสิตระหว่างพลาสติกและคอปเปอร์ ขนาดนาโนเมตร (Smart Packaging from Plastic/nanocopper Nanocomposite) อ. ที่ปรึกษา : รศ.ดร. รัตนวรรณ มกรพันธุ์ 134 หน้า

งานวิจัยนี้มีเป้าหมายในการพัฒนาฟิล์มบรรจุภัณฑ์ฉลาดจากฟิล์มพอลิพรอไพลีน ซึ่งมี การผสมอนุภาคขนาดนาโนเมตรของแร่ดินเบนโตไนต์และคอปเปอร์ปริมาณ I เปอร์เซ็นต์โดย น้ำหนัก เพื่อประโยชน์ทางด้านการซึมผ่านของก๊าซและการต้านเชื้อแบคทีเรีย คอปเปอร์ขนาดนา โนเมตรถูกสังเคราะห์ด้วยวิธีสังเคราะห์ขั้นตอนเดียวจากสารละลายคอปเปอร์ (II) ในเตรต โดยมี กรดแอสคอบิคเป็นตัวรีดิวซ์ และมีพอลิไวนิลไพโรลิโดนเป็นสารช่วยการกระจายตัว คอปเปอร์ ขนาดนาโนเมตรที่สังเคราะห์ได้มีขนาดเส้นผ่านศูนย์กลางเฉลี่ย 6 นาโนเมตรซึ่งผลการศึกษา XRD ยืนยันพึกเอกลักษณ์ของโลหะทองแดง ศึกษาผลของปริมาณอนุภาคทองแดงขนาดนาโน (ปริมาณ 5, 10, 15, และ 20 เปอร์เซ็นต์โดยน้ำหนัก) ที่มีค่อสมบัติเชิงกล สมบัติทางความร้อน และการซึม ผ่านของก๊าซของฟิล์มนาโนคอมพอสิต การมีอยู่ของอนุภาคดินเบนโตในต์และคอปเปอร์ขนาด นาโนเมตร ทำให้ฟิล์มนาโนคอมพอสิตมีการยืดตัวก่อนแตกหักเกินกว่า 300 เปอร์เซ็นต์ แต่ความ แข็งแรงต่อการดึงยึดลดลงไปประมาณ 27 เปอร์เซ็นต์ อนุภาคขนาดนาโนเมตรทำหน้าที่เสมือน เป็นสารก่อผลึก ทำให้เกิดการเพิ่มขึ้นของผลึกของฟิล์มพอลิพรอไพลีน การซึมผ่านของไอน้ำและ ก๊าซออกซิเจนมีก่าเพิ่มขึ้นไปตามปริมาณของคอปเปอร์ขนาดนาโนเมตรที่ใช้ ทั้งนี้ฟิล์มพอลิพรอพิ ลีนนาโนคอมพอสิตที่เตรียมได้สามารถนำไปใช้เป็นบรรจุภัณฑ์สำหรับการห่อหุ้มปลาสดแข่เย็น

ABSTRACT

5372021063: Polymer Science Program
 Pitchaya Naneraksa: Smart Packaging from Plastic/nanocopper
 Nanocomposite.
 Thesis Advisors: Assoc. Prof. Rathanawan Magaraphan 134 pp.
 Keywords: Nanocomposite/ Copper nanoparticle/ Bentonite organoclay

This study is aimed to develop a smart packaging film from polypropylene blown film containing 1 wt% Bentonite organoclay/copper nanoparticles for barrier and antimicrobial purpose. Copper nanoparticles (CuNP) were synthesized using a one-step synthesis from copper (II) nitrate solution using ascorbic acid as reduction agent and polyvinylpyrrolidone as dispersant. The synthesized CuNPs had the particle size of about 6 nm, and the XRD spectrum confirmed three characteristic diffraction peaks of copper (0). Effect of CuNP content (5, 10, 15 and 20 wt% of total nano-fillers) on mechanical properties, thermal properties, and permeability of nanocomposite films showed elongation at break in machine direction over 300% but their tensile strength was reduced for about 27 %. Nanoparticles acted as nucleating agents to increase crystallinity of PP films. Water vapour and oxygen permeability were increased with respect to the CuNP contents. PP nanocomposite films would be capable to be used in prepacked chilled fish packaging.

ACKNOWLEDGEMENTS

This work is financial supported by the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission (FW0649A). This thesis work is also partly funded by the Petroleum and Petrochemical College, and the Center of Excellence on Petrochemical and Materials Technology, Thailand. The authors are also grateful to the Department of Materials Science and Engineering, Silpakorn University for kindly support of machinery and instrument.

The author would like to gratefully thank her advisor, Assoc. Prof. Dr. Rathanawan Magaraphan, for her suggestion and valuable guidance throughout the work. Assist. Prof. Dr. Hathikarn Manuspiya and Dr. Orasa Onjun are appreciated for serving on her thesis committee. And, the author would like to thank the faculties of the Petroleum and Petrochemical College for their kindness and support during the study of her Master degree in Chulalongkorn University.

The author is greatly appreciated for her parents for their devoted love, support, and understanding during the hardship of the study and the research work. The author would like to give specially thank to Nion Sae-Lim, the senior colleague in the research group, for her kindly help performing SEM tests in urgent request. Last but not least, the author would like to thank all her PPC friends for their encouragement and fully support throughout the study in PPC.

TABLE OF CONTENTS

]	Title Pag	e	i
I	Abstract	(in English)	iii
I	Abstract	(in Thai)	iv
I	Acknowl	edgements	v
-	Table of	Contents	vi
Ι	List of Ta	ables	xi
	Table of	Figures	xiii
CHAF	PTER		
1	I I	NTRODUCTION	1
I	II L	ITERATURE REVIEW	5
	2.	1 Smart Packaging	5
		2.1.1 Gas Sensors	5
		2.1.2 Indicators	6
	2.	2 Polypropylene for Packaging	7
	2.	3 Clay Minerals	8
	2.	4 Polymer-Clay Nanocomposites Preparation	11
	2.	5 Synthesis of Copper Nanoparticle	16
	2.	6 Fish Freshness	21
	2.	7 Freshness Indicator	23
	2.	8 Natural Dye	27
	2.	9 Mangosteen and Dye from the Fruit Pericarp (hull) of	
		Mangosteen	29
	2.	10 References	31

III EXPERIMENTAL

vi

PAGE

34

	PAGE
3.1 Materials and Apparatus	34
3.1.1 Chemicals and Materials	34
3.1.2 Apparatus and Glass Wares	34
3.2 Equipment	35
3.3 Experimental	36
3.3.1 Synthesis of Copper Nanoparticle (CuNP)	36
3.3.2 Mixing of CuNP into Bentonite Organoclay	
(OBEN/CuNP)	36
3.3.3 Nanoparticle Characterization	36
3.3.4 Preparation of OBEN/CuNP Masterbatch	37
3.3.5 Preparation of Neat PP and PP Nanocomposite Films	37
3.3.6 Clarity and Mechanical Properties of Neat PP and PP	
Nanocomposite Films	37
3.3.7 Morphology of Neat PP and PP Nanocomposite Films	39
3.3.8 Thermal Properties of Neat PP and PP Nanocomposite	2
Film	39
3.3.9 Permeability of Neat PP and PP Nanocomposite Films	39
3.3.10 Antimicrobial Activity of Neat PP and PP	
Nanocomposite Films	40
SYNTHESIS AND CHARACTERIZATION OF	
ORGANOCLAY-COPPER NANOPARTICLES	41
4.1 Abstract	41
4.2 Introduction	41
4.3 Experimental	43
4.3.1 Materials	43
4.3.2 Synthesis of Copper Nanoparticle (CuNP)	43
4.3.3 Mixing of CuNP into Bentonite Organoclay	
(OBEN/CuNP)	43
4.4.4 Nanoparticle Characterization	44

IV

	P	AGE
	4.4 Results and Discussion	44
	4.4.1 Characterization of Copper Nanoparticles (CuNP)	
	by TEM	44
	4.4.2 X-ray Diffraction Patterns of Organoclay-Copper	
	Nanoparticles (OBEN-CuNP)	46
	4.5 Conclusions	49
	4.6 References	49
v	MECHANICAL AND THERMAL PROPERTIES OF	
	POLYPROPYLENE NANOCOMPOSITE FILMS	51
	5.1 Abstract	51
	5.2 Introduction	51
	5.3 Experimental	54
	5.3.1 Materials	54
	5.3.2 Preparation of OBEN/CuNP Masterbatch	54
	5.3.3 Preparation of Neat PP and PP Nanocomposite Films	54
	5.3.4 Clarity and Mechanical Properties of Neat PP and PP	
	Nanocomposite Films	55
	5.3.5 Morphology of Neat PP and PP Nanocomposite Films	56
	5.3.6 Thermal Properties of Neat PP and PP Nanocomposite	
	Film	56
	5.4 Results and Discussion	57
	5.4.1 Clarity and Color of Neat PP and PP Nanocomposite	
	Films	57
	5.4.2 Mechanical Properties of Neat PP and PP Nanocomposition	te
	Films	59
	5.4.3 Morphology of Neat PP and PP Nanocomposite Films	65
	5.4.4 Thermal Properties of Neat PP and PP Nanocomposite	
	Films	71

		PAGE
	5.5 Conclusions	76
	5.6 References	77
VI	PERMEABILITY AND ANTIBACTERIAL ACTIVITIES O	F
	POLYPROPYLENE NANOCOMPOSITE FILMS	78
	6.1 Abstract	78
	6.2 Introduction	78
	6.3 Experimental	81
	6.3.1 Materials	81
	6.3.2 Preparation of OBEN/CuNP Masterbatch	82
	6.3.3 Preparation of Neat PP and PP Nanocomposite Films	82
	6.3.4 Permeability of Neat PP and PP Nanocomposite Films	82
	6.3.5 Antimicrobial Activity of PP and PP Nanocomposite	
	Films	83
	6.4 Results and Discussion	84
	6.4.1 Water Vapor Permeability and Oxygen Permeability of	f
	Neat PP and PP Nanocomposite Films	84
	6.4.2 Antimicrobial Activity of Neat PP and PP Nanocompo	site
	Films	89
	6.5 Conclusions	93
	6.6 References	94
VII	DYE INDICATOR AND FISH SPOLIAGE DETECTION OF	न
	MANGOSTEEN-DYEd ETHYLENE VINYL ACETATE	
	FILM	95
	7.1 Abstract	95
	7.2 Introduction	95
	7.3 Experimental	98
	7.3.1 Materials	98
	7.3.2 Extraction of Mangosteen Pericarp Dye in Acidic	
	Solution	98

PAGE

7.3.3 Preparation of Mangosteen-dyed EVA Film	98
7.3.4 Determination of Total Volatile Basic Nitrogen (TVB-N)	99
7.3.5 Determination of Ammonia Sensing by	
Mangosteen-dyed EVA Film (MGT/EVA)	100
7.3.6 Ammonia Sensing in Fish Spoilage Test by	
Mangosteen-dyed EVA Films	101
7.4 Results and Discussion	102
7.4.1 Color of Mangosteen Dyed EVA Film	102
7.4.2 Total Volatile Basic Nitrogen (TVB-N) of Spoiled	
White Perch	104
7.4.3 Ammonia Sensing by Mangosteen-dyed EVA Film	106
7.4.4 Fish Spoilage Test	108
7.5 Conclusions	113
7.6 References	114
VIII CONCLUSION AND RECOMMEDATIONS	115
8.1 Conclusions	115
8.2 Recommendation	117
REFERENCES	118
APPENDICES	122
Appendix A Tensile Properties and Tear Strength of Pure PP and PP	
Nanocomposite Films	122
Appendix B TVBN Results	125
Appendix C Colour (in Lab system) of MGT/EVA films in the	
ammonia sensing test and fish spoilage test	126
CURRICULUM VITAE	134

LIST OF TABLES

TABL	E P	PAGE
	CHAPTER II	
2.1	Plastics used for packaging meat product	8
	CHAPTER III	
3.1	Abbreviations and composition of blown films	38
	CHAPTER IV	
4.1	Particle size distribution (by volume) of synthesized copper	
	nanoparticles	46
	CHAPTER V	
5.1	Abbreviations and composition of blown films	55
5.2	Tensile properties of neat PP and PP nanocomposite blown films	63
5.3	Thermal properties of neat PP and PP nanocomposite films	72
5.4	TGA results of neat PP and PP nanocomposite blown films	75
	CHAPTER VI	
6.1	Water vapor transmission rate and oxygen permeability of neat PP and	Į
	PP nanocomposite blown films	87
6.2	Oxygen transmission rate and oxygen permeability of neat PP and PP	
	nanocomposite blown films	88
6.3	Antimicrobial activity values (colony-forming units per ml,	
	CFU ml ⁻¹) of the inoculation and control sample at a control	
	time of 18 h.	93

CHAPTER VII

7.1	Lightness and color in Lab system of pure EVA and mangosteen-dyed	
	EVA films (MGT/EVA)	102

TABLE		PAGE
7.2	Total volatile basic nitrogen (TVBN)	105

TABLE OF FIGURES

FIGURE

PAGE

CHAPTER II

2.1	Structure of montmorillonite (Nguyen et al., 2006).	9
2.2	Representation of a cation-exchange reaction between the silicate and an	
	alkylammonium salt (Nguyen et al., 2006).	11
2.3	Flowchart of three processing techniques for clay-based polymer	
	nanocomposite: in-situ polymerization (upper), Solution exfoliation	
	(middle) and melt intercalation (bottom).	12
2.4	Scheme of different types of composite arising from the interaction of	
	layered silicates and polymer.	13
2.5	XRD pattern of copper nanoparticles (Wu et al., 2006).	18
2.6	XRD pattern of copper nanoparticles (Wu, 2007).	18
2.7	XRD pattern of copper oxide nanoparticles (cuprite or CuO).	20
2.8	XRD pattern of the as-prepared cuprous oxide cubes. All the peaks are	
	labeled and can be readily indexed to a crystalline cubic phase $\mathrm{Cu}_2\mathrm{O}$ with	l
	lattice constant a= 4.260Å (JCPDS65-3288).	21
2.9	Sensor responses (spin-coated at 100 rpm) to ammonia concentration	
	monitored by the optical scanner.	24
2.10	Correlation of sensor response (1000 rpm) and changes in bacterial	
	population of fresh cod kept at 20 °C over time.	24
2.11	Normalized data showing the correlation between sensor response and	
	bacterial population (TVC and Pseudomonas spp.) in cod filet samples	
	at 21 °C. The error bars are SEM (standard error of the mean) values.	25
2.12	Example of molecular structure of natural dye.	28
2.13	Chemical structure of cyaniding-3-glucoside $(R_1=R_2=R_3=H)$ and	
	cyaniding-3-sophoroside ($R_1 = R_2 = H$ and $R_3 = glucosyl$).	30

CHAPTER IV

4.1	TEM images of synthesized copper nanoparticles.	45
4.2	Particle size distribution of synthesized copper nanoparticles.	46
4.3	XRD patterns of OBEN and OBEN-CuNPx powder. ($x = copper$	
	nanoparticle content in wt% adding into OBEN-CuNP mixture).	47
4.4	XRD patterns of OBEN and OBEN-CuNPx-ray at 20 between 2-16	
	degree. (x = copper nanoparticle content in wt% adding into	
	OBEN-CuNP mixture).	48

CHAPTER V

5.1	Surlyn structure (Lim et al., 2010).	52
5.2	Appearance of PP nanocomposite blown films adding OBEN/CuNP-5	58
5.3	Lightness (L^*) of neat PP and PP nanocomposite blown films.	58
5.4	b* of neat PP and PP nanocomposite blown films. Value of b*indicates	
	yellowness of films.	59
5.5	Tensile strength of neat PP and PP nanocomposite blown films.	60
5.6	The stress-strain curves of neat PP and PP nanocomposite blown films	
	cutting along the machine direction (MD).	61
5.7	Percentage of elongation at break of neat PP and PP nanocomposite blow	vn
	films.	62
5.8	Tear strength at maximum loading of neat PP and PP nanocomposite blo	wn
	films.	64
5.9	Cryo-fractured SEM micrographs of neat PP, PP/Surlyn and PP	
	nanocomposite blown films. (magnification 10,000X).	66
5.10	Cryo-fractured SEM micrographs of neat PP, PP/Surlyn and PP	
	nanocomposite blown films. (magnification 3,500X).	67
5.11	XRD patterns of neat PP and PP nanocomposite blown films showing	
	crystals of PP matrix. The XRD patterns of each sample have a common	
	scale such that any increase or decrease in intensity of particular peak is	a
	direct measure of the percentage of crystallization.	68

FIGURE

nitrogen atmosphere).

5.12 XRD patterns of neat PP and PP nanocomposite blown films showing intercalation and exfoliation of nanoclay in PP matrix. 5.13 2nd heating scan of neat PP and PP nanocomposite films. 5.14 DSC cooling scans of neat PP and PP nanocomposite films. 5.15 TGA thermogram of neat PP and PP nanocomposite blown films (under

CHAPTER VI

6.1	Water vapor permeability of neat PP and PP nanocomposite films.	85
6.2	Oxygen permeability of neat PP and PP nanocomposite films.	86
6.3	Agar diffusion test showing clear zone around OBEN/Cu5 pastes	
	compared to OBEN powder and water (reference).	89
6.4	Agar diffusion test showing clear zone around OBEN/Cu10,	
	OBEN/Cu15, and OBEN-Cu20 pastes compared to OBEN and water	
	(reference).	90
6.5	Agar diffusion tests of neat PP and PP nanocomposite blown films	90
6.6	Agar plates of PP/OBEN-Cu20 nanocomposite films showing the	
	numbers of E-coli colonies after incubated for 24 hours.	91
6.7	Agar plates showing numbers of E-coli colonies after incubated	
	for 24 hours after the shake flask test of a) the control sample,	
	b) the PP-OBEN-Cu5 sample, c) PP-OBEN-Cu10 sample,	
	d) PP-OBEN-Cu15 sample, and e) PP-OEN-Cu20 sample.	92

CHAPTER VII

7.1	Chemical structure of xanthones in mangosteen pericarp.	97
7.2	Chemical structure of cyanidin-3-glucoside $(R_1=R_2=R_3=H)$ and	
	cyanidin-3-sophoroside ($R_1=R_2=H$ and $R_3=glucosyl$).	97
7.3	FTIR spectrum of mangosteen shell before (a) and after (b) dyes	
	extracted.	97

PAGE

76

FIGURE

7.4	Experimental design for determination of TVB-N.	100
7.5	Setup for ammonia sensing (fish spoilage) by mangosteen-dyed	
	EVA films.	101
7.6	Comparison between pure EVA and 2 wt% mangosteen-dyed EVA	
	films.	103
7.7	Comparison between pure EVA and 4 wt% mangosteen-dyed EVA	
	films.	103
7.8	Comparison between pure EVA and 6 wt% mangosteen-dyed EVA	
	films.	104
7.9	The concentration of TVB-N as a function of time.	105
7.10	Change in color (C^*) of mangosteen-dyed EVA film after contacted to	
	ammonia in different concentration.	107
7.11	Change in color (C*) of 2 wt% mangosteen-dyed EVA film after	
	contacted to ammonia in different concentration.	107
7.12	Change in color (C*) of 4 wt% mangosteen-dyed EVA film after	
	contacted to ammonia in different concentration.	108
7.13	Change in color (C*) of 4 wt% mangosteen-dyed EVA film after	
	contacted to fresh fish spoilage in various time. Relationship is express	ed
	in linear with R^2 of 0.98.	109
7.14	Change in color of 4 wt% mangosteen-dyed EVA film after tested	
	in fish spoilage test in various times (the bottom row).	109
7.15	Change in color of 4 wt% mangosteen-dyed EVA film after tested in	
	fish spoilage test for 12 hours.	110
7.16	Laminated films between PP/OBEN-CuNP5 film and 4 wt%	
	MGT-EVA films for fish spoilage test. The size of 4 wt% MGT/EVA f	ilm
	was 1.0 x 1.0 inch.	111
7.17	The fish spoilage setup showing the glass bottles contained 100 g of	
	fresh fish covered with laminated films between PP/OBEN-CuNP5 film	1
	and 4 wt% MGT-EVA films.	[]]

7.18	The color of the 4 wt% MGT-EVA films after the fish spoilage test	
	with the time period of (a) 3 hours, (b) 6 hours, (c) 9 hours,	
	(d) 12 hours, compared with the original film (e).	112
7.19	Change in color (C^*) and lightness (L^*) after the fish spoilage test of	
	the laminated film between 4 wt% MGT/EVA films and PP/OBE-Cu5	
	nanocomposite films.	113

PAGE