IMPROVEMENT OF SULFONATED POLYSULFONE MEMBRANES FOR DIRECT METHANOL FUEL CELL: EFFECT OF ZEOLITE Y AND SULFONATED GRAPHENE OXIDE

•

Phuwadon Bunlengsuwan

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University and Institut Francais du Pétrole 2015

I-28368 HAX

Thesis-Title:	Improvement of Sulfonated Polysulfone Membranes for Direct
	Methanol Fuel cell: Effect of Zeolite Y and Sulfonated
	Graphene Oxide
By:	Phuwadon Bunlengsuwan
Program:	Petrochemical Technology
Thesis Advisors:	Asst. Prof. Kitipat Siemanond
	Prof. Anuvat Sirivat

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Master of Science.

..... College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

Kitipat Semanad

(Asst. Prof. Kitipat Siemanond)

Annatherwat

(Prof. Anuvat Sirivat)

K

(Dr. Uthaiporn Suriyapraphadilok)

دن (Dr. Sumonman niam lang)

ABSTRACT

5671025063: Petrochemical Technology

Phuwadon Bunlengsuwan: Improvement of Sulfonated Polysulfone Membrane for Direct Methanol Fuel Cell: Effect of Zeolite Y and Sulfonated Graphene Oxide Thesis Advisors: Asst. Prof. Dr. Kitipat Siemanond, and

Prof. Anuvat Sirivat 172 pp.

Keywords: Direct methanol fuel cell/ Proton exchange membranes/ Sulfonated polysulfone/ Zeolite Y/ Sulfonated graphene oxide

The proton exchange membranes (PEMs) are being developed intensively due to their great potential as a promising power source for transportation, residential, and portable applications. In this work, the novel PEMs consisting of inorganic fillers embedded in sulfonated polysulfone (S-PSF) were fabricated. The effect of zeolite Y and sulfonated graphene oxide (S-GO) was investigated on the thermal and mechanical stability, water uptake, proton conductivity, and methanol permeability. The proton conductivity of S-PSF/zeolite Y membrane increased with increasing zeolite Y content, in parallel with the methanol permeability. It was due to its water retention property. The highest proton conductivity was found at 3 % v/v of S-GO because of the increment of sulfonic acid groups by incorporating of S-GO. The S-GO particles positively affected for blocking water and methanol molecules, caused by the increasing of interfacial interaction between S-PSF and S-GO, leading to the decreases in the water uptake and methanol permeability. Besides, the hybrid membranes, which were S-PSF membrane mixing with both zeolite Y and S-GO, were investigated. They also showed better performance than the pristine S-PSF and Nafion117 membrane. Therefore, all composite membranes are a potential candidate for being used in DMFC applications.

บทคัดย่อ

ภูวคล บรรเลงสุวรรณ: การพัฒนาแผ่นเยื่อแลกเปลี่ยนโปรตอนจากซัลโฟเนท พอลิ-ซัลโฟน เพื่อใช้ในเซลล์เชื้อเพลิงจากเมทานอล; ผลของการเดิมซีโอไลด์ วายและ ซัลโฟเนท กราฟีนออกไซด์ (Improvement of Sulfonated Polysulfone Membranes for Direct Methanol Fuel Cell: Effect of zeolite Y and Sulfonated graphene Oxide) ที่ปรึกษา: ผศ. ดร.กิติพัฒน์ สีมานนท์ และ ศ.ดร. อนุวัฒน์ ศิริวัฒน์ 172 หน้า

แผ่นเยื่อแลกเปลี่ยนโปรตอน กำลังถูกพัฒนาอย่างต่อเนื่อง เพื่อเป็นแหล่งกำเนิดพลังงาน แบบพกพา และประยุกต์ใช้กับยานพาหนะ และอุปกรณ์อิเล็กทรอนิกส์ แนฟออน (Nafion) เป็น พอลิเมอร์ที่ใช้แผ่นเยื่อแลกเปลี่ยนโปรตอนอย่างแพร่หลายในเซลล์เชื้อเพลิงจากเมทานอล เพราะ ้มันมีความสามารถในการนำโปรตอน และคุณสมบัติทางกายภาพสูง แต่อย่างไรก็ตาม แผ่นเยื่อ แลกเปลี่ยนโปรตอนจากแนฟีออน มีจุดด้อยอยู่ที่ก่าการแพร่ผ่านของเมทานอลที่สูง ซึ่งทำให้ สิ้นเปลืองเชื้อเพลิง และประสิทธิภาพของเซลล์เชื้อเพลิงนั้นลคลง อีกทั้งราคาของแผ่นเยื่อ แลกเปลี่ยนโปรตอนจากแนฟีออน นั้นค่อนข้างสูง จึงเป็นเหตุผลทำให้มีการพัฒนาแผ่นเยื่อชนิด แลกเปลี่ยนโปรตอนอย่างต่อเนื่อง ในงานวิจัยนี้ ซัลโฟเนท พอลิซัลโฟน (Sulfonated polysulfone, S-PSF) ได้ถูกเตรียมเป็นแผ่นเยื่อชนิดแลกเปลี่ยนโปรตอน โดยการเติมวัสดุเติม แต่งเข้าไป ได้แก่ซีโอไลต์ วาย (zeolite Y) และซัลโฟเนท กราฟีนออกไซด์ (Sulfonated graphene oxide, S-GO) สำหรับระบบที่เติมซีโอไลต์ วาย พบว่า ค่าการนำของโปรตอนและค่า การแพร่ผ่านของเมทานอลของแผ่นเยื่อมีก่าสูงขึ้น เนื่องมาจากคุณสมบัติการกักเก็บน้ำของซี-โอไลต์ วาย ซึ่งสามารถช่วยให้โปรตอนเคลื่อนที่ได้ดียิ่งขึ้น และสำหรับระบบที่เติม S-GO พบว่า ค่าการนำของโปรตอนเพิ่มขึ้นได้สูงสุดที่ร้อยละ 3 โดยปริมาตร เพราะว่าสามารถเกิดอันตรกิริยา ระหว่าง S-PSF และ S-GO ทำให้สามารถมีช่องว่างสำหรับเคลื่อนที่ของโปรตอนมากขึ้น แต่ อันตรกิริยานี้เมื่อมีมากขึ้น จะทำให้ไปลดช่องว่างการแพร่ผ่านของน้ำและเมทานอล ส่งผลต่อการ ้ลดลงของค่าการดูดซึมของน้ำและค่าการแพร่ผ่านของเมทานอล นอกเหนือจากนี้ แผ่นเยื่อชนิด แลกเปลี่ยนโปรตอนแบบไฮบริคไค้ถูกเตรียมขึ้นค้วยเช่นกัน ซึ่งแผ่นเยื่อไฮบริคนี้จะใช้ทั้งซีโอไลต์ ้วาย และ S-GO เป็นวัสดุเติมแต่ง โดยพบว่าแผ่นเยื่อชนิดแลกเปลี่ยนโปรตอนแบบไฮบริด ยังกง แสดงประสิทธิภาพที่ดีกว่าแผ่นเยื่อ S-PSF และ แผ่นเยื่อจากแนฟีออน เพราะฉะนั้น จากผลการ ทคลองในงานวิจัยนี้แผ่นเยื่อชนิดแลกเปลี่ยนโปรตอนแบบคอมโพสิตมีศักยภาพที่ดีสำหรับการใช้ ในเซลล์เชื้อเพลิงจากเมทานอล และสามารถใช้แทนจะแผ่นเยื่อจากแนฟีออนได้อีกด้วย

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my appreciation for those who have been significantly influential and responsible for my achievement in order to complete this thesis.

This research work could not be completed without the assistance and supports of following individuals and organizations.

Firstly, I would like to express my gratitude to my advisor, Asst. Prof. Kitipat Siemanond and Prof. Anuvat Sirivat who had always cared and paid attention to my research work since the beginning, giving valuable suggestions, attentive encouragement, beneficial recommendations and all the helpful supports in my research work.

Secondly, I also would like to thank to the thesis committees, Dr. Uthaiporn Suriyapraphadilok and Dr. Sumonman Niamlang for their important suggestions and recommendations in my research work.

Special appreciation is given to all staff members at The Petroleum and Petrochemical College who have provided helpful assistance and many useful technical supports.

Unforgettably, appreciation is forward to all my family and friends for their cheerful encouragement, understanding, and generous supports at all time.

Finally, this research work was partially supported by the Ratchadapisek Sompoch Endowment Fund (2013), Chulalongkorn University (CU-56-900-FC), the Conductive and Electroactive Polymers Research Unit (CEAP), the Thailand Research Fund (IRG5780012), and the Royal Thai Government.

v

0

TABLE OF CONTENTS

	PAGE
Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	ix
List of Figures	х

CHAPTER

.

Ι	INTRODUCTION	1
II	THEORETICAL BACKGROUND AND LITERATUR	E
	REVIEW	4
	2.1 Direct Methanol Fuel Cells (DMFC)	4
	2.2 Polysulfone (PSF)	12
	2.3 Zeolite	24
	2.4 Graphene Oxide	30
III	METHODOLOGY	34
	3.1 Materials and Instruments	34
	3.2 Experimental Methods	35
	3.2.1 Sulfonated Polysulfone and Sulfonated	
	Graphene Oxide	35
	3.2.2 Composite Membrane Preparations	35
	3.3 Characterizations and Testing	36
	3.3.1 Characterizations for S-PSF	36

-

	3.3.2 Characterizations for S-GO	37
e.	3.3.3 Characterizations and Testing of Composite Membrar	ne 37
IM	PROVEMENT OF SULFONATED POLYSULFONE	
ME	CMBRANES FOR DIRECT METHANOL FUEL CELL:	
EF	FECT OF ZEOLITE Y AND SULFONATED	
GR	APHENE OXIDE	40
4.1	Abstract	40
4.2	Introduction	41
4.3	Experimental	42
	4.3.1 Materials	42
	4.3.2 Preparation of Sulfonated Graphene Oxide (S-GO)	43
	4.3.3 Preparation of Sulfonated Polysulfone (S-PSF)	43
	4.3.4 Composite Membrane Preparation	43
	4.3.5 Characterizations of S-PSF and S-GO	43
	4.3.6 Characterizations of Composite Membranes	44
4.4	Results and Discussion	46
	4.4.1 Characterizations of S-PSF	46
	4.4.2 Characterizations of S-GO	47
	4.4.3 Characterizations of Composite Membranes	48
	4.4.4 Hybrid Membranes	53
4.5	Conclusions	54
4.6	Acknowledgements	54
4.7	References	55
CO	NCLUSIONS	69

REFERENCES

_

σ

CHAPTER

PAGE

70

CHAPTER

APPENDICES

Appendix A Sulfonation Process and Degree of Sulfonation	78
Appendix B Identification of FT-IR Spectrum of Polysulfone	
and Sulfonated Polysulfone	80
Appendix C Identification of NMR Spectrum of Polysulfone	
Sulfonated Polysulfone	83
Appendix D Thermogravimetric Analysis	85
Appendix E Proton Conductivity Under Dry State	89
Appendix F Proton Conductivity Under Wet State	109
Appendix G Methanol Permeability	127
Appendix H Water Uptake	150
Appendix I Mechanical Properties	154
Appendix J X-ray Photoelectron Spectroscopy (XPS)	165
Appendix K Scanning Electron Microscopy (SEM)	170

.

ø

١

CURRICULUM VITAE

. 171

LIST OF TABLES

٠

TABI	LE -	PAGE
2.1	Proton conductivity and methanol permeability of PSF	
	compared with Nafion in previous work	22
4.1	Proton conductivity and methanol permeability of S-PSF and	
	composite membranes in the wet state at room temperature	67
4.2	Mechanical properties of S-PSF and composite membranes at	
	27 °C	68
Al	Sulfonation condition of PSF at 25 °C for 4 h for film casting	79
B1	The FT-IR absorption spectra of PSF and S-PSF	81
Cl	Chemical Shift (ppm) from ¹ H-NMR spectra for S-PSF	84
D1	Thermal stability of S-PSF and S-PSF/Zeolite Y composite	
	membranes	87
D2	Thermal stability of S-PSF/S-GO composite membranes	88
El	Proton conductivity of the S-PSF/Zeolite Y composite	
	membrane with a DS of 0.72 at 27 °C under dry state	96
E2	Proton conductivity of the S-PSF/S-GO composite membrane	
	with a DS of 0.72 at 27 °C under dry state	104
E3	Proton conductivity of the hybrid membranes with a DS of	
	0.72 at 27 °C under dry state	108
F1	Proton conductivity of the S-PSF/Zeolite Y composite	
	membrane at 27 °C under wet state	116
F2	Proton conductivity of the S-PSF/S-GO composite membrane	
	with a DS of 0.72 at 27 °C under dry state	123
F3	Proton conductivity of the hybrid membranes with a DS of	
	0.72 at 27 °C under wet state	127
Gl	Retention time composites	129
G2	Calibration concentration of methanol	130

. .

TABLE

PAGE

G3	Methanol concentration in chamber A and B at 70 °C of S-	
	PSF (DS 71.55%) and Nafion 117	137
G4	Methanol concentration in chamber A and B at 70 °C of S-	
	PSF/Zeolite 5 % v/v composite membrane	137
G5	Methanol concentration in chamber A and B at 70 °C of S-	
	PSF/10 %v/v Zeolite Y composite membrane	138
G6	Methanol concentration in chamber A and B at 70 °C of S-	
	PSF/15 %v/v Zeolite Y composite membrane	139
G7	Methanol concentration in chamber A and B at 70 °C of S-	
	PSF/20 %v/v Zeolite Y composite membrane	140
G8	Methanol concentration in chamber A and B at 70 °C of S-	
	PSF/S-GO 1% v/v composite membrane	141
G9	Methanol concentration in chamber A and B at 70 °C of S-	
	PSF/S-GO 2% v/v composite membrane	142
G10	Methanol concentration in chamber A and B at 70 °C of S-	
	PSF/S-GO 3% v/v composite membrane	143
G11	Methanol concentration in chamber A and B at 70 °C of S-	
	PSF/S-GO 5% v/v composite membrane	144
G12	Methanol concentration in chamber A and B at 70 °C of S-	
	PSF/S-GO 7% v/v composite membrane	145
G13	Methanol permeability (cm ² /s) of S-PSF and S-PSF/Zeolite Y	
	composite membranes	146
G14	Methanol permeability (cm ² /s) of S-PSF/S-GO composite	
	membranes	147
G15	Methanol concentration in chamber A and B at 70 °C of S-	
	PSF/3% v/v S-GO/12% v/v Zeolite Y composite membrane	148

х

TABLE

G16	Methanol concentration in chamber A and B at 70 °C of S-		
	PSF/3% v/v S-GO/15% v/v Zeolite Y composite membrane	; •	149
G17	Methanol permeability (cm ² /s) of the hybrid membranes		150
Hl	Water uptake of S-PSF and S-PSF/Zeolite Y composite		
	membranes at 27 °C		152
H2	Water uptake of S-PSF/S-GO composite membranes at 27 $^{\circ}$ C		153
H3	Water uptake of the hybrid membranes at 27 °C		154
11	Mechanical property of PSF		155
I2	Mechanical property of SPSF with DS of 0.72		155
I3	Mechanical property of S-PSF/5%v/v Zeolite Y composite		
	membranes		156
I4	Mechanical property of S-PSF/10%v/v Zeolite Y composite		
	membranes		156
I5	Mechanical property of S-PSF/15%v/v Zeolite Y composite		
	membranes		156
I6	Mechanical property of S-PSF/20%v/v Zeolite Y composite		
	membranes		157
17	Mechanical property of S-PSF/5%v/v Zeolite Y composite		
	membranes		158
18	Mechanical property of S-PSF/1%v/v S-GO composite		
	membranes		160
19	Mechanical property of S-PSF/2%v/v S-GO composite		
	membranes		160
I10	Mechanical property of S-PSF/3%v/v S-GO composite		
	membranes		160
I11	Mechanical property of S-PSF/5%v/v S-GO composite		
	membranes		161

TABL	$-\mathbf{E}$	PAGE
I12	Mechanical property of S-PSF/5%v/v S-GO composite	
	membranes	161
I13	Mechanical properties of S-PSF and S-PSF/S-GO composition	ite
	membranes	162
I14	Mechanical property of S-PSF/ S-PSF/3%v/v S-GO and	
	12%v/v zeolite Y composite membranes	164
I15	Mechanical property of S-PSF/ S-PSF/3%v/v S-GO and	
	15%v/v zeolite Y composite membranes	164
I16	Mechanical properties of S-PSF and hybrid composite	
	membranes	165
J 1	Summary of S 2p and C 1s XPS spectral data	170

0.

÷

0

xii

LIST OF FIGURES

FIGURE

-

1.1	Schematic representation of a DMFC single cell.	2
2.1	Nafion's molecular structure, which is a copolymer of a	
	Teflon backbone and sulfonyl groups.	6
2.2	Structure of polysulfone (PSF).	12
2.3	Structure of graphene oxide (GO).	31
4.1	FT-IR spectra of PSF and S-PSF with 0.72 of DS.	59
4.2	¹ H-NMR spectrum for S-PSF.	59
4.3	TGA thermograms of PSF and S-PSF with 0.72 of DS.	60
4.4	FTIR spectra of GO and S-GO.	60
4.5	Wide region XPS spectra of: (a) GO, (b) S-GO, (c) S2p	
	spectra of GO, (d) S2p spectra of S-GO, (e) C1s spectra of	
	GO and (f) C1s spectra of S-GO.	61
4.6	SEM images of the surface of: (a) GO and (b) S-GO.	62
4.7	TGA thermograms for S-PSF/Zeolite Y composite	
	membranes.	62
4.8	TGA thermograms for S-PSF/S-GO composite membranes.	63
4.9	Water uptake (%) for S-PSF and S-PSF/Zeolite Y composite	
	membranes.	63
4.10	Water uptake (%) for S-PSF and S-PSF/S-GO composite	
	membranes.	64
4.11	Proton conductivity of the S-PSF/Zeolite Y composite	
	membrane with a DS of 0.72 at 27 °C.	64

PAGE

FIGURE PAGE 4.12 Proton conductivity of the S-PSF/S-GO composite membrane with a DS of 0.72 at 27 °C. 65 4.13 Methanol permeability at 70 °C of S-PSF and S-PSF/Zeolite Y composite membranes. 65 4.14 Methanol permeability at 70 °C of S-PSF and S-PSF/S-GO composite membranes. 66 B1 FT-IR spectra of polysulfone (PSF) and sulfonated polysulfone (S-PSF) at 0.72 of degree of sulfonation. 80 C1 ¹H-NMR spectrum for sulfonated Polysulfone (S-PSF). 83 C2 Chemical structure of Sulfonated Polysulfone (S-PSF). 84 DI TGA thermograms of polysulfone (PSF) and sulfonated polysulfone (S-PSF) at 0.72 of degrees of sulfonation. 85 D2 TGA curve for S-PSF/Zeolite Y composite membranes. 86 D3 TGA curve for S-PSF/S-GO composite membranes. 86 El Nyquist plot of the Nafion117 membrane. 89 E2 Enlarged Nyquist plot of the Nafion117 membrane (R = 5.00ohm). 90 E3 Nyquist plot of the S-PSF with a DS of 0.72 at 27 °C under dry state. 90 E4 Enlarged Nyquist plot of the S-PSF with a DS of 0.72 at 27 °C under dry state (R = 3.94 ohm). 91 E5 Nyquist plot of the S-PSF with 5% v/v of Zeolite Y at 27 °C 91 under dry state. E6 Enlarged Nyquist plot of the S-PSF with 5% v/v of Zeolite Y at 27 °C under dry state (R = 2.89 ohm). 92 E7 Nyquist plot of the S-PSF with 10% v/v of Zeolite Y at 27 °C under dry state. 92

FIGURE

E8	Enlarged Nyquist plot of the S-PSF with 10% v/v of Zeolite	
	Y at 27 °C under dry state ($R = 1.05$ ohm).	93
E9	Nyquist plot of the S-PSF with 15% v/v of Zeolite Y at	
	27 °C under dry state.	93
E10	Enlarged Nyquist plot of the S-PSF with 15% v/v of Zeolite	
	Y at 27 °C under dry state ($R = 0.96$ ohm).	94
E11	Nyquist plot of the S-PSF with 20% v/v of Zeolite Y at	
	27 °C under dry state.	94
E12	Enlarged Nyquist plot of the S-PSF with 20% v/v of Zeolite	
	Y at 27 °C under dry state ($R = 1.41$ ohm).	95
E13	Impedance of the S-PSF/Zeolite Y composite membrane	
	with a DS of 0.72 at 27 °C under dry state.	96
E14	Proton conductivity of the S-PSF/Zeolite Y composite	
	membrane with a DS of 0.72 at 27 °C under dry state.	97
E15	Nyquist plot of the S-PSF with 1% v/v of S-GO at 27 °C	
	under dry state.	97
E16	Enlarged Nyquist plot of the S-PSF with 1% v/v of S-GO at	
	27 °C under dry state (R = 1.18 ohm).	98
E17	Nyquist plot of the S-PSF with 2% v/v of S-GO at 27 °C	
	under dry state.	98
E18	Enlarged Nyquist plot of the S-PSF with 2% v/v of S-GO at	
	27 °C under dry state (R = 0.68 ohm).	99
E19	Nyquist plot of the S-PSF with 3% v/v of S-GO at 27 °C	
	under dry state.	99
E20	Enlarged Nyquist plot of the S-PSF with 3% v/v of S-GO at	
	27 °C under dry state ($R = 0.57$ ohm).	100
E21	Nyquist plot of the S-PSF with 5% v/v of S-GO at 27 °C	
	under dry state.	100

E22	Enlarged Nyquist plot of the S-PSF with 5% v/v of S-GO at	
	27 °C under dry state ($R = 1.18$ ohm).	101
E23	Nyquist plot of the S-PSF with 7% v/v of S-GO at 27 $^{\circ}$ C	
	under dry state.	101
E24	Enlarged Nyquist plot of the S-PSF with 7% v/v of S-GO at	
	27 °C under dry state ($R = 1.31$ ohm).	102
E25	Nyquist plot of the pristine S-GO at 27 °C under dry state.	102
E26	Enlarged Nyquist plot of the pristine S-GO at 27 °C under	
	dry state.	103
E27	Impedance of the S-PSF/S-GO composite membrane with a	
	DS of 0.72 at 27 °C under dry state.	105
E28	Proton conductivity of the S-PSF/S-GO composite	
	membrane with a DS of 0.72 at 27 °C under dry state.	105
E29	Nyquist plot of the S-PSF with 3% v/v of S-GO and 12% v/v	
	of zeolite Y at 27 °C under dry state.	106
E30	Enlarged Nyquist plot of the S-PSF with 3% v/v of S-GO	
	and 12% v/v of zeolite Y at 27 °C under dry state (R = 0.61	9
	ohm).	106
E31	Nyquist plot of the S-PSF with 3% v/v of S-GO and 15% v/v	
	of zeolite Y at 27 °C under dry state.	107
E32	Enlarged Nyquist plot of the S-PSF with 3% v/v of S-GO	
	and 15% v/v of zeolite Y at 27 °C under dry state (R = 0.77	
	ohm).	107
F1	Nyquist plot of the Nafion117 membrane.	109
F2	Enlarged Nyquist plot of the Nafion117 membrane ($R = 0.18$	
	ohm).	110
F3	Nyquist plot of the S-PSF with a DS of 0.72 at 27 °C under	
	wet state.	110

Ε	PAGE
Enlarged Nyquist plot of the S-PSF with a DS of 0.72 at	
27 °C under wet state ($R = 3.28$ ohm).	111
Nyquist plot of the S-PSF with 5% v/v of Zeolite Y at 27 $^{\circ}$ C	
under wet state.	111
Enlarged Nyquist plot of the S-PSF with 5% v/v of Zeolite	
Y at 27 °C under wet state ($R = 1.82$ ohm).	112
Nyquist plot of the S-PSF with 10% v/v of Zeolite Y at	
27 °C under wet state.	112
Enlarged Nyquist plot of the S-PSF with 10% v/v of Zeolite	
Y at 27 °C under wet state ($R = 0.85$ ohm).	113
Nyquist plot of the S-PSF with 15% v/v of Zeolite Y at	
27 °C under wet state.	113
Enlarged Nyquist plot of the S-PSF with 15% v/v of Zeolite	
Y at 27 °C under wet state ($R = 0.70$ ohm).	114
Nyquist plot of the S-PSF with 20% v/v of Zeolite Y at	
27 °C under wet state.	114
Enlarged Nyquist plot of the S-PSF with 20% v/v of Zeolite	L
Y at 27 °C under wet state ($R = 1.11$ ohm).	115
Impedance of the S-PSF/Zeolite Y composite membrane	
with a DS of 0.72 at 27 °C under wet state.	116
Proton conductivity of the S-PSF/Zeolite Y composite	
membrane with a DS of 0.72 at 27 °C under wet state.	117
Nyquist plot of the S-PSF with 1% v/v of S-GO at 27 °C	
under wet state.	117

FIGURE

F4

F5

F6

F7

F8

F9

F10

F11

F12

F13

F14

F15

- F16Enlarged Nyquist plot of the S-PSF with 1% v/v of S-GO at
27 °C under wet state (R = 0.98 ohm).118
- F17Nyquist plot of the S-PSF with 2% v/v of S-GO at 27 °Cunder wet state.118

xvii

ο

FIGURE		PAGE
F18	Enlarged Nyquist plot of the S-PSF with 2% v/v of S-GO at	
	$27 ^{\circ}\text{C}$ under wet state (R = 0.59 ohm).	119
F19	Nyquist plot of the S-PSF with 3% v/v of S-GO at 27 °C	
	under wet state.	119
F20	Enlarged Nyquist plot of the S-PSF with 3% v/v of S-GO at	
	27 °C under wet state (R = 0.40 ohm).	120
F21	Nyquist plot of the S-PSF with 5% v/v of S-GO at 27 °C	
	under wet state.	120
F22	Enlarged Nyquist plot of the S-PSF with 5% v/v of S-GO at	
	27 °C under wet state (R = 0.83 ohm).	121
F23	Nyquist plot of the S-PSF with 7% v/v of S-GO at 27 °C	
	under wet state.	121
F24	Enlarged Nyquist plot of the S-PSF with 7% v/v of S-GO at	
	27 °C under wet state (R = 0.94 ohm).	122
F25	Impedance of the S-PSF/S-GO composite membrane with a	
	DS of 0.72 at 27 °C under wet state.	124
F26	Proton conductivity of the S-PSF/S-GO composite	
	membrane with a DS of 0.72 at 27 °C under wet state.	124
F27	Enlarged Nyquist plot of the S-PSF with 3% v/v of S-GO	
	and 12% v/v of zeolite Y at 27 °C under wet state (R = 0.41	
	ohm).	125
F28	Enlarged Nyquist plot of the S-PSF with 3% v/v of S-GO	
	and 12% v/v of zeolite Y at 27 °C under wet state (R = 0.41	
	ohm).	125
F29	Nyquist plot of the S-PSF with $3\% v/v$ of S-GO and $15\% v/v$	
	of zeolite Y at 27 °C under wet state.	126

21

σ

FIGU	FIGURE	
F30	Enlarged Nyquist plot of the S-PSF with 3% v/v of S-GO	
	and 15% v/v of zeolite Y at 27 °C under wet state (R = 0.53	
	ohm).	126
Gl	Calibration curve of methanol concentration versus the ratio	
	of methanol and ethanol.	131
G2	Methanol concentration in chamber B versus time at 70°C of	
	Nafion 117.	131
G3	Methanol concentration in chamber B versus time at 70 °C	
	of S-PSF at DS 71.55%.	132
G4	Methanol concentration in chamber B versus time at 70 °C	
	of S-PSF/Zeolite Y 5 % v/v.	132
G5	Methanol concentration in chamber B versus time at 70 °C	
	of S-PSF/Zeolite Y 10 % v/v.	133
G6	Methanol concentration in chamber B versus time at 70 °C	
	of S-PSF/Zeolite Y 15 % v/v.	133
G7	Methanol concentration in chamber B versus time at 70 °C	
o	of S-PSF/Zeolite Y 20 % v/v.	134
G8	Methanol concentration in chamber B versus time at 70 °C	
	of S-PSF/S-GO 1 % v/v.	134
G9	Methanol concentration in chamber B versus time at 70 °C	
	of S-PSF/S-GO 2 % v/v.	135
G10	Methanol concentration in chamber B versus time at 70 °C	
	of S-PSF/S-GO 3 % v/v.	135
Gll	Methanol concentration in chamber B versus time at 70 °C	
	of S-PSF/S-GO 5 % v/v.	136
G12	Methanol concentration in chamber B versus time at 70 °C	
	of S-PSF/S-GO 7 % v/v.	136

-

E

-

FIGURE

PAGE

G13	Methanol permeability at 70 °C of S-PSF and S-PSF/Zeolite	
۰	Y composite membranes.	146
G14	Methanol permeability (cm ² /s) of S-PSF/S-GO composite	
	membranes.	147
G15	Methanol concentration in chamber B versus time at 70 °C	
	of S-PSF/3% v/v S-GO/12% v/v Zeolite Y.	148
G16	Methanol concentration in chamber B versus time at 70 °C	
	of S-PSF/3% v/v S-GO/12% v/v Zeolite Y.	149
Hl	Water uptake (%) for S-PSF and S-PSF/Zeolite Y composite	
	membranes.	151
H2	Water uptake (%) for S-PSF and S-PSF/S-GO composite	
	membranes.	154
I l	Tensile strength of S-PSF/zeolite Y composite membranes.	158
I2	Yield strain of S-PSF/zeolite Y composite membranes.	158
13	Young's modulus of S-PSF/zeolite Y composite membranes.	159
I4	Tensile strength of S-PSF/S-GO composite membranes.	162
I5	Yield strain of S-PSF/S-GO composite membranes.	163
I6	Young's modulus of S-PSF/S-GO composite membranes.	163
J1	Wide region XPS spectra of GO.	166
J2	Wide region XPS spectra of S-GO.	167
J3	S2p region XPS spectra of GO.	167
J4	S2p region XPS spectra of S-GO.	168
J5	C1s region XPS spectra of GO.	168
J6	C1s region XPS spectra of S-GO.	169
K1	SEM images of the surface of: (a) GO and (b) S-GO.	171