REFERENCES

- Abu-Thabit, N.Y., Ali, S.A., and Javaid Zaidi, S.M. (2010) New highly phosphonated polysulfone membranes for PEM fuel cells. <u>Journal of</u> <u>Membrane Science</u>, 360(12), 26-33.
- Ahmad, H., Kamarudin, S.K., Hasran, U.A., and Daud, W.R.W. (2010) Overview of hybrid membranes for direct-methanol fuel-cell applications. <u>International Journal of Hydrogen Energy</u>, 35(5), 2160-2175.
- Ahmad, M.I., Zaidi, S.M.J., and Rahman, S.U. (2006) Proton conductivity and characterization of novel composite membranes for medium-temperature fuel cells. <u>Desalination</u>, 193(1–3), 387-397.
- Auimviriyavat, J., Changkhamchom, S., and Sirivat, A. (2011) Development of poly(ether ether ketone) (PEEK) with inorganic filler for direct methanol fuel cells (DMFCs). <u>Industrial & Engineering Chemistry Research</u>, 50(22), 12527-12533.
- Byun, S.C., Jeong, Y.J., Park, J.W., Kim, S.D., Ha, H.Y., and Kim, W.J. (2006) Effect of solvent and crystal size on the selectivity of ZSM-5/Nafion composite membranes fabricated by solution-casting method. <u>Solid State</u> <u>Ionics</u>, 177(37–38), 3233-3243.
- Carrette, L., Friedrich, K.A., and Stimming, U. (2001) Fuel Cells Fundamentals and Applications. <u>Fuel Cells</u>, 1(1), 5-39.
- Chen, S.-L., Bocarsly, A. B., and Benziger, J. (2005) Nafion-layered sulfonated polysulfone fuel cell membranes. Journal of Power Sources, 152(0), 27-33.
- Chen, S., Yin, Y., Kita, H., and Okamoto, K.-I. (2007) Synthesis and properties of sulfonated polyimides from homologous sulfonated diamines bearing bis(aminophenoxyphenyl)sulfone. <u>Journal of Polymer Science Part A:</u> <u>Polymer Chemistry</u>, 45(13), 2797-2811.
- Chien, H.-C., Tsai, L.-D., Huang, C.-P., Kang, C.-Y., Lin, J.-N., and Chang, F.-C.
 (2013) Sulfonated graphene oxide/Nafion composite membranes for highperformance direct methanol fuel cells. <u>International Journal of Hydrogen</u> <u>Energy</u>, 38(31), 13792-13801.

- Choi, J., Patel, R., Han, J., and Min, B. (2010) Proton conducting composite membranes comprising sulfonated Poly(1,4-phenylene sulfide) and zeolite for fuel cell. <u>Ionics</u>, 16(5), 403-408.
- Choi, B. G., Huh, Y. S., Park, Y. C., Jung, D. H., Hong, W. H., and Park, H. (2012)
 Enhanced transport properties in polymer electrolyte composite membranes
 with graphene oxide sheets. <u>Carbon</u>, 50(15), 5395-5402.
- Croce, F., Hassoun, J., Tizzani, C., and Scrosati, B. (2006) Nanoporous composite, low cost, protonic membranes for direct methanol fuel cells. <u>Electrochemistry Communications</u>, 8(7), 1125-1131.
- DeLuca, N.W. and Elabd, Y.A. (2006) Polymer electrolyte membranes for the direct methanol fuel cell: A review. Journal of Polymer Science Part B: <u>Polymer Physics</u>, 44(16), 2201-2225.
- Devrim, Y., Erkan, S., Baç, N., and Eroğlu, I. (2009) Preparation and characterization of sulfonated polysulfone/titanium dioxide composite membranes for proton exchange membrane fuel cells. <u>International Journal</u> <u>of Hydrogen Energy</u>, 34(8), 3467-3475.
- Duangkaew, P. and Wootthikanokkhan, J. (2008) Methanol permeability and proton conductivity of direct methanol fuel cell membranes based on sulfonated poly(vinyl alcohol)-layered silicate nanocomposites. <u>Journal of Applied</u> Polymer Science, 109(1), 452-458.
- Fu, Y.Z. and Manthiram, A. (2006) Synthesis and characterization of sulfonated polysulfone membranes for direct methanol fuel cells. <u>Journal of Power</u> <u>Sources</u>, 157(1), 222-225.
- Furtado Filho, A.A.M. and Gomes, A.S. (2011) Sulfonated bisphenol-Apolysulfone based composite PEMs containing tungstophosphoric acid and modified by electron beam irradiation. <u>International Journal of Hydrogen</u> <u>Energy</u> 37(7), 6228-6235.
- Gao, Y., Robertson, G. P., Guiver, M. D., Jian, X., Mikhailenko, S. D., Wang K., and Kaliaguine S. (2005) Sulfonation of poly(phthalazinones) with fuming sulfuric acid mixtures for proton exchange membrane materials. <u>Journal of</u> <u>Membrane Science</u>, 227(1-2), 39-50.

ο

- Ghassemi, H. and McGrath, J.E. (2004) Synthesis and properties of new sulfonated poly(p-phenylene) derivatives for proton exchange membranes. <u>Polymer</u>, 45, 5847-54.
- Han, W., Kwan, S.M., and Yeung, K.L. (2012) Zeolite applications in fuel cells: Water management and proton conductivity. <u>Chemical Engineering</u> <u>Journal</u>, 187, 367-371.
- He, Y., Tong, C., Geng, L., Liu, L., and Lü, C. (2014) Enhanced performance of the sulfonated polyimide proton exchange membranes by graphene oxide: Size effect of graphene oxide. Journal of Membrane Science, 458, 36-46.
- Heo, Y., Im, H., and Kim, J. (2013) The effect of sulfonated graphene oxide on Sulfonated Poly (Ether Ether Ketone) membrane for direct methanol fuel cells. <u>Journal of Membrane Science</u>, 425-426, 11-22.
- Herrero, M., Martos, A.M., Varez, A., Galván, J.C., and Levenfeld, B. (2014)
 Synthesis and characterization of polysulfone/layered double hydroxides
 nanocomposite membranes for fuel cell application. <u>International Journal of</u>
 <u>Hydrogen Energy</u>, 39(8), 4016-4022.
- Jaafar, J., Ismail, A.F., Matsuura, T., and Nagai, K. (2011) Performance of SPEEK based polymer-nanoclay inorganic membrane for DMFC. <u>Journal of</u> <u>Membrane Science</u>, 382(1-2), 202-211.

.

- Junaidi, M.U.M., Leo, C.P., Ahmad, A.L., Kamal, S.N.M., and Chew, T.L. (2014) Carbon dioxide separation using asymmetric polysulfone mixed matrix membranes incorporated with SAPO-34 zeolite. <u>Fuel Processing</u> <u>Technology</u>, 118, 125-132.
- Jung, H.Y. and Park, J.K. (2007) Blend membranes based on sulfonated poly(ether ether ketone) and poly(vinylidene fluoride) for high performance direct methanol fuel cell. <u>Electrochimica Acta</u>, 52(26), 7464-7468.
- Kamarudin, S. K., Achmad, F., and Daud W.R.W. (2009) Overview on the application of direct methanol fuel cell (DMFC) for portable electronic devices. <u>International Journal of Hydrogen Energy</u>, 34(16), 6902-6916.
- Karlsson, L.E. and Jannasch P. (2004) Polysulfone ionomers for proton-conducting fuel cell membranes: sulfoalkylated polysulfones. <u>Journal of Membrane</u> <u>Science</u>, 230(1–2), 61-70.

ο

Karlsson, L. and Jannasch, P. (2005) Polysulfone ionomers for proton-conducting fuel cell membranes - 2. Sulfophenylated polysulfones and polyphenylsulfones. <u>Electrochimica acta</u>, 50(9), 1939-1946.

I

- Karthikeyan, C.S., Nunes, S.P., Prado, L.A.S.A., Ponce, M.L., Silva, H., Ruffmann,
 B., and Schulte, K. (2005) Polymer nanocomposite membranes for DMFC application. Journal of Membrane Science, 254(1-2), 139-146.
- Kim, D.H. and Kim, S.C. (2008) Transport properties of polymer blend membranes of sulfonated and nonsulfonated polysulfones for direct methanol fuel cell application. <u>Macromolecular Research</u>, 199, 457-466.
- Kobayashi, T., Rikukawa, M., Sanui, K., and Ogata, N. (1998) Proton-conducting polymers derived from poly(ether-etherketone) and poly(4-phenoxybenzoyl-1, 4-phenylene). <u>Solid</u>, 106, 219-225.
- Li, W., Fu, Y.Z., Manthiram, A., and Guiver, M.D. (2009) Blend Membranes
 Consisting of Sulfonated Poly(ether ether ketone) and Polysulfone Bearing
 4-Nitrobenzimidazole for Direct Methanol Fuel Cells. Journal of The
 <u>Electrochemical Society</u>, 156(2), B258.
- Libby, B. (2001) Improving selectivity in methanol fuel cell membranes: A study of a polymer-zeolite composite membrane. Ph.D. Dissertation, University of Minnesota, Minnesota, U.S.A.
- Libby, B., Smyrl, W.H., and Cussler, E.L. (2003) Polymer-zeolite composite membranes for direct methanol fuel cells. <u>AIChE Journal</u>, 49(4), 991-1001.
- Lin, C.K., Kuo, J.F., and Chen, C.Y. (2009) Preparation of nitrated sulfonated poly(ether ether ketone) membranes for reducing methanol permeability in direct methanol fuel cell applications. <u>Journal of Power Sources</u>, 187(2), 341-347.
- Liu, F., Ma, B.R., Zhou, D., Xiang, Y.H., and Xue, L.X. (2014) Breaking through tradeoff of Polysulfone ultrafiltration membranes by zeolite 4A. <u>Microporous and Mesoporous Materials</u>, 186, 113-120.
- Lufrano, F., Baglio, V., Staiti, P., Arico, A.S., and Antonucci, V. (2006)
 Development and characterization of sulfonated polysulfone membranes for direct methanol fuel cells. <u>Desalination</u>, 199(1-3), 283-285.

ο

- Lufrano, F., Baglio, V., Staiti, P., Arico, A.S., and Antonucci, V. (2008) Polymer electrolytes based on sulfonated polysulfone for direct methanol fuel cells. <u>Journal of Power Sources</u>, 179(1), 34-41.
- Lufrano, F., Baglio, V., Di Blasi, O., Staiti, P., Arico, A.S., and Antonucci, V.
 (2012) Solid polymer electrolyte based on sulfonated polysulfone membranes and acidic silica for direct methanol fuel cells. <u>Solid State</u> <u>Ionics</u>, 216, 90-94.
- Macksasitorn, S., Changkhamchom, S., Sirivat, A., and Siemanond, K. (2012) Sulfonated poly(ether ether ketone) and sulfonated poly(1,4-phenylene ether ether sulfone) membranes for vanadium redox flow batteries. <u>High</u> Performance Polymers, 24(7), 603-608.
- Maiti, J., Kakati, N., Lee, S.H., Jee, S.H., and Yoon, Y.S. (2011) PVA nano composite membrane for DMFC application. <u>Solid State Ionics</u>, 201(1), 21-26.
- McKeen, J.C., Yan, Y.S., and Davis, M.E. (2008) Proton Conductivity in Sulfonic Acid-Functionalized Zeolite Beta: Effect of Hydroxyl Group. <u>Chemistry of</u> <u>Materials</u>, 20(12), 3791-3793.
- Miyatake, K., Yasuda, T., Hirai, M., Nanasawa, M., and Watanabe, M. (2007) Synthesis and properties of a polyimide containing pendant sulfophenoxypropoxy groups. <u>Journal of Polymer Science Part A: Polymer</u> <u>Chemistry</u>, 45(1), 157-163.
- Nicotera, I., Simari, C., Coppola, L., Zygouri, P., Gournis, D., Brutti, S., and Baglio,
 V. (2011) Sulfonated graphene oxide platelets in nafion nanocomposite
 membrane: advantages for application in direct methanol fuel cells. <u>The</u>
 Journal of Physical Chemistry C, 118(42), 24357-24368.
- Nonjola, P.T., Mathe, M.K., and Modibedi, R.M. (2013) Chemical modification of polysulfone: Composite anionic exchange membrane with TiO₂ nanoparticles. <u>International Journal of Hydrogen Energy</u>, 38(12), 5115-5121.
- Park, H.S., Kim, Y.J., Hong, W.H., and Lee, H.K. (2006) Physical and electrochemical properties of Nafion/polypyrrole composite membrane for DMFC. <u>Journal of Membrane Science</u>, 272(1-2), 28-36.

Qiao, J., Hamaya, T., and Okada, T. (2005) New highly proton-conducting membrane poly(vinylpyrrolidone) (PVP) modified poly(vinyl alcohol)/2acrylamido-2-methyl-1- propanesulfonic acid (PVA–PAMPS) for low temperature direct methanol fuel cells (DMFCs). <u>Polymer</u>, 46, 10809-10816.

•

- Saxena, P. and Gaur, M.S. (2009) Electrical conduction mechanism of polyvinylidenefluoride (PVDF) – polysulfone (PSF) blend film. <u>Journal of</u> <u>Electrostatics</u>, 67(6), 844-849.
- Sen, D., Ghosh, A.K., Mazumder, S., Bindal, R.C., and Tewari, P.K. (2014) Novel polysulfone–spray-dried silica composite membrane for water purification:
 Preparation, characterization and performance evaluation. <u>Separation and Purification Technology</u>, 123, 79-86.
- Shim, S.H., Kim, K.T., Lee, J.U., and Jo, W.H. (2012) Facile method to functionalize graphene oxide and its application to poly(ethylene terephthalate)/graphene composite. <u>ACS Applied Material Interfaces</u>, 4(8), 4184-4191.
- Tricoli, V. and Nannetti, F. (2003) Zeolite–Nafion composites as ion conducting membrane materials. <u>Electrochimica Acta</u>, 48(18), 2625-2633.
- Tseng, C.-Y., Ye, Y.-S., Cheng, M.-Y., Kao, K.-Y., Shen, W.-C., Rick, J., and Hwang, B.-J. (2011) Sulfonated polyimide proton exchange membranes with graphene oxide show improved proton conductivity, methanol crossover impedance, and mechanical properties. <u>Advanced Energy</u> <u>Materials</u>, 1(6), 1220-1224.
- Unnikrishnan, L., Madamana, P., Mohanty, S., and Nayak, S.K. (2012)
 Polysulfone/C30B nanocomposite membranes for fuel cell Applications:
 Effect of various sulfonating agents. <u>Polymer-Plastics Technology and</u>
 <u>Engineering</u>, 51(6), 568-577.
- Vernersson, T., Lafitte, B., Lindbergh, G., and Jannasch, P. (2006) A
 Sulfophenylated Polysulfone as the DMFC Electrolyte Membrane an
 Evaluation of Methanol Permeability and Cell Performance. <u>Fuel Cells</u>, 6(5), 340-346.

- Wang, F., Hickner, M., Qing, J., Harrison, W., Mecham, J., Zawodzinski, T.A. and McGrath, J.E. (2001) Synthesis of highly sulfonated poly(arylene ether sulfone) random (statistical) copolymers via direct polymerization, <u>Macromolecules</u>, 175, 387-395.
- Wang, J., Zheng, X., Wu, H., Zheng, B., Jiang, Z., Hao, X., and Wang, B. (2008)
 Effect of zeolites on chitosan/zeolite hybrid membranes for direct methanol fuel cell. Journal of Power Sources. 178(1), 9-19.
- Wootthikanokkhan, J. and Seeponkai, N. (2006) Methanol permeability and properties of DMFC membranes based on sulfonated PEEK/PVDF blends. <u>Journal of Applied Polymer Science</u>, 102(6), 5941-5947.
- Xu, T., Hou, W., Shen, X., Wu, H., Li, X., Wang, J., and Jiang, Z. (2011)
 Sulfonated titania submicrospheres-doped sulfonated poly(ether ether ketone) hybrid membranes with enhanced proton conductivity and reduced methanol permeability. Journal of Power Sources, 196(11), 4934-4942.
- Xue, S. and Yin, G. (2006) Methanol permeability in sulfonated poly(etheretherketone) membranes: A comparison with Nafion membranes. <u>European Polymer Journal</u>, 42(4), 776-785.
- Yang, C.C., Lee, Y.J., and Yang, J.M. (2009) Direct methanol fuel cell (DMFC) based on PVA/MMT composite polymer membranes. <u>Journal of Power</u> <u>Sources</u>, 188(1), 30-37.
- Yang, C.C., Chien, W.C., and Li, Y.J. (2010) Direct methanol fuel cell based on poly(vinyl alcohol)/titanium oxide nanotubes/poly(styrene sulfonic acid) (PVA/nt-TiO2/PSSA) composite polymer membrane. Journal of Power Sources, 195(11), 3407-3415.
- Yildirim, M.H., Curòs, A.R., Motuzas, J., Julbe, A., Stamatialis, D.F., and Wessling
 M. (2009) Nafion®/H-ZSM-5 composite membranes with superior
 performance for direct methanol fuel cells. <u>Journal of Membrane Science</u>, 338(1-2), 75-83.
- Zarrin, H., Higgins, D., Jun, Y., Chen, Z., and Fowler, M. (2011) Functionalized graphene oxide nanocomposite membrane for low humidity and high temperature proton exchange membrane fuel cells. <u>The Journal of Physical</u> <u>Chemistry C</u>, 115(42), 20774-20781.

- Zhu, Y., and Manthiram, A. (2011) Synthesis and characterization of polysulfonecontaining sulfonated side chains for direct methanol fuel cells. <u>Journal of</u> <u>Power Sources</u>, 196(18), 7481-7487.
- Zhang, Z., Desilets, F., Felice, V., Mecheri, B., Licoccia, S., and Tavares, A.C. (2011) On the proton conductivity of Nafion–Faujasite composite membranes for low temperature direct methanol fuel cells. <u>Journal of</u> <u>Power Sources</u>, 196(22), 9176–9187.
- Zhang, L., Shi, T., Wu, S., and Zhou, H. (2013) Sulfonated graphene oxide: the new and effective material for synthesis of polystyrene-based nanocomposites. <u>Colloid and Polymer Science</u>, 291(9), 2061-2068.

0

a

APPENDICES

Appendix A Sulfonation Process and Degree of Sulfonation

Sulfonation process is the method for attaching a sulfonic group onto the • polymer backbone. 2.0 g of the polysulfone (PSF) was dissolved in 10 mL of dichloromethane (DCM) and vigorously stirred at room temperature until homogeneous. Then the sulfuric acid was added into the polymer solution and stirred continuously for 4 h. The sulfonated polymer was precipitated into methanol ice bath under continuous stirring. The precipitate was filtered and washed by using distilled water until the pH of polymer became neutral. The sulfonated polymer was dried at 100 °C for 24 h.

Degree of sulfonation (DS) is represented by the number of sulfonic acid group per repeating unit of polymer. The DS of sulfonated polymer was determined by titration the sulfonated polymer solution with 0.01 M NaOH using phenolphthalein as an indicator. The DS was calculated by the following Eq (A1):

$$DS(\%) = \frac{(V_{NaOH} \times M_{NaOH})/1000}{Mole of polymer membrane} \times 100$$
(A1)

0

where V_{NaOH} refers to the volume of sodium hydroxide solution, and C_{NaOH} refers to the concentration of sodium hydroxide solution.

Weight	Mole	Volume	Mole	H ₂ SO ₄	DCM	Volume	Yield	DS
of PSF	of	H ₂ SO ₄	of	/PSF	Volume	Fraction	(%)	(%)
(g)	PSF	(ml)	H ₂ SO ₄	Mole	(mł)			
				ratio				
1.2151	0.0027	20	0.05	17	10	0.64	99.51	12.75
2.0014	0.045	30	0.09	20	10	0.72	96.25	15.65
2.0104	0.045	30	0.18	40	10	0.72	85.36	19.90
2.0163	0.045	30	0.27	60	10	0.72	98.89	61.44
2.0085	0.045	30	0.36	80	10	0.72	109.3	71.55

Table A1 Sulfonation condition of PSF at 25 °C for 4 h for film casting

0

-

Appendix B⁺ Identification of FT-IR Spectrum of Polysulfone and Sulfonated Polysulfone

The polymers (PSF) and sulfonated polymers (S-PSF) functional groups were determined using the FT-IR spectrometer (Nicolet, Nexus 670). The samples were measured directly in the wave number range of 400-1600 cm⁻¹ with a resolution of 4 cm⁻¹ and 64 scans using potassium bromide (KBr; dried at 100 °C for 24 h) as a background materials. The composite material composed of sample and KBr was compressed into pellets and inserted in the sample holder (Macksasitorn *et al.*, 2012).

Figure B1 FT-IR spectra of polysulfone (PSF) and sulfonated polysulfone (S-PSF) at 0.72 of degree of sulfonation.

 Table B1
 The FT-IR absorption spectra of PSF and S-PSF

•

Wavenumbers (cm ⁻¹)	Assignments	References	
696	S=O stretching of sodium	Xiao <i>et al.</i> , 2002	
	sulfonate groups	D	
700	Symmetric S-O stretching	Devrim <i>et al.</i> , 2009	
706	S-O stretching	Lakshmi <i>et al.</i> , 2005	
709	S-O stretching	Zaidi et al., 2003	
1014	Symmetric stretching of the diphenyl ether unit	Herrero et al., 2014	
1024	S=O stretching	Zaidi et al., 2003	
1026	S=O stretching	Lakshmi <i>et al.</i> , 2005	
1028, 1243, 1084	Asymmetric and symmetric O=S=O stretching of -SO ₃ H groups	Xiao <i>et al.</i> , 2002	
1029, 1086	Symmetric and asymmetric stretching vibration O=S=O due to sodium –SO ₃ H group in polymer	Xing <i>et al.</i> , 2005	
1030, 1098	Symmetric and asymmetric stretching of –SO ₃ H groups	Wang et al., 2003	
1030, 1098	Symmetric and asymmetric stretching of the -SO ₃ H groups	Devrim <i>et al.</i> , 2009	
1030	Symmetric stretching of the -SO ₃ H groups	Herrero et al., 2014	
1080	Symmetric O=S=O stretching	Zaidi et al., 2003	
1104	Symmetric O=S=O stretching	Karlsson et al., 2004	
1107	Para in-plane aromatic C-H bond	Devrim et al., 2009	
1150	Symmetric O=S=O stretching	Devrim et al., 2009	
1164	Asymmetric O=S=O stretching	Lakshmi <i>et al</i> . 2005	
1150 - 1350	Asymmetric stretching of the –SO ₃ H groups	Herrero <i>et al.</i> , 2014	
1203	Asymmetric O=S=O stretching vibrations	Wang <i>et al.</i> , 2003	

Wavenumbers (cm ⁻¹)	Assignments	References	
	Asymmetric and symmetric		
1229, 1099, 1021	O=S=O stretching vibrations of	Wang <i>et al.</i> , 2006	
	–SO ₃ H groups		
1245	Asymmetric O=S=O stretching	Karlsson et al., 2004	
1252	Asymmetric O=S=O stretching	Zaidi et al., 2003	
	Asymmetric and symmetric		
1301, 1149	O=S=O stretching of sulfone	Xiao <i>et al.</i> , 2002	
	groups		
	Tri-substituted on aromatic		
1482	phenyl due to sulfonation in	Xing <i>et al.</i> , 2005	
	phenyl ring		
1490	C-C aromatic	Zaidi et al., 2003	
1402 1470 1414 1402	1,3,4-trisubstituted aromatic C-C	Lakahmi at al. 2005	
1492, 1470,1414, 1402	skeletal vibrations	Laksium et al., 2005	
1501	Di-substituted on aromatic	Ving at al. 2005	
1501	phenyl for non-sulfonated	Ang <i>et al.</i> , 2005	
3400	O-H stretching of the –SO ₃ H	Harroro at al 2014	
5400	group	nellelo el al., 2014	
3440, 1252, 1080, 1024	Sulfonic acid groups	Zaidi et al., 2003	
3450-3430	O-H vibration	Zaidi et al., 2003	
1150 1250	Asymmetric stretching of the	Hamana at al. 2014	
1150 - 1550	–SO ₃ H groups	Herrero el al., 2014	
1202	Asymmetric O=S=O stretching	Wang et al. 2002	
1205	vibrations	wang <i>et al.</i> , 2003	
	Asymmetric and symmetric		
1229, 1099, 1021	O=S=O stretching vibrations of	Wang <i>et al.</i> , 2006	
	-SO ₃ H groups		
1245	Asymmetric O=S=O stretching	Karlsson <i>et al.</i> , 2004	

Table B1 (Cont.) The FT-IR absorption spectra of PSF and S-PSF

Appendix C Nuclear Magnetic Resonance (NMR)

The structure of sulfonated PSF was determined by a NMR spectrometer (Bruker Biospin Avance 500 MHz NMR spectrometer) using deuterated dimethyl sulfoxide (DMSO- d_6) as the solvent at room temperature.

Figure C1¹H-NMR spectrum for sulfonated Polysulfone (S-PSF).

The proton resonance at 7.72 ppm is assigned to the proton adjacent to the new pendent sulfonic acid on the PSF structure [Devrim *et al.*, 2009].

	Type of	S-PSF	Literature		
Position	Proton	Chemical Shift (ppm)	Chemical Shift (ppm)	Author, Year	
1, 1,	Aromatic H	6.05	6.9	Devrim, 2009	
1,4	Alomatic-fi	0.95	6.95	Unnikrishnan, 2012	
1 1	Aromatic U	7.05	7.1	Devrim, 2009	
1,4	Атопланс-п	7.05	7.05	Unnikrishnan, 2012	
2 2,	Aromatic-H	7 75	7.3	Devrim, 2009	
2, 2		1.23	7.25	Unnikrishnan, 2012	
 	New pendent	7.90	7.72	Devrim, 2009	
2	sulfonic acid	7.80	7.75	Unnikrishnan, 2012	
3, 3'			7.9	Devrim, 2009	
	Aromatic-H	7.87	7.85	Unnikrishnan, 2012	

Table C1 Chemical Shift (ppm) from ¹H-NMR spectra for S-PSF

Figure C2 Chemical structure of Sulfonated Polysulfone (S-PSF).

•

Appendix D Thermogravimetric Analysis

The thermal property of the polymers and sulfonated polysulfone (S-PSF) and S-PSF/Zeolite Y composite membranes were investigated using a Thermo-Gravimetric/Differential Thermal Analyzer (TG/DTA; Perkin Elmer, Pyris Diamond). The samples were inserted into an alumina pan at the weight of 4-10 mg and. The measurements were carried out under nitrogen flow with the temperature range of 30 °C to 700 °C at a heating rate of 10 °C. min⁻¹ (Zhang *et al.*, 2011).

Figure D1 TGA thermograms of polysulfone (PSF) and sulfonated polysulfone (S-PSF) at 0.72 of degrees of sulfonation.

Figure D2 TGA curve for S-PSF/Zeolite Y composite membranes.

Figure D3 TGA curve for S-PSF/S-GO composite membranes.

Sample	Temperature (°C)	Degradation		
	50 - 180	Loss of water and residual solvent during casting		
S-PSF (DS = 0.7155)	180 - 400	Decomposition of sulfonic acid groups		
	> 400	Degradation of S-PSF backbone		
	50 - 240	Loss of water and residual solvent during casting		
S-PSF/5% v/v Zeolite Y	240 - 400	Decomposition of sulfonic acid groups		
	> 400	Degradation of S-PSF backbone		
	50 - 260	Loss of water and residual solvent during casting		
S-PSF/10% v/v Zeolite Y	260 - 430	Decomposition of sulfonic acid groups		
	> 430	Degradation of S-PSF backbone		
	50 - 300	Loss of water and residual solvent during casting		
S-PSF/15% v/v Zeolite Y	300 - 440	Decomposition of sulfonic acid groups		
	> 440	Degradation of S-PSF backbone		
	50 - 320	Loss of water and residual solvent during casting		
S-PSF/20% v/v Zeolite Y	320 - 440	Decomposition of sulfonic acid groups		
	> 440	Degradation of S-PSF backbone		

 Table D1
 Thermal stability of S-PSF and S-PSF/Zeolite Y composite membranes

Sample	Temperature (°C)	Degradation		
	50 - 220	Loss of water and residual solvent during casting		
S-PSF/1% v/v S-GO	220 - 380	Decomposition of sulfonic acid groups		
	> 380	Degradation of S-PSF backbone		
	50 – 250	Loss of water and residual solvent during casting		
S-PSF/2% v/v S-GO	250 - 400	Decomposition of sulfonic acid groups		
	> 400	Degradation of S-PSF backbone		
	50 – 225	Loss of water and residual solvent during casting		
S-PSF/3% v/v S-GO	225 - 410	Decomposition of sulfonic acid groups		
	> 410 .	Degradation of S-PSF backbone		
	50 – 220	Loss of water and residual solvent during casting		
S-PSF/5% v/v S-GO	220 - 380	Decomposition of sulfonic acid groups		
	> 380	Degradation of S-PSF backbone		
	50 - 215	Loss of water and residual solvent during casting		
S-PSF/7% v/v S-GO	215 - 400	Decomposition of sulfonic acid groups		
	> 400	Degradation of S-PSF backbone		

 Table D2
 Thermal stability of S-PSF/S-GO composite membranes

Appendix E Proton Conductivity Under Dry State

The impedance data was measured by using an impedance phase analyzer HP 4194 at various frequencies from 100 Hz to 2 MHz and at room temperature. The membranes were cut into 5 \times 5 cm² specimens for the measurement. The proton conductivity was calculated from EQ. E.1:

$$\sigma\left(S/cm\right) = \frac{d}{R \times A} \tag{E1}$$

where d is the sample thickness (cm), A is the contact area of the sample $(\pi r^2 = \pi (3.8/2)^2 = 11.34 \text{ cm}^2)$, and R can be derived from the low intercept of the high frequency semi-circle on a complex impedance plane with the Re (Z) axis.

Figure E1 Nyquist plot of the Nafion117 membrane.

σ

Figure E2 Enlarged Nyquist plot of the Nafion117 membrane (R = 5.00 ohm).

Figure E3 Nyquist plot of the S-PSF with a DS of 0.72 at 27 °C under dry state.

Figure E4 Enlarged Nyquist plot of the S-PSF with a DS of 0.72 at 27 °C under dry state (R = 3.94 ohm).

Figure E5 Nyquist plot of the S-PSF with 5% v/v of Zeolite Y at 27 °C under dry state.

Figure E6 Enlarged Nyquist plot of the S-PSF with 5% v/v of Zeolite Y at 27 °C under dry state (R = 2.89 ohm).

Figure E7 Nyquist plot of the S-PSF with 10% v/v of Zeolite Y at 27 °C under dry state.

Figure E8 Enlarged Nyquist plot of the S-PSF with 10% v/v of Zeolite Y at 27 °C under dry state (R = 1.05 ohm).

Figure E9 Nyquist plot of the S-PSF with 15% v/v of Zeolite Y at 27 °C under dry state.

Ø

Figure E10 Enlarged Nyquist plot of the S-PSF with 15% v/v of Zeolite Y at 27 °C under dry state (R = 0.96 ohm).

Figure E11 Nyquist plot of the S-PSF with 20% v/v of Zeolite Y at 27 °C under dry state.

0

94

Figure E12 Enlarged Nyquist plot of the S-PSF with 20% v/v of Zeolite Y at 27 °C under dry state (R = 1.41 ohm).

Polymer	Thickness (cm)	Contact Area (cm ²)	R • (ohm)	Proton Conductivity (S/cm)
S-PSF72	0.0199±	11.34	3.94 ±	$4.45 \times 10^{-4} \pm$
	0.0010		0.11	1.28×10 ⁻⁵
S-PSF/Zeolite Y 5 %v/v	0.0245 ±	11.34	2.89 ±	$7.47 \times 10^{-4} \pm$
	0.0033		0.14	3.43×10 ⁻⁵
S-PSF/Zeolite Y 10 %v/v	0.0178±	11.34	$1.05 \pm$	$1.50 \times 10^{-3} \pm$
	0.0008		0.08	1.19×10 ⁻⁴
S-PSF/Zeolite Y 15 %v/v	0.0193±	11.34	0.96 ±	$1.77 \times 10^{-3} \pm$
	0.0009			1.33×10^{-4}
S-PSF/Zeolite Y 20 %v/v	0.017	11.34	$ 1.41 \pm 0.12$	$1.16 \times 10^{-5} \pm$
N. C. 117	0.0017		0.13	1.06×10
Nation 11/	0.0180	11.34	5.00	2.88×10 ⁻⁴

Table E1 Proton conductivity of the S-PSF/Zeolite Y composite membrane with aDS of 0.72 at 27 °C under dry state

Figure E13 Impedance of the S-PSF/Zeolite Y composite membrane with a DS of 0.72 at 27 °C under dry state.

Figure E14 Proton conductivity of the S-PSF/Zeolite Y composite membrane with a DS of 0.72 at 27 °C under dry state.

o

Figure E15 Nyquist plot of the S-PSF with 1% v/v of S-GO at 27 °C under dry state.

•

Figure E16 Enlarged Nyquist plot of the S-PSF with 1% v/v of S-GO at 27 °C under dry state (R = 1.18 ohm).

Figure E17 Nyquist plot of the S-PSF with 2% v/v of S-GO at 27 °C under dry state.

•

Figure E18 Enlarged Nyquist plot of the S-PSF with 2% v/v of S-GO at 27 °C under dry state (R = 0.68 ohm).

Figure E19 Nyquist plot of the S-PSF with 3% v/v of S-GO at 27 °C under dry state.

σ

Figure E20 Enlarged Nyquist plot of the S-PSF with 3% v/v of S-GO at 27 °C under dry state (R = 0.57 ohm).

Figure E21 Nyquist plot of the S-PSF with 5% v/v of S-GO at 27 °C under dry state.

Figure E22 Enlarged Nyquist plot of the S-PSF with 5% v/v of S-GO at 27 °C under dry state (R = 1.18 ohm).

Figure E23 Nyquist plot of the S-PSF with 7% v/v of S-GO at 27 °C under dry state.

Figure E24 Enlarged Nyquist plot of the S-PSF with 7% v/v of S-GO at 27 °C under dry state (R = 1.31 ohm).

Figure E25 Nyquist plot of the pristine S-GO at 27 °C under dry state.

Figure E26 Enlarged Nyquist plot of the pristine S-GO at 27 °C under dry state.

Table E2	Proton conductivity	of the S-PSF/S-GO	composite	membrane	with	a l	DS
of 0.72 at 2	27 °C under dry state						

.

Polymer	Thickness (cm)	Contact Area (cm ²)	R (ohm)	Proton Conductivity (S/cm)
Nafion 117	0.0180	11.34	5.00	2.88×10 ⁻⁴
S-DSF72	0.0199±	11.24	3.94 ±	$4.45 \times 10^{-4} \pm$
5-15172	0.0010	11.54	0.11	1.28×10 ⁻⁵
S-G0	0.0306 ±	11.34	0.27 ±	$1.00 \times 10^{-2} \pm$
5-00	0.0005	11.54	0.04	1.46×10 ⁻³
S-PSF/1S-GO	0.0187 ±	11.34	1.18 ±	$1.40 \times 10^{-3} \pm$
	0.0011	11.54	0.13	1.57×10 ⁻⁴
S-PSF/2S-GO	0.0191 ±	11 34	0.68 ±	$2.57 \times 10^{-3} \pm$
	0.0006	11.51	0.14	5.23×10 ⁻⁴
S-PSF/3S-GO	0.0192 ±	11 34	0.57 ±	$3.01 \times 10^{-3} \pm$
	0.0010	11.54	0.03	1.90×10 ⁻⁴
S-PSF/5S-GO	0.0188 ±	11.34	1.18 ±	$1.41 \times 10^{-3} \pm$.
	0.0059		0.13	1.57×10^{-4}
S-PSF/7S-GO	0.0180 ±	1134	1.31 ±	$1.23 \times 10^{-3} \pm$
	0.0078	11.54	0.19	1.75×10 ⁻⁴

Figure E27 Impedance of the S-PSF/S-GO composite membrane with a DS of 0.72 at 27 °C under dry state.

Figure E28 Proton conductivity of the S-PSF/S-GO composite membrane with a DS of 0.72 at 27 °C under dry state.

Figure E29 Nyquist plot of the S-PSF with 3% v/v of S-GO and 12% v/v of zeolite Y at 27 °C under dry state.

Z' (ohm)

Figure E30 Enlarged Nyquist plot of the S-PSF with 3% v/v of S-GO and 12% v/v of zeolite Y at 27 °C under dry state (R = 0.61 ohm).

Figure E31 Nyquist plot of the S-PSF with 3% v/v of S-GO and 15% v/v of zeolite Y at 27 °C under dry state.

Z' (ohm)

Figure E32 Enlarged Nyquist plot of the S-PSF with 3% v/v of S-GO and 15% v/v of zeolite Y at 27 °C under dry state (R = 0.77 ohm).

Polymer	Thickness (cm)	Contact Area (cm ²)	R (ohm)	Proton Conductivity (S/cm)
Nafion 117	0.0180	11.34	5.00	2.88×10 ⁻⁴
S-PSF72	0.0199±	11 34	3.94 ±	$4.45 \times 10^{-4} \pm$
	0.0010		0.11	1.28×10 ⁻⁵
S-PSF/15Y	0.0193±	11.34	0.96 ±	$1.77 \times 10^{-3} \pm$
	0.0009		0.07	1.33×10 ⁻⁴
S-PSF/3S-GO	0.0192 ±	11.34	0.57 ±	$3.01 \times 10^{-3} \pm$
	0.0010		0.03	1.90×10 ⁻⁴
S-PSF/3S-GO/12Y	0.0182±	11 34	0.61 ±	$2.63 \times 10^{-3} \pm$
	0.0010		0.04	1.75×10 ⁻⁴
S-PSF/3S-GO/15Y	0.0188 ±	11 34	0.77 ±	$2.18 \times 10^{-3} \pm$
	0.0011		0.11	3.12×10 ⁻⁴

 Table E3
 Proton conductivity of the hybrid membranes with a DS of 0.72 at 27 °C

 under dry state

-

Appendix F Proton Conductivity Under Wet State

The impedance data was measured by using an LCR meter (Agilent E4980A) at various frequencies from 100 Hz to 2 MHz and at room temperature. The membranes were cut into 5×5 cm² specimens and immersed in distilled water at 27 °C for 24 h before the measurement. The proton conductivity was calculated from Eq. F1:

$$\sigma(s/cm) = \frac{d}{R \times A}$$
(F1)

where d is the sample thickness, A is the contact area of the sample $(\pi r^2 = \pi (3.8/2)^2 = 11.34 \text{ cm}^2)$, and R can be derived from the low intercept of the high frequency semi-circle on a complex impedance plane with the Re (Z) axis.

Figure F1 Nyquist plot of the Nafion117 membrane.

Figure F2 Enlarged Nyquist plot of the Nafion117 membrane (R = 0.18 ohm).

Figure F3 Nyquist plot of the S-PSF with a DS of 0.72 at 27 °C under wet state.

Figure F4 Enlarged Nyquist plot of the S-PSF with a DS of 0.72 at 27 °C under wet state (R = 3.28 ohm).

Figure F5 Nyquist plot of the S-PSF with 5% v/v of Zeolite Y at 27 °C under wet state.

Figure F6 Enlarged Nyquist plot of the S-PSF with 5% v/v of Zeolite Y at 27 °C under wet state (R = 1.82 ohm).

Figure F7 Nyquist plot of the S-PSF with 10% v/v of Zeolite Y at 27 °C under wet state.

Figure F8 Enlarged Nyquist plot of the S-PSF with 10% v/v of Zeolite Y at 27 °C under wet state (R = 0.85 ohm).

Figure F9 Nyquist plot of the S-PSF with 15% v/v of Zeolite Y at 27 °C under wet state.

Z' (ohm)

Figure F10 Enlarged Nyquist plot of the S-PSF with 15% v/v of Zeolite Y at 27 °C under wet state (R = 0.70 ohm).

n

Figure F11 Nyquist plot of the S-PSF with 20% v/v of Zeolite Y at 27 °C under wet state.

.

Figure F12 Enlarged Nyquist plot of the S-PSF with 20% v/v of Zeolite Y at 27 °C under wet state (R = 1.11 ohm).

Polymer	Thickness (cm)	Contact Area (cm ²)	R (ohm)	Proton Conductivity (S/cm)
S-PSF72	0.0202 ±	11 34	3.28±	$5.46 \times 10^{-4} \pm$
5-15172	0.0010	11.34	0.25	4.35×10 ⁻⁵
S-PSF/Zeolite Y 5 %v/v	0.0163 ±	11 34	1.82 ±	$7.90 \times 10^{-4} \pm$
	0.0013	11.54	0.09	3.79×10 ⁻⁵
S-PSF/Zeolite Y 10 %v/v	0.0168±	11 34	0.85 ±	$1.74 \times 10^{-3} \pm$
	0.0021	.0021		1.25×10 ⁻⁴
S-PSE/Zeolite V 15 $\%$ V/V $0.0184\pm$		11 34	0.70 ±	$2.33 \times 10^{-3} \pm$
	0.0009	11.54	0.08	2.36×10 ⁻⁴
S-PSE/Zeolite V 20 %y/y	0.0186±	11.34	1.11±	$1.52 \times 10^{-3} \pm$
	0.0015	11.34	0.22	3.27×10 ⁻⁴
Nafion 117	0.0200	11.34	0.18	3.17×10 ⁻³

Figure F13 Impedance of the S-PSF/Zeolite Y composite membrane with a DS of 0.72 at 27 °C under wet state.

Figure F14 Proton conductivity of the S-PSF/Zeolite Y composite membrane with a DS of 0.72 at 27 °C under wet state.

Figure F15 Nyquist plot of the S-PSF with 1% v/v of S-GO at 27 °C under wet state.

Figure F16 Enlarged Nyquist plot of the S-PSF with 1% v/v of S-GO at 27 °C under wet state (R = 0.98 ohm).

Figure F17 Nyquist plot of the S-PSF with 2% v/v of S-GO at 27 °C under wet state.

Figure F18 Enlarged Nyquist plot of the S-PSF with 2% v/v of S-GO at 27 °C under wet state (R = 0.59 ohm).

Figure F19 Nyquist plot of the S-PSF with 3% v/v of S-GO at 27 °C under wet state.

Figure F20 Enlarged Nyquist plot of the S-PSF with 3% v/v of S-GO at 27 °C under wet state (R = 0.40 ohm).

o

Figure F21 Nyquist plot of the S-PSF with 5% v/v of S-GO at 27 °C under wet state.

Figure F22 Enlarged Nyquist plot of the S-PSF with 5% v/v of S-GO at 27 °C under wet state (R = 0.83 ohm).

Figure F23 Nyquist plot of the S-PSF with 7% v/v of S-GO at 27 °C under wet state.

Figure F24 Enlarged Nyquist plot of the S-PSF with 7% v/v of S-GO at 27 °C under wet state (R = 0.94 ohm).

Polymer	Thickness (cm)	Contact Area (cm ²)	R (ohm)	Proton Conductivity (S/cm)
S-PSF72	0.0202 ± 0.0010	11.34	3.28± 0.25	$5.46 \times 10^{-4} \pm 4.35 \times 10^{-5}$
S-PSF/S-GO 1 %v/v	0.0189 ± 0.0010	11.34	0.98 ± 0.19	$1.74 \times 10^{-3} \pm 3.56 \times 10^{-4}$
S-PSF/S-GO 2 %v/v	0.0192 ± 0.0005	11.34	0.59 ± 0.05	$2.92 \times 10^{-3} \pm 2.65 \times 10^{-4}$
S-PSF/S-GO 3 %v/v	0.0193 ± 0.0006	11.34	0.40 ± 0.04	$4.27 \times 10^{-3} \pm 4.6 \times 10^{-4}$
S-PSF/S-GO 5 %v/v	0.0190 ± 0.0007	11.34	0.83 ± 0.04	$2.02 \times 10^{-3} \pm$ 9.9×10^{-5}
S-PSF/S-GO 7 %v/v	0.0185 ± 0.0012	11.34	0.94 ± 0.14	$1.76 \times 10^{-3} \pm 2.7 \times 10^{-4}$
Nafion 117	0.0200	11.34	5.00	3.17×10 ⁻³

Table F2Proton conductivity of the S-PSF/S-GO composite membrane with a DSof 0.72 at 27 °C under dry state

0

Ŷ

Figure F25 Impedance of the S-PSF/S-GO composite membrane with a DS of 0.72 at 27 °C under wet state.

Figure F26 Proton conductivity of the S-PSF/S-GO composite membrane with a DS of 0.72 at 27 °C under wet state.

- 6

Figure F27 Enlarged Nyquist plot of the S-PSF with 3% v/v of S-GO and 12% v/v of zeolite Y at 27 °C under wet state (R = 0.41 ohm).

Figure F28 Enlarged Nyquist plot of the S-PSF with 3% v/v of S-GO and 12% v/v of zeolite Y at 27 °C under wet state (R = 0.41 ohm).

Figure F29 Nyquist plot of the S-PSF with 3% v/v of S-GO and 15% v/v of zeolite Y at 27 °C under wet state.

Figure F30 Enlarged Nyquist plot of the S-PSF with 3% v/v of S-GO and 15% v/v of zeolite Y at 27 °C under wet state (R = 0.53 ohm).

Polymer	Thickness (cm)	Contact Area (cm ²)	R (ohm)	Proton Conductivity (S/cm)
S-PSF72	0.0202 ±	11.34	3.28±	$5.46 \times 10^{-4} \pm$
5-15172	0.0010	11.54	0.25	4.35×10 ⁻⁵
S-PSF/15Y	0.0184±	11.34	0.70 ±	$2.33 \times 10^{-3} \pm$
	0.0009	11.54	0.08	2.36×10 ⁻⁴
S-PSF/3S-GO	0.0193 ±	11 34	0.40 ±	$4.27 \times 10^{-3} \pm$
	0.0006	11.34	0.04	4.6×10 ⁻⁴
S-PSF/3S-GO/12Y	0.0186±	11 34	0.41 ±	$4.01 \times 10^{-3} \pm$
5151755 66/121	0.0010	11.54	0.05	4.53×10 ⁻⁴
S-PSF/3S-GO/15Y	0.0189 ±	11 34	0.53 ±	$3.16 \times 10^{-3} \pm$
	0.0011	11.51	0.05	2.86×10 ⁻⁴
Nafion 117	0.0180	11.34	5.00	2.88×10 ⁻⁴

Table F3 Proton conductivity of the hybrid membranes with a DS of 0.72 at 27 °Cunder wet state

.

Appendix G Methanol Permeability

The methanol permeability shows the amount of methanol that permeates through the membrane. The permeation cell for the methanol permeability measurement consisted of chamber A and chamber B separated by a sulfonated polymer membrane. Chamber A was filled with a 250 ml 2.5 M methanol solution. Chamber B was filled with 250 ml DI water. The membrane was placed between the chamber A and chamber B. The methanol permeability was determined by the following Eq (G1):

$$P(cm^{2}/s) = \underline{k_{R} \times V_{R} \times L}$$

$$A \times (C_{A} - C_{B})$$
(G1)

where P = the methanol permeability, C_A = the methanol concentrations in the compartment A, C_B = the methanol concentrations in the compartment B, A = the areaof a membrane , L = the thickness of a membrane, V_B = the volume of the solution in the compartment B, and k_B = the slope of the methanol concentration.

The methanol concentrations were determined by using gas chromatography (GC) with thermal conductivity detector (TCD); ethanol was used as the internal standard:

Calibration procedure

- The syringe was cleaned before sampling with DI water.
- Methanol solutions were prepared at various concentrations (0.01, 0.05, 0.1, 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 M). Methanol solution was pumped by a syringe about 0.05 ml and deposited in a bottle.
- Methanol permeability was calculated by TCD GC with a 1M 0.05ml ethanol solution as an internal standard.
- The calibration curve was established by plotting C_B with the peak ratio of MeOH/EtOH.

U

Measurement procedure

- The syringe was cleaned before sampling with DI water.
- Components A and B were pumped by a syringe about 0.05 ml and deposited in a bottle.
- Methanol permeability was calculated by TCD GC with 1M 0.05ml ethanol solution as an internal standard.
- The methanol concentration in component B (C_B) was determined by comparing the peak ratio of methanol/ethanol to calibration curve.

 Table G1
 Retention time composites

.

Sample	Retention Time (min)
Water	1.56
Methanol	4.30
Ethanol	12.29

ο

o.

MeOH concentration (M)	Type of Media	%Area	MeOH/EtOH
	Water	90.21	
3.00	Methanol	6.72	2.19
	Ethanol	3.07	
	Water	92.05	
2.00	Methanol	5.89	1.73
	Ethanol	2.06	
	Water	92.94	
1.50	Methanol	3.92	1.25
	Ethanol	3.13	
	Water	95.34	
1.00	Methanol	2.05	0.79
	Ethanol	2.6	
	Water	95.81	
0.50	Methanol	1.42	0.51
	Ethanol	2.77	
	Water	97.01	
0.10	Methanol		*
	Ethanol	2.9	
	Water	97.83	
0.05	Methanol		*
	Ethanol	2.17	
	Water	97.67	· · · · · · · · · · · · · · · · · · ·
0.01	Methanol		*
*	Ethanol	2.33	

 Table G2
 Calibration concentration of methanol

*Methanol did not permeate across the membrane.

-

Figure G1 Calibration curve of methanol concentration versus the ratio of methanol and ethanol.

Figure G2 Methanol concentration in chamber B versus time at 70°C of Nafion 117.

Figure G3 Methanol concentration in chamber B versus time at 70 °C of S-PSF at DS 71.55%.

Figure G4 Methanol concentration in chamber B versus time at 70 °C of S-PSF/Zeolite Y 5 % v/v.

Figure G5 Methanol concentration in chamber B versus time at 70 °C of S-PSF/Zeolite Y 10 % v/v.

Figure G6 Methanol concentration in chamber B versus time at 70 °C of S-PSF/Zeolite Y 15 % v/v.

Figure G7 Methanol concentration in chamber B versus time at 70 °C of S-PSF/Zeolite Y 20 % v/v.

Figure G8 Methanol concentration in chamber B versus time at 70 °C of S-PSF/S-GO 1 % v/v.

Figure G9 Methanol concentration in chamber B versus time at 70 °C of S-PSF/S-GO 2 % v/v.

Figure G10 Methanol concentration in chamber B versus time at 70 °C of S-PSF/S-GO 3 % v/v.

Figure G11 Methanol concentration in chamber B versus time at 70 °C of S-PSF/S-GO 5 % v/v.

Figure G12 Methanol concentration in chamber B versus time at 70 °C of S-PSF/S-GO 7 % v/v.

	Methanol (Concentration (mo	I/l) in Compartme	nt A (C _A) and
Time (s)		Compartment	t B (C _B) at 70 °C	
Time (S)	SPSF	71.55%	Nafio	on 117
	C _A (M)	C _B (M)	C _A (M)	C _B (M)
0	2.468	0	2.028	0.000
86400	2.468	0	2.014	0.000
172800	2.338	0	1.985	0.297
259200	2.167	0	1.182	0.529
345600	2.049	0.1	1.176	0.761
432000	1.909	0.313	1.064	0.913
518400	1.761	0.537	1.033	1.025
604800	1.475	0.803	-	-

Table G3 Methanol concentration in chamber A and B at 70 °C of S-PSF (DS71.55%) and Nafion 117

Table G4 Methanol concentration in chamber A and B at 70 °C of S-PSF/Zeolite 5 % v/v composite membrane

Time (see)	Methanol Concentration (n Compartme	nol/l) in Compartment A (C _A) and ent B (C _B) at 70 °C		
Time (sec)	S-PSF/Zeolite 5 % v/v			
	C _A (M)	C _B (M)		
0	2.494	0		
86400	2.494	0		
172800	2.494	0		
259200	2.494	0		
345600	2.234	0.595		
388800	2.045	0.837		
432000	1.844	0.949		

Table G5 Methanol concentration in chamber A and B at 70 °C of S-PSF/10 % v/vZeolite Y composite membrane

.

	Methanol Concentration (mol/l) in Compartment A (C _A) and Compartment B (C _B) at 70 °C S-PSF/Zeolite 10 % v/v		
Time (sec)			
	C _A (M)	C _B (M)	
0	2.473	0	
86400	2.473	0	
172800	2.473	0	
259200	2.473	0	
345600	2.147	0	
432000	2.147	0	
475200	2.065	0.204	
518400	1.932	0.281	
604800	1.717	0.333	

Table G6 Methanol concentration in chamber A and B at 70 °C of S-PSF/15 %v/vZeolite Y composite membrane

12

T :()	Methanol Concentration (mol/l) in Compartment A (C _A) and Compartment B (C _B) at 70 °C S-PSF/Zeolite 15 %v/v		
I ime (sec)			
	C _A (M)	C _B (M)	
0	2.812	0	
86400	2.812	0	
172800	2.812	0	
259200	2.812	0	
345600	1.049	0	
432000	1.049	0.068	
518400	0.756	0.185	
604800	0.756	0.249	

•

139

Time (sec)	Methanol Concentration (mol/l) in Compartment A Compartment B (C _B) at 70 °C S-PSF/Zeolite 20 % v/v	
	C _A (M)	C _B (M)
0	2.468	0
86400	2.468	0
172800	2.468	0
259200	2.468	0
345600	2.380	0
388800	2.812	0
432000	2.222	0
475200	2.162	0.181
518400	2.063	0.277
561600	• 1.951	0.368

Table G7 Methanol concentration in chamber A and B at 70 °C of S-PSF/20 %v/vZeolite Y composite membrane

o

Table G8 Methanol concentration in chamber A and B at 70 °C of S-PSF/S-GO1% v/v composite membrane

TT: ()	Methanol Concentration (mol/l) in Compartment A (C _A) and Compartment B (C _B) at 70 °C S-PSF/S-GO 1% v/v		
l ime (sec)			
	C _A (M)	C _B (M)	
0	2.494	0	
86400	2.494	0	
172800	2.442	0	
259200	2.399	0	
345600	2.234	0.158	
388800	2.038	0.174	
432000	1.904	0.195	
475200	1.858	0.225	
518400	1.713	0.265	

0

-

. .

σ

•
Time (aid)	Methanol Concentration (mo Compartment	I/I) in Compartment A (C _A) and t B (C _B) at 70 °C	
Time (sec)	S-PSF/S-GO 2 % v/v		
-	C _A (M)	C _B (M)	
0	2.494	0	
86400	2.494	0	
172800	2.367	0	
259200	2.271	0	
345600	2.234	0.125	
388800	2.188	0.158	
432000	2.002	0.175	
475200	1.937	0.190	
518400	1.829	0.217	

.....

ø

-

σ

Table G9 Methanol concentration in chamber A and B at 70 °C of S-PSF/S-GO2% v/v composite membrane

	Methanol Concentration (me . Compartmen	ol/l) in Compartment A (C _A) and at B (C _B) at 70 °C	
Time (sec)	S-PSF/S-GO 3 % v/v		
	C _A (M)	C _B (M)	
0	2.497	0	
86400	2.497	0	
172800	2.346	0	
259200	2.272	0.100	
345600	2.174	0.155	
388800	2.031	0.178	
432000	1.827	0.197	
475200	1.570	0.224	

ø

Table G10 Methanol concentration in chamber A and B at 70 °C of S-PSF/S-GO3% v/v composite membrane

Ŭ	Methanol Concentration (mol Compartment	/l) in Compartment A (C _A) and B (C _B) at 70 °C	
Time (sec)	S-PSF/S-GO 5 % v/v		
	C _A (M)	C _B (M)	
0	2.506	0	
86400	2.506	0	
172800	2.348	0	
259200	2.254	0.100	
345600	2.146	0.155	
388800	2.035	0.186	
432000	1.889	0.205	
475200	1.694	0.223	
518400	1.607	0.298	

Table G11 Methanol concentration in chamber A and B at 70 °C of S-PSF/S-GO5% v/v composite membrane

.

	Methanol Concentration (m	ool/l) in Compartment A (C _A) and	
Time (sec)	Compartment B (C _B) at 70 °C S-PSF/S-GO 7 % v/v		
0	2.504	0	
86400	2.504	0	
172800	2.347	0	
259200	2.255	0.100	
345600	2.146	0.155	
388800	2.101	0.187	
432000	2.011	0.198	
475200	1.957	0.221	
518400	1.795	0.275	

Table G12 Methanol concentration in chamber A and B at 70 °C of S-PSF/S-GO7% v/v composite membrane

ο

Sample	Membrane Thickness (cm)	Methanol Permeability (cm ² /s)
Nafion 117	0.0178	3.08×10^{-5}
S-PSF72	0.0202	2.62×10^{-6}
S-PSF/Zeolite Y 5% v/v	0.0191	1.10×10^{-6}
S-PSF/Zeolite Y 10% v/v	0.0170	1.30×10^{-6}
S-PSF/Zeolite Y 15% v/v	0.0184	1.59×10^{-6}
S-PSF/Zeolite Y 20% v/v	0.0197	1.64×10^{-6}

 Table G13 Methanol permeability (cm²/s) of S-PSF and S-PSF/Zeolite Y composite

 membranes

Figure G13 Methanol permeability at 70 °C of S-PSF and S-PSF/Zeolite Y composite membranes.

<u>Commla</u>	Membrane	Methanol Permeability
Sample	Thickness (cm)	(cm ² /s)
Nafion 117	0.0178	3.08×10^{-5}
S-PSF72	0.0202	2.62×10^{-6}
S-PSF/S-GO 1% v/v	0.0191	4.23×10^{-7}
S-PSF/S-GO 2% v/v	0.0189	4.09×10^{-7}
S-PSF/S-GO 3% v/v	0.0184	3.48×10^{-7}
S-PSF/S-GO 5% v/v	0.0171	3.40×10^{-7}
S-PSF/S-GO 7% v/v	0.0171	3.44×10^{-7}

Table G14 Methanol permeability (cm²/s) of S-PSF/S-GO composite membranes

.

Figure G14 Methanol permeability (cm²/s) of S-PSF/S-GO composite membranes.

Table G15 Methanol concentration in chamber A and B at 70 °C of S-PSF/3% v/vS-GO/12% v/v Zeolite Y composite membrane

	Methanol Concentration (mol	/l) in Compartment A (C _A) and	
Time (sec)	Compartment B (C _B) at 70 °CS-PSF/3% v/v S-GO/12% v/v Zeolite Y		
	C _A (M)	C _B (M)	
0	2.479	0	
86400	2.479	0	
172800	2.285	0.100	
345600	2.125	0.155	
432000	2.021	0.186	
518400	1.958	0.365	
604800	1.891	0.379	

Figure G15 Methanol concentration in chamber B versus time at 70 °C of S-PSF/3% v/v S-GO/12% v/v Zeolite Y.

Table G16 Methanol concentration in chamber A and B at 70 °C of S-PSF/3% v/vS-GO/15% v/v Zeolite Y composite membrane

	Methanol Concentration (mol	//) in Compartment A (C _A) and	
Time (sec)	Compartment B (C _B) at 70 °C S-PSF/3% v/v S-GO/15% v/v Zeolite Y		
0	2.453	0	
86400	2.453	0	
172800	2.424	0	
345600	2.269	0.100	
432000	2.171	0.156	
518400	1.957	0.205	
604800	1.717	0.239	

Figure G16 Methanol concentration in chamber B versus time at 70 °C of S-PSF/3% v/v S-GO/15% v/v Zeolite Y.

. Sample	Membrane Thickness (cm)	Methanol Permeability (cm ² /s)
Nafion 117	0.0178	3.08×10^{-5}
S-PSF72	0.0202	2.62×10^{-6}
S-PSF/15Y	0.0184	1.59×10^{-6}
S-PSF/3S-GO	0.0184	3.48×10^{-7}
S-PSF/3S-GO/12Y	0.0182	3.68×10^{-7}
S-PSF/3S-GO/15Y	0.0188	3.33×10^{-7}

Table G17 Methanol permeability (cm^2/s) of the hybrid membranes

. .

Appendix H Water Uptake

The membranes were immersed into DI water for 24 h at room temperature. Superabundant water was absorbed from the membrane surface with a wiping paper and the membranes were weighed (noted as W_s). The membranes were dried at 100 °C for 24 h in an oven and weighed again (noted as W_d). The percentage of water uptake was then calculated as following Eq. (H1):

Water uptake =
$$(W_s - W_d) \times 100$$
 (H1)
 W_d

where W_d refers to the weight of dried polymer, and W_s is weight of swelled polymer.

Figure H1 Water uptake (%) for S-PSF and S-PSF/Zeolite Y composite membranes.

σ

Samala			Water Uptake
Sample	Dry (g)	wet (g)	(%)
	0.1040	0.1140	8.93
S-PSF	0.1040	0.1130	8.48
(DS = 0.72)	0.1030	0.1130	9.61
	Water uptal	ke average	9.01 ± 0.57
	0.0319	0.0370	15.99
S-PSF/5 %v/v	0.0320	0.0367	14.69
Zeolite Y	0.0320	0.0366	14.38
	Water uptal	ke average	15.01 ± 0.86
	0.0375	0.0437	16.53
S-PSF/10 %v/v	0.0376	0.0432	14.89
Zeolite Y	0.0376	0.0431	14.63
	Water uptal	ke average	15.35 ± 1.03
	0.0358	0.0431	20.39
S-PSF/15 %v/v	0.0357	0.0432	21.01
Zeolite Y	0.0358	0.0434	• 21.23
	Water uptal	ke average	20.88 ± 0.43
	0.0532	0.0435	22.30
S-PSF/20 %v/v	0.0531	0.0434	22.35
Zeolite Y	0.0530	0.0436	21.56
	Water uptal	ke average	22.07 ± 0.44

σ

-

Table H1Water uptake of S-PSF and S-PSF/Zeolite Y composite membranesat 27 °C

Samala .	Dry (g)	Wet (7)	Water Uptake
Sample		wet (g)	(%)
	: 0.0352	0.0391	° 11.08
S-PSF/1% v/v	0.0351	0.0388	10.54
S-GO	0.0352	0.039	10.80
	Water upta	ke average	10.81 ± 0.27
	0.0361	0.0441	22.16
S-PSF/2% v/v	0.0359	0.0440	22.56
S-GO	0.0360	0.0438	21.67
	Water upta	ke average	22.13 ± 0.45
	0.0265	0.0326	23.02
S-PSF/3% v/v	0.0266	0.0325	22.18
S-GO	0.0266	0.0324	21.80
	Water upta	ke average	22.33 ± 0.62
	0.0304	0.0338	11.18
S-PSF/5% v/v	0.0305	0.0337	10.49
S-GO	0.0305	0.0335	9.84
	Water upta	ke average	10.50 ± 0.67
	0.0363	0.0377	3.86
S-PSF/7% v/v	0.0362	0.0376	3.87
S-GO	0.0362	0.0376	3.87
	Water upta	ke average	3.86 ± 0.01

σ

Table H2 Water uptake of S-PSF/S-GO composite membranes at 27 °C

Table H3	Water uptake of the hybrid membranes at 27 $^{\circ}C$

Sample	Drv (g)	Wet (g)	Water Uptake
	2-5 (6)		(%)
.12	0.0348	0.0409	17.53
S-PSF/3S-GO/12V	0.0347	0.0408	17.58
	0.0345	0.0407	17.97
	Water uptal	17.69 ± 0.24	
	0.0375	0.0431	14.93
S-PSE/3S-GO/15V	0.0376	0.0435	15.69
	0.0374	14.97	
	Water uptal	« average	15.20 ± 0.43

Appendix I Mechanical Properties

The mechanical properties: tensile strength, yield strain, and young's modulus, were recorded using a universal testing machine (Lloyd, model SMT2-500N) at room temperature with 25 mm.min⁻¹ speed. The membranes (thickness less than 1.0 mm) were cut into 1 cm × 5 cm. The measurements were taken at least 5 times.

Sample	Breadth (mm)	Area (mm²)	Tensile Strength (MPa)	Yield Strain (%)	Young's Modulus (MPa)
PSF	0.37	3.72	38.6	7.3	906
PSF	0.36	3.58	41.7	7.7	993
PSF	0.39	3.92	40.5	8.6	874
PSF	0.48	4.76	37.8	8.5	813
PSF	0.34	3.36	41.1	6.6	1018

 Table I1
 Mechanical property of PSF

Table I2Mechanical property of SPSF with DS of 0.72

Sampla	Breadth	Area	Tensile	Yield	Young's
Sample	(mm)	(mm²)	Strength (MPa)	Strain (%)	Modulus (MPa)
SPSF72	0.48	4.77	21.8	5.5	662
SPSF72	0.39	3.91	24.7	5.9	691
SPSF72	0.28	2.83	32.2	5.8	933
SPSF72	0.31	3.11	35.2	6.5	930
SPSF72	0.22	2.16	28.2	6.9	1003

Sampla	Breadth	Area	Tensile	Yield	Young's
Sample	(mm)	(mm²)	Strength (MPa)	Strain (%)	Modulus (MPa)
1	0.19	1.84	25.8	4.6	873
2	0.19	1.85	19.1	3.3	945
3	0.18	1.88	29.3	5.0	1035
4	0.18	1.92	23.1	3.6	1156
5	0.18	1.76	33.2	5.1	1047

 Table I3
 Mechanical property of S-PSF/5%v/v Zeolite Y composite membranes

-

 Table I4
 Mechanical property of S-PSF/10%v/v Zeolite Y composite membranes

Sample	Breadth	Area	Tensile	Yield	Young's
Sample	(mm)	(mm²)	Strength (MPa)	Strain (%)	Modulus (MPa)
1	0.19	1.93	26.4	7.0	1138
2	0.16	1.57	25.5	3.5	1303
3	0.16	1.62	24.5	3.7	1265
4	0.14	1.47	28.3	4.3	1238
5	0.14	1.34	22.7	4.2	1116

 Table I5
 Mechanical property of S-PSF/15%v/v Zeolite Y composite membranes

Sampla	Breadth	Area	Tensile	Yield	Young's
Sample	(mm)	(mm ²)	Strength (MPa)	Strain (%)	Modulus (MPa)
1	0.18	1.79	15.8	4.1	1096
2	0.17	1.68	14.0	3.2	1226
3	0.16	1.61	16.5	3.3	1268
4	0.17	1.58	15.0	3.0	1220
5	0.21	2.13	17.4	3.5	1232

Samula	Breadth	Area	Tensile	Yield	Young's
Sample	(mm)	(mm²)	Strength (MPa)	Strain (%)	Modulus (MPa)
I	0.16	1.63	13.9	2.0	3438
2	0.17	1.65	21.1	2.7	3109
3	0.17	1.72	22.3	2.7	3246
4	0.18	1.79	25.5	3.0	3047
5	0.16	1.61	24.0	2.9	3185

Table I6 Mechanical property of S-PSF/20%v/v Zeolite Y composite membranes

 Table 17 Mechanical properties of S-PSF and S-PSF/Zeolite Y composite

 membranes

Sample	Tensile	Yield Strain	Young's Modulus	
Sampie	Strength (MPa)	(%)	(MPa)	
PSF	39.9 ± 1.7	7.7 ± 0.9	921 ± 85	
S-PSF72	28.4 ± 5.4	6.1 ± 0.6	844 ± 156	
S-PSF/5%v/v	261 ± 54	12 ± 0.8	1011 + 109	
Zeolite Y	20.1 ± 5.4	4.5 ± 0.8	1011 ± 106	
S-PSF/10%v/v	25.5 + 2.1	45 + 1.4	1212 + 91	
Zeolite Y	23.3 ± 2.1	4.3 ± 1.4	1212 ± 81	
S-PSF/15%v/v	157112	24+04	1200 + 65	
Zeolite Y	15.7 ± 1.3	3.4 ± 0.4	1208 ± 65	
S-PSF/20%v/v	214+45	27.04	2205 + 150	
Zeolite Y	21.4 ± 4.3	2.7 ± 0.4	3203 ± 130	
Nafion 117	11.0 ± 0.4	24.1 ± 1.9	185 ± 10	

σ

Figure I1 Tensile strength of S-PSF/zeolite Y composite membranes.

Figure I2 Yield strain of S-PSF/zeolite Y composite membranes.

Figure 13 Young's modulus of S-PSF/zeolite Y composite membranes.

σ

Sample	Breadth (mm)	Area (mm²)	Tensile Strength (MPa)	Yield Strain (%)	Young's Modulus (MPa)
1	0.211	• 2.11	29.57	4.88	887
2	0.182	1.82	30.25	5.79	924
3	0.213	2.13	28.17	5.75	825
4	0.196	1.96	25.72	4.82	767
5	0.209	2.09	33.35	5.55	960

 Table I8
 Mechanical property of S-PSF/1%v/v S-GO composite membranes

 Table I9
 Mechanical property of S-PSF/2%v/v S-GO composite membranes

Sample	Breadth	Area	Tensile	Yield	Young's
Sample	(mm)	(mm²)	Strength (MPa)	Strain (%)	Modulus (MPa)
1	0.167	1.67	33.57	4.0	733
2	0.187	1.87	40.28	4.72	926
3	0.189	1.89	39.65	4.16	902
4	0.196	1.96	42.15	5.31	1079
5	0.201	2.01	38.04	4.05	897

 Table I10
 Mechanical property of S-PSF/3%v/v S-GO composite membranes

Sample	Breadth	Area	Tensile	Yield	Young's
Sample	(mm)	(mm²)	Strength (MPa)	Strain (%)	Modulus (MPa)
1	0.142	1.42	32.57	3.51	944
2	0.160	1.60	36.65	3.46	839
3	0.159	1.59	36.33	3.48	972
4	0.151	1.51	40.68	3.26	1022
5	0.163	1.63	36.04	3.32	958

Sample	Breadth (mm)	Area (mm²)	Tensile Strength (MPa)	Yield Strain (%)	Young's Modulus (MPa)
1	0.193	1.93	40.33	3.05	952
2	0.180	1.80	44.58	2.5	1092
3	0.176	1.76	46.18	3.01	1103
4	0.186	1.86	41.56	2.95	978
5	0.186	1.86	47.11	2.56	1122

 Table I11
 Mechanical property of S-PSF/5%v/v S-GO composite membranes

.

 Table I12
 Mechanical property of S-PSF/5%v/v S-GO composite membranes

Sample	Breadth	Area	Tensile	Yield	Young's
	(mm)	(mm²)	Strength (MPa)	Strain (%)	Modulus (MPa)
1	0.245	2.45	45.08	2.81	1100
2	0.243	2.43	49.57	2.77	1200
3	0.269	2.69	47.85	2.41	1145
4	0.235	2.35	51.23	2.63	1271
5	0.228	2.28	50.85	2.45	1217

Sample	Tensile	Yield Strain	Young's Modulus	
Sample	Strength (MPa)	(%)	(MPa)	
PSF	39.9 ± 1.7	7.7 ± 0.9	921 ± 85	
S-PSF72	29.4 ± 2.8	6.1 ± 0.6	844 ± 156	
S-PSF/1%v/v S-GO	28.6 ± 2.3	5.4 ± 0.5	873 ± 77	
S-PSF/2%v/v S-GO	36.5 ± 2.9	4.4 ± 0.6	907 ± 123	
S-PSF/3%v/v S-GO	40.1 ± 1.9	3.4 ± 0.1	947 ± 67	
S-PSF/5%v/v S-GO	44.0 ± 2.9	2.8 ± 0.3	1050 ± 78	
S-PSF/7%v/v S-GO	48.9 ± 2.5	2.6 ± 0.12	1187 ± 66	

 Table I13
 Mechanical properties of S-PSF and S-PSF/S-GO composite membranes

Figure I4 Tensile strength of S-PSF/S-GO composite membranes.

Figure I5 Yield strain of S-PSF/S-GO composite membranes.

Figure I6 Young's modulus of S-PSF/S-GO composite membranes.

o

Sample	Breadth (mm)	Area (mm²)	Tensile Strength (MPa)	Yield Strain (%)	Young's Modulus (MPa)
1	0.203	2.03	14.67	2.41	1074
2	0.206	2.06	9.68	1.23	1311
3	0.195	1.95	20.35	3.52	1280
4	0.190	1.90	13.98	2.19	1129
5	0.183	1.83	15.85	2.30	1251

Table I14Mechanical property of S-PSF/3%v/vS-GO and 12%v/vzeolite Ycomposite membranes

Table I15Mechanical property of S-PSF/ S-PSF/3%v/v S-GO and 15%v/v zeoliteY composite membranes

Sample	Breadth	Area	Tensile	Yield	Young's
	(mm)	(mm²)	Strength (MPa)	Strain (%)	Modulus (MPa)
1	0.196	1.96	9.28	1.06	1453
2	0.215	2.15	19.14	3.04	1254
3	0.209	2.09	10.84	1.43	1429
4	0.202	2.02	12.09 •	1.57	1471
5	0.200	2.00	16.16	2.73	1308

.....

•

o

Sample	Tensile Strength (MPa)	Yield Strain (%)	Young's Modulus (MPa)	
PSF	39.9 ± 1.7	7.7 ± 0.9	921 ± 85	
S-PSF72	29.4 ± 2.8	6.1 ± 0.6	844 ± 156	
S-PSF/15Y	15.7 ± 1.3	3.4 ± 0.4	1208 ± 65	
S-PSF/3S-GO	40.1 ± 1.9	3.4 ± 0.1	947 ± 67	
S-PSF/3S-GO/12Y	14.9 ± 3.8	2.3 ± 0.8	1209 ± 102	
S-PSF/3S-GO/15Y	13.5 ± 4.1	2.0 ± 0.9	1383 ± 96	

o

4

 Table I16
 Mechanical properties of S-PSF and hybrid composite membranes

÷ 1

Appendix J X-ray Photoelectron Spectroscopy (XPS)

XPS technique was used for the determination of the surface composition of the GO and S-GO. The XPS spectra were obtained by using an incident achromatic MgKa X-ray source (1253.6 eV) operated at 14.8 kV and 20 mA for excitation and a hemisphere analyzer (Thermo VG scientific). The high-resolution XPS spectra were composite averages of 10 scans with a passing energy of 50 eV. The pressure in the analysis chamber was in the range of 10⁻⁸ Torr during data collection. The binding energy was adjusted to the C1s peak at 285.1 eV. Data analysis and curve deconvolution were accomplished by using the Thermo Advantage Spectra Data Processor software. The samples were dried at 100 °C for 24 h before testing.

Figure J1 Wide region XPS spectra of GO.

Figure J2 Wide region XPS spectra of S-GO.

Figure J3 S2p region XPS spectra of GO.

Figure J4 S2p region XPS spectra of S-GO.

Figure J5 C1s region XPS spectra of GO

Ø

ø

Figure J6 C1s region XPS spectra of S-GO

Bond	Sample	Assignment	Binding Energy (eV)	FWHM	Area
\$2n	S-GO	S(2p3/2)	167.6	1.566	1946.3
32p		S(2p1/2)	168.8	1.594	.1190.5
		C=C	283.5	0.815	58406.6
		С-С / С-Н	284.3	1.542	25125.8
	60	C-OH	285.9	1.283	6529.2
	00	С-О-С	286.9	1.234	3986.4
		C=0	288.4	1.578	4048.9
Cls		0-C=0	290.1	2.825	8244.1
CIS		C=C	282.5	0.712	91736.7
		С-С / С-Н	283.1	0.768	22181.9
	8.60	C-OH / C-S	283.9	1.560	25063.8
	5-00	С-О-С	285.3	1.684	9684.2
		C=O	286.7	2.078	12771.4
		0-C=0	288.5	1.476	5083.0

Table J1 Summary of S 2p and C 1s XPS spectral data

o

-

Appendix K Scanning Electron Microscopy (SEM)

The surface morphology of GO and S-GO was investigated using a scanning electron microscope, Model S4800 (Hitachi), operated at 5kV and 15 mA. The samples were dried at 100 °C for 24 h before testing.

Figure K1 SEM images of the surface of: (a) GO and (b) S-GO.

a

CURRICULUM VITAE

Name:Mr. Phuwadon BunlengsuwanDate of Birth:December 5, 1990

Nationality: Thai

University Education:

2009–20012 Bachelor Degree of Petrochemical and Polymeric Materials, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakornpathom, Thailand

Proceeding:

 Bunlengsuwan, P.; Sirivat, A.; and Siemanond, K. (2015, April 21) Effect of Sulfonated Graphene Oxide on Sulfonated Polysulfone Membrane for Direct Methanol Fuel cells. <u>Proceedings of the 6th Research Symposium on</u> <u>Petrochemical and Materials Technology and the 21th PPC Symposium on</u> <u>Petroleum, Petrochemicals, and Polymers, Bangkok, Thailand.</u>

Presentation:

 Bunlengsuwan, P.; Sirivat, A.; and Siemanond, K. (2015, April 21) Effect of Sulfonated Graphene Oxide on Sulfonated Polysulfone Membrane for Direct Methanol Fuel cells. Paper presented at <u>The 6th Research Symposium on</u> <u>Petrochemical and Materials Technology and the 21th PPC Symposium on</u> <u>Petroleum, Petrochemicals, and Polymers, Bangkok, Thailand.</u>