ADMICELLAR POLYMERIZATION OF POLYCAPROLACTONE-POLYLACTIDE ON NATURAL RUBBER LATEX PARTICLES AND ITS NANOCOMPOSITES WITH NANOCLAY

Watit Wongphonchai

-

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University

2014

Thesis Title:	Admicellar Polymerization of Polycaprolactone-Polylactide		
e é	on Natural Rubber Latex Particles: and Its Nanocomposites with Nanoclay		
By:	Watit Wongphonchai		
Program:	Polymer Science		
Thesis Advisors:	Assoc. Prof. Rathanawan Magaraphan		

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

College Dean (Asst. Prof. Pomthong Malakul)

Thesis Committee:

Magarap

(Assoc. Prof. Rathanawan Magaraphan)

..... (Asst. Prof Manit Nithitanakul)

Ima

(Asst. Prof. Chanchai Thongoin)

ABSTRACT

5572029063: Polymer Science Program

Watit Wongphonchai: Admicellar Polymerization of Polycaprolactone-polylactide on Natural Rubber Latex Particles and its Nanocomposites with Nanoclay.

Thesis Advisor: Assoc. Prof. Rathanawan Magaraphan 86 pp.

Keywords:

Admicellar polymerization/ Natural rubber/ Polycaprolactonepolylactide copolymer

Natural rubber was modified its surface by core-shell particle formation via admicellar polymerization by using polycaprolactone-polylactide copolymer as shell layer. Effect of particle factor, monomers ratio and initiator to monomers ratio, were observed for morphology, size, chemical function and thermal stability of admicelled particles. Then, it was incorporated with organoclay to become nanocomposite and using for PLA toughness modification. Effects of the particles factors and clay content were observed for mechanical and thermal properties of blends. Optical and transmission electron microscope revealed that core-shell structure of admicelled particles. That mean core-shell particles of natural rubber can be prepared via admicellar polymerization. IR spectra of shell layer showed characteristic peaks of PCL and PLA and also showed pattern of copolymer. TGA thermogram showed that the shell polymer did not sufficiently improve thermal stability of rubber core because there is only single decomposition which amazingly reveals good miscibility of the three components. DMA result showed that glass transition temperature (Tg) of the two components shifted close together, that means two components were more compatible. Impact testing showed that the particles with a high initiator to monomers ratio cause increasing of PLA's Impact force. Organoclay addition into admicelled rubber improved miscibility and storage modulus of blends in DMA, but impact force decreased severely.

บทคัดย่อ

วาทิต วงศ์พรชัย : การสังเคราะห์ด้วยแอดไมเซลาร์พอลิเมอไรเซชันของพอลิคาโพร-แล็กโทน–พอลิแล็กไทด์บนอนุภาคยางธรรมชาติ และนาโนคอมโพสิต (Admicellar polymerization of polycaprolactone-polylactide on natural rubber latex particles and its nanocomposites with nanoclay) อ. ที่ปรึกษา : รศ.ดร. รัตนวรรณ มกรพันธุ์ 86 หน้า

อนุภาคยางธรรมชาติถูกปรับปรุงพื้นผิวด้วยการเคลือบด้วยโคพอลิเมอร์ของพอลิคาโพร-แล็กโทนและพอลิแล็กไทค์ผ่านกระบวนการแอคไมเซลาร์พอลิเมอไรเซชัน และศึกษาผลจากการ ผันแปรสัคส่วินของมอนอเมอร์ทั้งสองและสัคส่วนของสารริเริ่มปฏิกิริยาต่อมอนอเมอร์ต่อรูปร่าง ขนาด ฟังก์ชันทางเคมี และเสถียรภาพทางความร้อนของอนุภาคสังเคราะห์ จากนั้นอนุภาค ้สังเคราะห์จะถูกรวมเข้ากับแร่ดินเหนียวเพื่อทำเป็นวัสดุนาโนคอมโพสิต และนำไปใช้เพื่อการ ปรับปรุงความเหนียวของพอลิแล็กไทด์ แล้วทำการศึกษาผลของการผันแปรสัดส่วนของมอนอ-เมอร์ทั้งสอง สัคส่วนของสารริเริ่มปฏิกิริยาต่อมอนอเมอร์ และปริมาณของแร่คินเหนียวที่มีต่อ สมบัติเชิงกลและสมบัติเชิงความร้อน กล้องจุลทรรศน์แบบแสงและกล้องจุลทรรศน์อิเล็กตรอน แบบส่องผ่านแสดงให้เห็น โครงสร้างของอนุภาคที่มีแกนยางธรรมชาติที่ถูกล้อมรอบด้วยเปลือกที่ มีลักษณะโปร่งแสง อินฟราเรคสเป็กตรัมของวัสดุส่วนเปลือกแสดงลักษณะเฉพาะพอลิคาโพร-แล็กโทนและพอลิแล็กไทด์ และยังแสดงให้เห็นลักษณะของการเป็นโคพอลิเมอร์อีกด้วย การ วิเคราะห์ทางความร้อนแสดงให้เห็นว่าพอลิเมอร์ส่วนเปลือกของอนุภาคแอดไมเซลลาร์ไม่ได้ ์แสดงการปรับปรุจ์เสถียรภาพทางความร้อนให้กับแกนที่เป็นยางเพราะแสดงอุณหภูมิการสลายตัว เพียงก่าเดียว ผลดังกล่าวแสดงให้เห็นถึงความเข้ากันได้ดีขององก์ประกอบทั้งสาม ผลการวิเคราะห์ เชิงอุณหพลศาสตร์ของพอลิเมอร์ผสมแสดงให้เห็นว่าอุณหภูมิการเปลี่ยนสถานะคล้ายแก้วของ ้องค์ประกอบทั้งสองมีการขยับเข้าหากัน นั่นคือองค์ประกอบทั้งสองมีความเข้ากันได้มากขึ้น การ ทคสอบแรงกระแทกแสคงให้เห็นว่าอนุภาคสังเคราะห์ที่มีสัคส่วนสารริเริ่มปฏิกิริยาต่อมอนอเมอร์ มาก จะส่งทำให้เบลนค์ทนแรงกระแทกไค้มากที่สุด การเติมแร่ดินเหนียวเข้ากับอนุภาคแอคไม-เซลล์นั้น ส่งผลให้เบลนค์มีความเข้ากันมากขึ้นและช่วยปรับปรุงมอดลัส ซึ่งเห็นได้จากการ ้วิเคราะห์เชิงอุณหพลศาสตร์ แต่ก็ยังส่งผลให้เบลนค์ทนต่อแรงกระแทกได้น้อยลงอย่างมาก

ACKNOWLEDGEMENTS

This thesis work could not be accomplished without the facilities and financial supports of the following organizations as well as these individual assistances.

First of all, I would like to express my deepest appreciation to my advisors, Assoc. Prof. Rathanawan Magaraphan for her intensive suggestion, valuable guidance, encouragement and vital help throughout this research work. My gratitude is also extended to all other committee members, Asst. Prof. Manit Nithitanakul and Asst. Prof. Chanchai Thongpin for taking time to serve as the committees and give their valuable comments on thesis including their patient to proofread my thesis.

I am grateful for the scholarship and funding of the thesis work provided by the Petroleum and Petrochemical College; the National Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials, Thailand, and National Research Council of Thailand. I am also thankful for materials support provided by Thai Nippon Chemical Industry Co., Ltd.

Finally, the author wishes to take this opportunity to thank my friends, my seniors, and the college staff at Petroleum and Petrochemical College for their friendly help, cheerfulness, and creative suggestions, particularly to my parents who have always loved, encouraged and given worthy moral support throughout this thesis work. With regard to those who have not been mentioned, I appreciated for your lending hands, every bit counts.

TABLE OF CONTENTS

		PAGE	
Title	e Page	i	
Abs	tract (in English)	iii	
Abs	tract (in Thai)	iv	
Ack	nowledgements	v	
Tabl	le of Contents	vi	
List	of Tables	х	- 2
List	of Figures	xii	
Abb	reviations	xvii	
CHAPTE	R		
I	INTRODUCTION	1	
II	THEORETICAL BACKGROUND AND		
	LITERATURE REVIEW	- 3	
	2.1 Natural Rubber	3	
	2.2 Core-Shell Particles	4	
	2.2.1 Stiff Core Particles	4	
	2.2.2 Soft Core Particles	4	
•	2.3 Admicellar Polymerizatiom	8	
0-0	2.3.1 Admicelle Formation	9	
	2.3.2 Solubilization	9	
	2.3.3 Polymerization	9	
	2.3.4 Washing	9	
	2.4 Polylactide	10	
	2.5 Toughness Modification of Polylactic Acid	10	
	2.5.1 Stereochemical	10	
	2.5.2 Copolymerization	11	
	2.5.3 Blending	11	
	2.6 Polymer-Clay Composite	17	

.....

CHAPTER

-

.

III	EXPERIMENTAL	20
	3.1 Materials	20
	3.2 Experimental Procedures	20
	3.2.1 Synthesis of Core-shell Particles	20
-	3.2.2 Core-shell Nanocomposite Preparation	21
	3.2.3 Blending and Specimens Preparation	21
	3.3 Characterization and Testing	21
	3.3.1 Electron Microscope	21
	3.3.2 Fourier-transform Infrared Spectroscopy	22
	3.3.3 Thermogravimetric Analysis	22
	3.3.4 Differential Scanning Calorimetry	22
	3.3.5 Dynamic Mechanical Analysis	22
	3.3.6 Impact Testing	22
	3.3.7 Tensile Testing	23
IV	ADMICELLAR POLYMERIZATION OF PCL-PLA ON NR	
	LATEX PARTICLES	24
	4.1 Abstract	24
	4.2 Introduction	25
	4.3 Experimental	25
	4.3.1 Materials -	25
	4.3.2 Admicellar Polymerization	26
	4.3.3 Morphology	26
	4.3.4 Chemical Function Groups	26
	4.3.5 Thermal Stability	26
	4.4 Results and Discussion	27
	4.4.1 Morphology and Particle Size of Synthesized Particles	27
	4.4.2 Chemical Functional Groups of Shell Layer Polymer	27

4.4.3 Thermogravimetric analysis of Synthesized Particles 32

vii

CHAPTER	2	PAGE
	4.5 Conclusions	35
	4.6 Acknowledgements	36
	4.7 References	36
V	TOUGNENING POLYLACTIDE WITH ADMICELLED	
	NATURAL RUBBER PARTICLES AND ITS	
	NANOCOMPOSITE	37
	5.1 Abstract	37
	5.2 Introduction	38
	5.3 Experimental	39
	5.3.1 Materials	39
	5.3.2 Admicellar Polymerization	39
	5.3.3 Nanocomposite Preparation	39
	5.3.4 Blending and Specimens Preparation	40
	5.3.5 Mechanical Properties Measurement	40
	5.3.6 Morphology of Blends	40
	5.3.7 D-spacing of Clay	40
	5.4 Results and Discussion	41
	5.4.1 Effect of Admicelled Particle Variation on Morpholo	gy
	of Blends	41
	5.4.2 Effect of Admicelled Particle Variation on	
	Thermomechanical Properties of Blends	41
	5.4.3 D-spacing of Clay	48
	5.4.4 Effect of Admicelled Particle Variation on Mechanic	al
	Properties	49
	5.5 Conclusions	52
	5.6 Acknowledgements	52
	5.7 References	52

.

VII CONCLUSIONS AND RECOMMENDATIONS

-

54

. .

.....

-

56

REFERENCES

APPENDICES		60
Appendix A FTIR spectra of shell layer polymer		60
_ Appendix B DMA results of PLA/admicelled rubber and	-	
PLA/admicelled nanocomposites		64
Appendix C XRD result and Bragg's law calculation		71
Appendix D Impact Testing Results		75
Appendix E DSC Results		76
Appendix F Tensile Testing Results		84
Appendix G Standard of Specimens Dimension		85

CURRICULUM VITAE

.

86

÷

LIST OF TABLES

TABI	ABLE		PAGE
2.1	Cross-link density and izod impact strength values of IPNs.		3
2.2	Cross-link Effect of rubber type on tensile properties and		
	impact strength of the blends containing 30%		
	uncompounded rubber.		4
2.3	Tensile properties of pure NR and its nanocomposites		
	(SiO2/NR = 2/100 w/w).		5
2.4	Tensile properties of the PLLA-EVA85 blends.		13
2.5	Molecular weight, molecular weight distribution and block		
	ratio of PEG/PLLA multiblock copolymers. nd: not		
	determined		14
2.6	Thermal properties, mechanical properties, and water		
	absorption of the block copolymers.		14
2.7	Block copolymers of different compositions.		
	Tensile properties of different PLA compositions (standard		
	deviations are given in brackets).		14
2.8	Mechanical properties of neat PLA and PLAOR		
	nanocomposites.		15
2.9	Mechanical properties of Neat PLA and PLA-UFPRx as a		
	founciation of UFPR contents.		15
2.10	Mechanical properties of neat PLA and PLAOR		
	nanocomposites.		17
2.11	Mechanical properties of neat PLA and PLA blends with		
	different DS in MGST, various content of MGST3, and		
	different content of ESO.		17

-

4

-

.

2.12	Tensile mechanical properties including initial modulus (E),	
	yield stress (σ y), tensile strength (σ _b) and elongation at break	
	(ε_b) along with the predicted moduli by Halpin–Tsai and	
	Mori-Tanaka equations of the PLA-30B nanocomposites.	18
4.1	Size of synthesized particles with CL: LA monomers ratio	
	variation for initiator to monomer mole ratio of 0.5:100,	
	approximated from TEM images _	30
4.2	Size of synthesized particles with initiator to monomers ratio	
	variation for CL: LA monomer ratio = 50:50, approximated	
	from TEM images	31
4.3	Mass percentage of components in admicelled rubber	33
4.4	Degradation temperature of synthesized particles with CL:	
	LA monomers ratio variation for initiator to monomer mole	
	ratio of 0.5:100	34
4.5	Degradation temperature of synthesized particles with	
	initiator to monomers ratio variation for CL: LA monomer	
	ratio = 50:50	35
5.1	Thermomechanical properties by DMA of PLA/admicelled	
	rubber and PLA/admicelled rubber nanocomposite blends	48
5.2	2-Theta value from XRD and calculated d-spacing of	
	organoclay in PLA blends	49
5.3	Impact testing result of PLA/admicelled rubber and	
	PLA/admicelled rubber nanocomposite blends	50
C1	XRD data and calculated d-spacing	71
Dl	Impact strength from testing and standard deviations	72
EI	1 st heating results with 3°C/min heating rate	73
E2	2 nd heating results with 3°C/min heating rate	73
F1	Average Specimens Dimension	74
F2	Tensile testing results and standard deviation	74

xi

LIST OF FIGURES

. .

URE	
Mechanical properties of the PS-PI nanoparticles filled SBR	
composites.	5
Stress-train curves of different C-TiO2 contents; curves	
were shifted along the strain axis (increments of 5%) for	
clarity.	6
The impact strength of PS/PB-g-PS blends with various	4
compositions of PB-g-PS copolymers.	6
Typical stress-strain curves of (a) pure NR and NP_x	
composites, and (b) NP200 and NP200My series.	7
Dependence of the mechanical properties of the NP100My,	
NP200My, and NP800My series on clay loading: (a)	
hardness, (b) tensile strength, (c) Young's modulus, and (d)	
elongation at break.	- 8
Steps in admicellar polymerization.	9
(a) Tensile strength, (b) Young's modulus, and (c)	
elongation-atbreak of 1:1 blend films (W), non-blended	
PLLA films (O), and nonblended PDLA films (B) as a	
function of Mw.	12
Tensile stress-strain curves of the blends with various	
PAE/PLA weight compositions.	15
Stress-strain curves of (a) PLA/NPCC, (b) PLA/MMT	
nanocomposites and (c) the comparison of their strain-at-	
break values.	16
Tensile stress-elongation curves of the PLA and PLA-	
30B (1, 3, and 5 phr) nanocomposites. The inset is the	
sample photo of dumbbell specimens after tensile break.	18
	KE Mechanical properties of the PS–PI nanoparticles filled SBR composites. Stress-train curves of different C-TiO2 contents; curves were shifted along the strain axis (increments of 5%) for clarity. The impact strength of PS/PB-g-PS blends with various compositions of PB-g-PS copolymers. Typical stress-strain curves of (a) pure NR and NPx composites, and (b) NP200 and NP200My series. Dependence of the mechanical properties of the NP100My, NP200My, and NP800My series on clay loading: (a) hardness, (b) tensile strength, (c) Young's modulus, and (d) elongation at break. Steps in admicellar polymerization. (a) Tensile strength, (b) Young's modulus, and (c) elongation-atbreak of 1:1 blend films (W), non-blended PLLA films (O), and nonblended PDLA films (B) as a function of Mw. Tensile stress-strain curves of the blends with various PAE/PLA weight compositions. Stress-strain curves of (a) PLA/NPCC, (b) PLA/MMT nanocomposites and (c) the comparison of their strain-at-break values. Tensile stress-elongation curves of the PLA and PLA-30B (1, 3, and 5 phr) nanocomposites. The inset is the sample photo of dumbbell specimens after tensile break.

. . .

FIGURE

T c∰o T

2.11	Mechanical properties of solid and microcellular	
	PLA/PHBV blends and PLA/PHBV/clay	
	nanocomposites: (a) tensile strength, (b) tensile modulus,	
	and (c) strain-atbreak.	19
4.1	Optical microscope images of (a) natural rubber particles	
	and (b) synthesized particles.	28
4.2	TEM images of (a) natural rubber particles and (b)	
	synthesized particles.	28
4.3	TEM image of synthesized particles with CL: LA monomers	
	ratio variation; 30:70, b) 40:60, c) 50:50, d) 60:40 and e)	
	70:30, for initiator to monomer mole ratio of 0.5:100.	29
4.4	TEM image of synthesized particles with initiator to	
	monomers ratio variation; a) 0.5:100, b) 1.0:100, c) 1.5:100	
	and d) 2.0:100, for CL: LA monomer ratio = 50:50.	30
4.5	FTIR spectra of shell layer of synthesized particles with CL:	
	LA monomers ratio variation for initiator to monomer mole	
	ratio of 0.5:100.	31
4.6	FTIR spectra of shell layer of synthesized particles with	
	initiator to monomers ratio variation for CL: LA monomer	
	ratio = 50:50.	32
4.7	TGA thermogram of synthesized particles with CL: LA	
	monomers ratio variation for initiator to monomer mole ratio	
	of 0.5:100.	33
4.8	TGA thermogram of synthesized particles with initiator to	
	monomers ratio variation for CL: LA monomer ratio =	
	50:50.	34

FIGURE

-

-

PAGE

-

5.1	SEM images of 90/10 wt% PLA/admicelled rubber blends	
	with CL-LA monomers ratio variation; a) 30:70, b) 40:60, c)	
	50:50, d) 60:40 and e) 70:30 for initiator to monomer mole	
	ratio of 0.5:100.	43
5.2	SEM image of 90/10 wt% PLA/admicelled rubber blends	
	with initiator to monomers ratio variation; a) 0.5:100, b)	
	1.0:100, c) 1.5:100 and d) 2.0:100 for CL:LA monomer ratio	
	= 50:50.	44
5.3	Storage modulus graph of blends with various factors; a)	
	clay content, b) monomers ratio and c) initiator ratio.	45
5.4	Loss modulus graph of blends with various factors; a) clay	
	content, b) monomers ratio and c) initiator ratio.	- 46
5.5	Tan δ graph of blends with various factors; a) clay content,	
	b) monomers ratio and c) initiator ratio.	47
5.6	Effect of (a) caprolactone ratio, (b) initiator to monomers	
	ratio and (c) clay content on impact strength of blends.	51
Al	FTIR spectra of 307005.	60
A2	FTIR spectra of 406005.	60
A3	FTIR spectra of 505005.	61
A4	FTIR spectra of 505010.	· 61
A5	FTIR spectra of 505015.	62
A6	FTIR spectra of 505020.	62
A7	FTIR spectra of 604005.	63
A8	FTIR spectra of 703005.	63
Bl	DMA thermogram of neat PLA.	64
B2	DMA thermogram of PLA/NR blend with 10%wt NR.	64
B3	DMA thermogram of PLA/307005 blend	65
B4	DMA thermogram of PLA/406005 blend	65
B5	DMA thermogram of PLA/505005 blend	66

- 1

-

B6	DMA thermogram of PLA/505010 blend		66
B7	DMA thermogram of PLA/505015 blend		67
B8	DMA thermogram of PLA/505020 blend		67
B9	DMA thermogram of PLA/604005 blend		68
B10	DMA_thermogram of PLA/703005 blend	-	- 68
B11	DMA thermogram of PLA/505010 nanocomposites with		
	0.5% wt. clay		69
B12	DMA thermogram of PLA/505010 nanocomposites with		
	01.0% wt. clay		69
B13	DMA thermogram of PLA/505010 nanocomposites with		
	1.5% wt. clay		70
B14	DMA thermogram of PLA/505010 nanocomposites with		
	2.0% wt. clay		70
C1	XRD pattern of neat PLA.		71
C2	XRD pattern of neat bentonite.		72
C3	XRD pattern of neat modified bentonite.		72
C4	XRD pattern of PLA+505010 with clay 0.5%wt.		73
C5	XRD pattern of PLA+505010 with clay 1.0%wt.		73
C6	XRD pattern of PLA+505010 with clay 1.5%wt.		74
C7	XRD pattern of PLA+505010 with clay 2.0%wt.		74
El	DSC thermogram of neat PLA.		77
E2	DSC thermogram of PLA/NR blend with 10%wt NR.		77
E3	DSC thermogram of PLA/307005 blend		78
E4	DSC thermogram of PLA/406005 blend		78
E5	DSC thermogram of PLA/505005 blend		79
E6	DSC thermogram of PLA/505010 blend		79
E7	DSC thermogram of PLA/505015 blend		80
E8	DSC thermogram of PLA/505020 blend		80
E9	DSC thermogram of PLA/604005 blend	×.	81

.

-

FIGURE

-

-

PAGE

E10	DSC thermogram of PLA/703005 blend	81
EH	DSC thermogram of PLA/505010 nanocomposites with	
	0.5% wt. clay	82
E12	DSC thermogram of PLA/505010 nanocomposites with	
	01.0% wt. clay	82
E13	DSC thermogram of PLA/505010 nanocomposites with	
	1.5% wt. clay _	83
E14	DSC thermogram of PLA/505010 nanocomposites with	
	2.0% wt. clay	83

•

14

•

.

ABBREVIATIONS

-

CL	ε-Caprolactone
CTAB	Certyltrimethylammonium bromide
DMA	Dynamic mechanical analysis
LA	Lactide monomers
NR	Natural rubber
PCL	Polycaprolactone
PLA	Polylactide
TGA	Thermogravimetric analysis
Sn(Oct) ₂	Tin(II) 2-ethylhexanoate, stannous octoate

-