REFERENCES

- Boxiong, S., Chunfei, W., Cai, L., Binbin, G., and Rui, W. (2007). Pyrolysis of waste tyres: The influence of USY catalyst/tyre ratio on products. <u>Journal</u> <u>Analytical and Applied Pyrolysis</u>, 78, 243-249.
- Castaño, P., Pawelec, B., Fierro, J.L.G., Arandes, J.M., and Bilbao, J. (2006a). Aromatics reduction of pyrolysis gasoline (PyGas) over HY-supported transition metal catalysts. <u>Applied Catalysis A: General</u>, 315, 101-113.
- Castaño, P., Gutiérrez, A., Villanueva, I., Pawelec, B., Bilbao, J., and Arandes, J.M.,
 (2006b). Effect of the support acidity on the aromatic ring-opening of pyrolysis gasoline over Pt/HZSM-5 catalysts. <u>Catalysis Today</u>, 143, 115-119.
- Chang, Y.M. (1996). On pyrolysis of waste tire: degradation rate and product yields. <u>Resources, Conservation and Recycling</u>, 17, 125-139
- Choosuton, A. (2007). Development of waste tire pyrolysis for the production of commercial fuels: Effect of noble metals and supports. M.S. Thesis, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand.
- Cunliffe, A.M., and Williams, P.T. (1998). Composition of oils derived from the batch pyrolysis of tyres. Journal of Analytical and Applied Pyrolysis, 44, 131–152.
- Dũng, N.A., Wongkasemjit, S., and Jitkarnka, S. (2009). Effects of pyrolysis temperature and Pt-loaded catalysts on polar-aromatic content in tire-derived oil. <u>Applied Catalysis B: Environmental</u>, 91, 300-307.
- Dũng, N.A., Tanglumlert, W., Wongkasemjit, S., and Jitkarnka, S. (2010). Roles of ruthenium on catalytic pyrolysis of waste tire and the changes of its activity upon the rate of calcinations. <u>Journal of Analytical and Applied Pyrolysis</u>, 87, 256-262.
- Elordi, G., Olazar, M., Lopez, G., Castaño, P., and Bilbao, J. (2011). Role of pore structure in the deactivation of zeolites (HZSM-5, H_ and HY) by coke in the pyrolysis of polyethylene in a conical spouted bed reactor. <u>Applied Catalysis B: Environmental</u>, 102, 224-231.

- Fan, Y., Bao, X., Lei, D., Shi, G., Wei, W., and Xu, J. (2005). A novel catalyst system based on quadruple silicoaluminophosphate and aluminosilicate zeolites for FCC gasoline upgrading. <u>Fuel</u>, 84, 435–442.
- Fajula, F., Figueras, F., Gueguen, C., and Dutartre, R. U.S. Patent, 4,946,580, 1990.
- Göhlich, M., Böttcher, S., Räuchle, K., and Reschetilowski, W. (2011). Influence of platinum dispersion on the hydrodearomatization of toluene to light alkanes on Pt/H-ZSM-5. Catalysis Communications, 12, 757-760.
- He, C., Li, J., Li, P., Cheng, J., Hao, Z., and Xu, Z.P. (2010). Comprehensive investigation of Pd/ZSM-5/MCM-48 composite catalysts with enhanced activity and stability for benzene oxidation. <u>Applied Catalysis B: Environmental</u>, 96, 466–475.
- He, C., Li, J., Cheng, J., Li, L., Li, P., Hao, Z., and Xu, Z.P. (2009). Comparative Studies on Porous Material-Supported Pd Catalysts for Catalytic Oxidation of Benzene, Toluene, and Ethyl Acetate. <u>Industrial & Engineering Chemistry Research</u>, 48, 6930–6936.
- Li, L., Gao, J., and Meng, X. (2005). The influencing factors of the catalytic pyrolysis processes and their product distribution. <u>Petroleum Science and Tech-</u> <u>nology</u>, 23, 243-255.
- Marcilla, A., Gómez-Siurana, A., and Valdés, F. (2007). Catalytic pyrolysis of LDPE over H-beta and HZSM-5 zeolites in dynamic conditions Study of the evolution of the process. Journal of Analytical and Applied Pyrolysis, 79, 433-442.
- Murillo, R., Aylón, E., Navarro, M.V., Callén, M.S., Aranda, A., and Mastral, A.M. (2006). The application of thermal processes to valorise waste tyre. <u>Fuel</u> <u>Processing Technology</u>, 87, 143–147.
- Olazaar, M., Arabiourrutia, M., López, G., Aquado, R. and Bilboa, J. (2008). Effect of acid catalysts on scrap tyre pyrolysis under fast heating conditions. <u>Jour-</u><u>nal of Analytical and Applied Pyrolysis</u>, 82, 199-204.
- Pintoo, E. (2008). Study on uses and possibilities of quality upgrading of oil obtained from tire pyrolysis: case of Pd/H-BETA. M.S. Thesis, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand.

- Qu, W., Zhou, Q., Wang, Y.Z., Zhang, J., Lan, W.W., Wu, Y.H., Yang, J.W., and Wang, D.Z. (2006). Pyrolysis of waste tire on ZSM-5 zeolite with enhanced catalytic activities. <u>Polymer Degradation and Stability</u>, 10, 2389-2395.
- Šebor, G., Blažek, J., Nemer, M.F. (1999). Optimization of the preparative separation of petroleum maltenes by liquid adsorption chromatography. <u>Journal of</u> <u>Chromatography A</u>, 847, 323–330.
- Tsang, C.H.M., Dai, P.S.E., and Petty, R.H. U.S. Patent, 5,888,921, 1999a.
- Tsang, C.H.M., Dai, P.S.E., and Petty, R.H. U.S. Patent, 5,972,205, 1999b.
- Williams, P.T. and Brindle, A.J. (2002). Catalytic pyrolysis of tyres: influence of catalyst temperature. <u>Fuel</u>, 81, 2425-2434.
- Zhang, X., Guo, Q., Qin B., Zhang, Z., Ling, F., Sun, W., and Li, R. (2010). Structural features of binary microporous zeolite composite Y-Beta and its hydrocracking performance. Catalysis Today, 149, 212–217.

APPENDICES

Appendix A Temperature Profiles

 Table A1
 Pyrolysis conditions: Non-catalytic Pyrolysis

Tire = 30 g, N_2 flow = 30ml/min

Pyrolysis Temperature $(T2) = 500 \text{ }^{\circ}\text{C}$

Catalytic Temperature (T1) = 350 °C

Time (min)	T1	T2	Time (min)	T1	T2	Time (min)	TI	T2	Time (min)	T1	T2
2	23.0	24.5	32	355.0	558.4	62	356.1	498.7	92	352.9	501.4
4	29.0	35.7	34	380.7	550.5	64	356.1	500.0	94	352.1	501.2
6	40.7	55.6	36	386.0	543.8	66	355.0	499.4	96	352.5	500.5
8	57.2	83.2	38	377.4	531.5	68	354.3	498.7	98	350.7	499.3
10	80.1	119.3	40	369.9	518.7	70	352.7	501.1	100	350.7	501.1
12	110.6	162.2	42	362.1	506.1	72	352.0	500.9	102	350.1	499.2
14	146.3	211.1	44	356.5	495.4	74	350.2	499.4	104	349.5	499.7
16	181.4	261.8	46	353.8	491.8	76	349.2	498.1	106	349.7	501.3
18	221.7	319.1	48	356.7	503.5	78	348.8	500.5	108	350.0	498.4
20	245.2	371.6	50	359.8	500.5	80	352.0	500.2	110	350.7	499.8
22	312.3	434.5	52	359.4	499.9	82	353.2	498.8	112	350.5	499.4
24	333.9	450.0	54	358.3	501.2	84	355.0	500.4	114	350.1	500.0
26	334.9	363.5	56	359.4	499.5	86	353.7	497.8	116	350.2	500.5
28	319.4	374.6	58	356.8	497.1	88	354.4	501.8	118	350.7	500.8
30	323.5	501.7	60	357.5	501.5	90	354.2	502.1	120	350.4	500.5

Figure A1 Temperature profiles of waste non-catalytic pyrolysis.

 Table A2
 Pyrolysis conditions: HBETA catalyst

Tire = 30 g, N₂ flow = 30 ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	Tl	T2	Time (min)	T1	T2	Time (min)	Tl	Т2	Time (min)	T1	T2
2	25.6	24.9	32	315.8	496.1	62	353.4	501.2	92	356.7	499.1
4	31.4	35.9	34	315.2	498.3	64	358.4	501.1	94	364.2	499.2
6	43.7	56.1	36	321.3	500.9	66	358.4	501.1	96	363.3	499.1
8	61.9	85.5	38	334.9	501.0	68	363.8	502.9	98	363.0	498.6
10	83.9	125.0	40	324.7	499.9	70	364.9	500.2	100	362.2	501.1
12	109.9	171.3	42	339.9	501.7	72	365.4	499.4	102	361.6	499.9
14	141.2	223.4	44	367.0	501.2	74	366.5	501.6	104	361.5	499.5
16	178.5	281.5	46	394.0	499.6	76	365.4	501.0	106	361.3	501.0
18	219.5	338.6	48	401.9	497.6	78	366.3	499.3	108	361.1	500.7
20	272.7	409.1	50	406.2	497.2	80	366.1	499.4	110	359.0	500.1
22	330.2	455.5	52	388.4	496.9	82	366.5	500.1	112	359.2	500.0
24	359.2	490.2	54	369.0	499.0	84	365.9	500.3	114	357.4	499.8
26	346.6	504.2	56	351.3	500.7	86	365.7	499.9	116	357.2	500.7
28	327.0	493.0	58	346.2	501.9	88	365.3	499.2	118	355.9	500.1
30	315.6	504.3	60	346.1	502.0	90	365.6	500.2	120	355.7	498.1

Figure A2 Temperature profiles of waste tire pyrolysis with using HBETA catalyst.

 Table A3 Pyrolysis conditions: HY catalyst

Tire = 30 g, N_2 flow = 30ml/min

Pyrolysis Temperature (T2) = $500 \text{ }^{\circ}\text{C}$

Time (min)	TI	T2	Time (min)	ТІ	T2	Time (min)	ТІ	Т2	Time (min)	T1	Т2
2	26.5	27.0	32	359.0	494.9	62	344.1	499.4	92	369.3	502.1
4	32.1	38.9	34	373.1	489.7	64	343.6	499.8	94	374.6	499.9
6	42.8	59.5	36	348.8	481.4	66	350.8	501.9	96	375.1	500.8
8	58.5	89.0	38	361.3	474.1	68	357.3	501.0	98	374.0	499.6
10	78.9	126.7	40	363.8	467.6	70	357.4	500.2	100	371.9	500.2
12	105.5	170.4	42	368.1	479.0	72	356.3	499.8	102	370.0	500.0
14	137.9	220.7	44	360.5	502.7	74	353.4	498.2	104	367.3	497.1
16	174.7	274.4	46	359.4	500.5	76	352.8	499.2	106	366.5	503.0
18	216.7	328.5	48	359.3	503.5	78	351.9	501.7	108	363.3	500.7
20	258.3	384.5	50	356.1	495.2	80	349.3	497.8	110	361.6	501.1
22	303.2	445.8	52	354.4	496.7	82	348.1	503.6	112	356.7	497.9
24	342.2	469.1	54	352.4	500.3	84	346.6	497.5	114	352.1	500.6
26	333.0	502.3	56	349.7	499.4	86	344.4	499.8	116	349.1	500.2
28	326.6	506.1	58	347.8	500.5	88	345.0	502.7	118	349.5	501.8
30	340.9	504.0	60	346.6	501.6	90	356.1	499.0	120	355.2	499.1

Figure A3 Temperature profiles of waste tire pyrolysis with using HY catalyst.

 Table A4
 Pyrolysis conditions: 1%Pd/HBETA catalyst

Tire = 30 g, N₂ flow = 30 ml/min

Pyrolysis Temperature (T2) = 500 °C

Catalytic Temperature (T1) = 350 °C

Time (min)	T1	T2	Time (min)	T1	T2	Time (min)	T1	T2	Time (min)	ТІ	Т2
2	22.1	22.3	32	339.0	502.7	62	349.0	497.5	92	355.3	501.9
4	27.0	33.4	34	352.4	501.2	64	354.0	499.3	94	356.8	498.4
6	36.9	51.4	36	367.0	501.5	66	357.5	500.4	96	358.0	499.8
8	53.5	78.5	38	369.7	498.6	68	359.8	499.5	98	359.2	499.9
10	78.2	114.3	40	369.6	499.5	70	361.6	501.7	100	359.7	501.3
12	110.9	158.7	42	367.5	500.0	72	362.4	498.7	102	358.5	499.4
14	143.8	207.3	44	364.7	500.0	74	363.2	500.9	104	354.8	498.0
16	175.3	269.6	46	360.5	500.1	76	361.7	500.0	106	350.0	500.4
18	206.5	316.5	48	357.0	501.1	78	357.3	498.6	108	343.7	500.6
20	246.5	370.9	50	352.5	499.9	80	349.8	498.2	110	339.5	501.3
22	290.5	432.5	52	347.6	500.7	82	346.1	500.1	112	336.7	501.0
24	346.9	468.4	54	341.6	500.9	84	345.2	501.1	114	336.7	501.7
26	319.3	485.7	56	338.2	500.2	86	347.1	500.4	116	343.7	499.8
28	318.2	507.9	58	339.1	500.9	88	349.9	498.2	118	354.7	501.0
30	324.8	519.4	60	343.1	500.5	90	353.8	500.7	120	355.0	501.1

Figure A4 Temperature profiles of waste tire pyrolysis with using 1%Pd/HBETA catalyst.

Table A5 Pyrolysis conditions: 1%Pd/HBETA+10%HY catalyst

Tire = 30 g, N_2 flow = 30ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	Tl	Т2	Time (min)	T1	T2	Time (min)	ТІ	T2	Time (min)	Т1	Т2
2	22.8	23.6	32	340.5	500.3	62	351.2	499.8	92	349.4	502.8
4	28.9	36.3	34	346.1	498.2	64	351.1	499.1	94	353.1	497.2
6	38.2	54.6	36	334.5	504.9	66	350.8	499.3	96	348.8	498.9
8	53.0	80.2	38	334.4	499.7	68	353.6	502.2	98	346.1	499.0
10	75.2	115.4	40	355.5	499.2	70	352.2	499.7	100	346.3	501.1
12	101.7	153.9	42	372.1	502.2	72	350.5	500.8	102	351.3	501.2
14	134.1	201.0	44	364.6	496.3	74	349.9	500.6	104	354.5	501.8
16	168.5	253.4	46	355.5	500.7	76	354.8	501.0	106	351.7	498.3
18	204.7	305.2	48	355.7	500.1	78	360.0	506.6	108	348.4	500.2
20	237.0	356.4	50	356.4	500.8	80	366.1	500.8	110	347.6	499.5
22	286.2	413.7	52	351.8	499.0	82	363.2	496.5	112	348.3	500.2
24	322.5	454.5	54	346.3	499.9	84	357.6	498.6	114	350.8	501.7
26	340.4	481.5	56	342.7	499.2	86	350.5	500.0	116	351.9	499.1
28	338.7	485.8	58	343.6	500.2	88	344.4	499.4	118	350.0	500.3
30	328.7	488.2	60	347.3	500.4	90	341.6	500.0	120	350.1	499.3

Figure A5 Temperature profiles of waste tire pyrolysis with using 1%Pd/HBETA+10%HY catalyst.

 Table A6
 Pyrolysis conditions: 1%Pd/HBETA+20%HY catalyst

Tire = 30 g, N₂ flow = 30 ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	ТІ	T2	Time (min)	TI	T2	Time (min)	TI	Т2	Time (min)	TI	T2
2	25.0	23.6	32	303.1	522.4	62	360.7	498.5	92	354.0	496.7
4	32.9	33.8	34	326.8	516.6	64	363.2	504.9	94	357.8	503.8
6	46.3	49.5	36	334.8	509.0	66	364.4	496.8	96	352.1	496.5
8	67.3	75.7	38	356.2	502.7	68	367.7	505.3	98	347.1	502.7
10	91.2	104.7	40	369.1	498.4	70	366.8	501.0	100	355.0	494.2
12	122.6	142.1	42	376.8	504.1	72	367.4	504.2	102	353.2	504.3
14	158.3	182.7	44	389.6	499.4	74	367.6	499.7	104	349.0	497.6
16	199.0	230.6	46	392.7	502.3	76	364.8	501.0	106	353.0	502.2
18	241.4	283.4	48	390.7	499.7	78	355.4	501.5	108	353.4	496.5
20	285.5	338.4	50	382.2	492.6	80	344.0	504.4	110	350.0	502.2
22	306.2	393.6	52	372.9	500.9	82	346.7	498.3	112	347.5	502.2
24	325.9	440.6	54	363.0	500.0	84	360.1	507.8	114	355.3	500.7
26	314.2	480.0	56	354.0	504.1	86	357.0	503.1	116	352.4	504.6
28	320.9	487.5	58	346.2	497.2	88	351.4	500.1	118	348.4	492.6
30	318.9	505.8	60	355.7	503.2	90	345.0	499.5	120	354.1	504.7

Figure A6 Temperature profiles of waste tire pyrolysis with using 1%Pd/HBETA+20%HY catalyst.

Table A7 Pyrolysis conditions: 1%Pd/HY catalyst

Tire = 30 g, N_2 flow = 30ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	TI	Т2	Time (min)	ТІ	T2	Time (min)	T1	T2	Time (min)	T1	T2
2	23.7	23.5	32	325.9	531.4	62	354.9	499.7	92	348.8	501.0
4	29.0	31.5	34	344.8	524.0	64	349.6	501.8	94	349.1	499.8
6	38.8	46.9	36	366.8	518.1	66	347.9	498.8	96	350.4	499.7
8	53.9	68.5	38	374.0	510.6	68	355.1	499.4	98	350.4	499.6
10	74.8	98.2	40	379.1	504.2	70	354.2	501.9	100	350.2	498.6
12	102.6	136.5	42	378.5	498.5	72	350.9	499.1	102	350.1	502.4
14	132.9	177.6	44	370.6	498.3	74	346.3	500.1	104	349.9	499.9
16	168.1	224.6	46	362.8	500.4	76	341.7	501.4	106	349.8	498.4
18	207.2	276.7	48	355.3	494.1	78	343.9	499.3	108	349.5	501.1
20	245.9	331.7	50	347.8	500.8	80	347.0	499.9	110	349.3	502.3
22	287.9	399.5	52	339.4	497.5	82	351.2	499.2	112	350.6	500.8
24	335.5	437.9	54	333.6	501.2	84	351.5	501.2	114	350.6	499.0
26	350.0	474.8	56	336.5	499.1	86	350.6	500.3	116	350.2	500.8
28	347.3	456.4	58	345.4	499.9	88	349.3	499.4	118	349.6	500.7
30	324.5	527.6	60	355.8	501.2	90	348.9	498.9	120	349.4	499.5

Figure A7 Temperature profiles of waste tire pyrolysis with using 1%Pd/HY catalyst.

Table A8 Pyrolysis conditions: 1%Pd/HY+10%HBETA catalyst

Tire = 30 g, N₂ flow = 30 ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	TI	Т2	Time (min)	Tl	T2	Time (min)	T1	Т2	Time (min)	T1	Т2
2	24.3	27.0	32	344.3	505.1	62	347.6	498.6	92	351.1	499.6
4	28.9	39.4	34	345.3	505.0	64	346.6	500.3	94	347.2	499.0
6	37.7	60.6	36	343.8	503.2	66	346.6	500.3	96	346.5	501.2
8	53.3	89.6	38	343.4	501.6	68	351.7	502.2	98	348.6	501.5
10	73.8	123.4	40	348.4	496.7	70	356.0	501.1	100	351.6	500.0
12	100.1	166.0	42	349.2	494.7	72	358.0	499.3	102	355.2	500.9
14	130.1	214.9	44	348.2	497.5	74	355.2	497.5	104	357.4	502.3
16	170.5	276.8	46	348.3	498.2	76	351.2	498.7	106	355.5	498.2
18	205.4	324.5	48	348.7	499.7	78	347.8	499.5	108	351.2	498.7
20	250.4	376.2	50	349.1	501.9	80	346.2	499.4	110	347.2	500.2
22	290.8	430.1	52	352.4	499.5	82	346.1	502.6	112	345.8	500.4
24	331.8	464.0	54	353.6	500.0	84	352.3	500.6	114	349.9	502.0
26	346.2	490.0	56	352.4	498.7	86	356.9	503.7	116	355.2	501.9
28	342.8	483.5	58	351.3	499.3	88	359.0	501.3	118	358.1	500.0
30	345.0	481.3	60	349.6	498.1	90	356.9	498.2	120	359.6	497.3

Figure A8 Temperature profiles of waste tire pyrolysis with using 1%Pd/HY+10%HBETA catalyst.

 Table A9
 Pyrolysis conditions: 1%Pd/HY+10%HBETA catalyst (repeated)

Tire = 30 g, N₂ flow = 30 ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	ТІ	T2	Time (min)	TI	T2	Time (min)	Tl	Т2	Time (min)	T1	Т2
2	24.1	23.6	32	334.7	502.1	62	349.3	506.0	92	365.9	498.7
4	29.3	34.4	34	346.9	507.4	64	355.5	501.9	94	367.1	498.6
6	39.5	54.1	36	361.5	503.2	66	360.4	500.6	96	367.2	498.1
8	55.9	81.5	38	374.1	498.6	68	363.2	499.7	98	363.8	494,9
10	78.7	117.8	40	386.4	496.1	70	364.9	500.0	100	358.3	496.7
12	105.5	161.3	42	387.4	494.2	72	365.9	498.9	102	351.8	499.4
14	133.8	204.3	44	383.7	493.1	74	366.9	499.6	104	346.0	499.9
16	167.5	263.5	46	381.9	496.2	76	366.6	496.5	106	342.7	499.9
18	205.7	317.5	48	378.2	492.5	78	363.8	495.6	108	348.2	506.8
20	248.5	374.5	50	372.8	500.7	80	358.4	496.2	110	354.5	505.7
22	295.5	433.9	52	367.9	499.8	82	352.0	499.6	112	357.7	501.5
24	340.2	469.3	54	363.0	500.0	84	348.8	504.6	114	360.3	498.7
26	307.4	494.7	56	357.2	500.7	86	352.5	505.6	116	361.8	500.6
28	318.4	499.2	58	352.8	499.9	88	360.4	503.9	118	361.5	496.1
30	330.7	506.8	60	349.3	505.4	90	364.6	501.9	120	358.9	495.0

Figure A9 Temperature profiles of waste tire pyrolysis with using 1%Pd/HY+10%HBETA (repeat) catalyst.

 Table A10 Pyrolysis conditions: 1%Pd/HY+20%HBETA catalyst

Tire = 30 g, N_2 flow = 30ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	TI	T2	Time (min)	ТІ	T2	Time (min)	TI	T2	Time (min)	TI	T2
2	25.3	24.7	32	328.4	510.7	62	417.9	504.7	92	355.7	502.5
4	29.9	33.5	34	363.5	516.0	64	414.1	497.7	94	354.0	496.2
6	40.1	51.6	36	396.9	515.2	66	408.5	500.2	96	351.5	504.4
8	53.7	73.6	38	414.0	514.5	68	401.6	494.7	98	348.6	504.1
10	74.9	105.9	40	421.1	509.4	70	393.7	507.1	100	352.6	498.6
12	100.0	143.5	42	426.9	504.7	72	387.6	498.2	102	356.2	501.6
14	129.6	185.5	44	432.0	499.2	74	381.4	508.7	104	355.9	498.3
16	162.6	232.7	46	434.4	503.9	76	376.3	500.0	106	354.1	503.5
18	198.1	282.4	48	433.5	499.4	78	370.4	493.8	108	351.9	499.4
20	221.9	340.1	50	432.4	505.4	80	364.2	504.2	110	349.0	504.3
22	281.9	407.5	52	432.2	498.4	82	358.4	499.0	112	347.7	498.8
24	331.9	438.6	54	429.6	505.2	84	353.7	506.0	114	351.0	504.6
26	301.8	485.3	56	426.9	501.5	86	349.0	494.2	116	358.7	499.3
28	324.2	459.8	58	424.3	503.4	88	349.0	507.6	118	361.3	505.6
30	307.7	501.2	60	422.8	499.1	90	355.5	498.6	120	363.1	498.1

Figure A10 Temperature profiles of waste tire pyrolysis with using 1%Pd/HY+20%HBETA catalyst.

Table A11 Pyrolysis conditions: 1%Pd/HBETA+20%HY+10%HZSM-5 catalyst

Tire = 30 g, N_2 flow = 30ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	T1	T2	Time (min)	TI	T2	Time (min)	TI	Т2	Time (min)	TI	T2
2	26.0	24.6	32	333.8	497.9	62	357.4	498.7	92	356.0	499.3
4	31.1	36.2	34	339.8	497.9	64	358.1	500.2	94	355.1	500.7
6	42.6	56.5	36	350.3	498.6	66	358.5	500.7	96	354.2	501.2
8	61.3	85.4	38	366.0	500.7	68	358.5	498.2	98	353.7	499.7
10	88.6	123.4	40	370.8	497.5	70	359.6	501.8	100	353.1	499.3
12	122.6	168.2	42	362.0	499.0	72	359.6	499.9	102	352.6	500.4
14	151.0	219.1	44	355.2	499.7	74	359.3	499.6	104	352.4	499.4
16	180.3	273.6	46	343.4	501.9	76	359.6	500.3	106	351.8	500.3
18	213.5	331.3	48	338.0	500.0	78	359.2	499.7	108	351.0	500.9
20	254.8	401.9	50	340.0	499.8	80	358.7	501.2	110	350.2	500.8
22	298.3	443.7	52	344.0	502.2	82	358.3	499.7	112	350.0	500.9
24	290.0	487.5	54	348.4	499.6	84	358.0	498.5	114	349.3	500.1
26	304.5	489.2	56	352.0	501.2	86	358.1	500.0	116	349.2	500.5
28	311.9	493.9	58	354.4	499.6	88	357.1	500.3	118	349.1	500.0
30	324.1	499.1	60	355.6	499.3	90	356.5	500.1	120	349.1	500.5

Figure A11 Temperature profiles of waste tire pyrolysis with using 1%Pd/HBETA+20%HY+10%HZSM-5 catalyst.

 Table A12
 Pyrolysis conditions:
 1%Pd/HBETA+20%HY+20%HZSM-5
 catalyst

Tire = 30 g, N_2 flow = 30ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	TI	T2									
2	25.3	23.3	32	344.0	508.8	62	359.1	500.7	92	350.5	500.4
4	31.1	33.9	34	353.3	502.9	64	366.1	502.5	94	350.6	500.0
6	43.6	53.5	36	358.4	494.6	66	365.7	497.2	96	351.3	499.2
8	63.7	81.9	38	371.8	485.1	68	360.6	496.9	98	350.9	501.3
10	91.7	119.5	40	373.3	490.6	70	352.1	498.3	100	350.5	498.3
12	124.5	167.2	42	362.6	502.0	72	347.2	504.2	102	350.0	499.5
14	156.9	218.0	44	351.7	499.4	74	348.5	501.9	104	350.2	500.5
16	191.0	275.5	46	342.6	504.1	76	347.9	502.0	106	349.7	500.4
18	232.4	330.7	48	338.3	494.9	78	348.2	500.7	108	349.6	502.3
20	276.9	403.3	50	340.8	500.1	80	348.8	501.6	110	348.8	500.7
22	319.2	445.3	52	353.5	498.4	82	349.5	500.2	112	349.1	500.4
24	350.2	482.6	54	367.0	501.1	84	350.1	500.0	114	348.5	499.1
26	310.7	486.9	56	362.7	492.4	86	350.4	498.0	116	348.9	497.3
28	327.1	475.7	58	347.2	497.8	88	350.7	499.4	118	348.2	502.4
30	338.4	514.6	60	346.9	504.7	90	351.1	499.5	120	348.7	501.0

Figure A12 Temperature profiles of waste tire pyrolysis with using 1%Pd/HBETA+20%HY+20%HZSM-5 catalyst.

 Table A13 Pyrolysis conditions: 1%Pd/HY+10%HBETA+10%HZSM-5 catalyst

Tire = 30 g, N₂ flow = 30 ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	Tl	T2	Time (min)	T1	T2	Time (min)	T1	T2	Time (min)	Т1	Т2
2	25.1	23.0	32	337.9	506.7	62	354.0	499.3	92	351.2	500.1
4	30.0	33.5	34	332.1	505.3	64	352.3	499.8	94	351.0	501.6
6	41.8	53.1	36	345.4	498.7	66	352.0	503.3	96	349.7	502.8
8	60.6	81.3	38	363.5	500.3	68	352.4	498.8	98	350.1	500.4
10	86.7	120.5	40	371.8	498.5	70	353.3	501.9	100	350.3	501.2
12	112.8	163.9	42	378.1	500.6	72	351.2	501.0	102	349.4	497.5
14	142.5	215.1	44	374.7	499.6	74	353.7	501.6	104	349.7	499.5
16	176.4	270.1	46	375.7	500.0	76	353.5	501.2	106	350.3	501.8
18	215.6	327.7	48	374.2	498.7	78	353.7	497.5	108	350.0	498.0
20	257.1	397.9	50	372.8	502.2	80	354.2	498.9	110	349.9	501.5
22	300.8	444.4	52	370.9	500.3	82	353.5	498.8	112	350.0	499.4
24	302.5	482.6	54	367.0	499.5	84	353.1	501.7	114	349.5	497.6
26	310.6	486.1	56	363.0	502.2	86	353.0	500.4	116	350.3	498.1
28	318.7	469.7	58	360.0	499.9	88	351.9	501.2	118	351.3	499.9
30	328.1	495.5	60	356.7	497.3	90	351.3	504.1	120	351.2	500.0

Figure A13 Temperature profiles of waste tire pyrolysis with using 1%Pd/HY+10%HBETA+10%HZSM-5 catalyst.

 Table A14 Pyrolysis conditions: 1%Pd/HY+10%HBETA+20%HZSM-5 catalyst

Tire = 30 g, N_2 flow = 30ml/min

Pyrolysis Temperature (T2) = 500 °C

Time (min)	TI	T2	Time (min)	Tl	T2	Time (min)	Tl	Т2	Time (min)	T1	Т2
2	24.6	21.9	32	323.3	532.4	62	363.9	500.9	92	350.0	500.1
4	30.2	32.2	34	330.4	520.8	64	366.9	499.2	94	350.2	502.7
6	43.6	52.0	36	330.8	514.6	66	369.3	500.2	96	351.5	501.2
8	64.8	80.2	38	375.9	510.1	68	371.0	498.3	98	351.9	499.1
10	92.3	118.6	40	397.0	502.4	70	371.2	500.1	100	353.4	499.1
12	128.1	174.0	42	405.3	501.1	72	370.4	500.5	102	353.7	501.9
14	155.3	215.7	44	392.3	494.5	74	367.5	500.5	104	354.2	496.3
16	192.5	271.8	46	381.0	500.0	76	365.2	499.6	106	355.1	500.0
18	233.3	327.9	48	365.2	500.5	78	363.6	498.8	108	350.9	503.6
20	273.6	400.5	50	348.6	500.1	80	361.1	502.1	110	350.7	500.5
22	293.3	445.3	52	338.9	502.0	82	358.6	500.2	112	347.4	499.4
24	319.3	486.0	54	340.4	501.3	84	356.9	498.9	114	347.4	502.1
26	300.0	496.0	56	346.0	499.4	86	355.1	500.4	116	348.5	500.0
28	316.9	440.6	58	352.9	502.2	88	353.5	499.9	118	348.5	500.2
30	327.8	466.4	60	359.2	499.1	90	351.6	498.2	120	348.5	495.1

Figure A14 Temperature profiles of waste tire pyrolysis with using 1%Pd/HY+10%HBETA+20%HZSM-5 catalyst.

Appendix B Yield of Pyrolysis Products

Table B1Yield of pyrolysis products obtained from pyrolysis with variedpercentages of HY in Pd/HBETA

	Name	Non-catalyst	НВЕТА	Pd/HBETA	1PB10Y	1PB20Y	HY
	Metal	-	-		-		
Catalysis	/sts Support			HBETA			
	Additive	-	-	-	10% HY	20% HY	-
	Gas	16.07	22.05	27.83	26.44	25.84	16.13
Yield (wt%)	Liquid	40.04	35.03	29.63	29.93	30.36	37.07
	Solid	44.09	42.92	42.55	43.64	43.80	46.80

Table B2Yield of pyrolysis products obtained from pyrolysis with variedpercentages of HBETA in Pd/HY

	Name	Non-catalyst	НҮ	Pd/HY	1PY10B	1PY20B	НВЕТА
	Metal	-	-	1% Pd			-
Catalysts	Support -		-		НҮ		
	Additive	-	-	-	10% HBETA	20% HBETA	-
	Gas	16.07	16.13	20.12	27.46	18.30	22.05
Yield (wt%)	Liquid	40.04	37.07	33.66	29.66	39.65	35.03
	Solid	44.09	46.80	46.22	42.87	42.05	42.92

	Name	Non-catalyst	1PB20Y	1PB20Y10Z	1PB20Y20Z	HZSM-5		
	Metal	-		1% Pd		-		
Catalysts	Support	-		-				
	1 st Additive	Additive -		20% HY				
	2 nd Additive	-	-	10% HZSM-5	20% HZSM-5	-		
Yield (wt%)	Gas	16.07	25.84	27.07	29.04	15.88		
	Liquid	40.04	30.36	30.73	28.93	37.18		
	Solid	44.09	43.80	42.20	42.04	46.95		

Table B3Yield of pyrolysis products obtained from pyrolysis with variedpercentages of HZSM-5 in Pd/HBETA mixed with 20%HY

Table B4Yield of pyrolysis products obtained from pyrolysis with variedpercentages of HZSM-5 in Pd/HY mixed with 10%HBETA

-	Name	Non-catalyst	1PY10B	1PY10B10Z	1PY10B20Z	HZSM-5	
	Metal	-		-			
Catalysts	Support	-		НҮ			
	1 st Additive	-		10% HBETA			
	2 nd Additive	-	-	10% HZSM-5	20% HZSM-5	-	
	Gas	16.07	27.46	28.29	24.02	15.88	
Yield (wt%)	Liquid	40.04	29.66	30.23	33.89	37.18	
	Solid	44.09	42.87	41.47	42.08	46.95	

Appendix C Gas Products (wt%)

Table C1 Distribution and yield of gases obtained from pyrolysis with variedpercentages of HY in Pd/HBETA

	Name	Non-catalyst	НВЕТА	Pd/HBETA	1PB10Y	1PB20Y	HY
Cotalusta	Metal	-	-		1% Pd		-
Catalysis	Support	-	-	HBETA			-
	Additive	-	-	-	10% HY	20% HY	-
	Methane	21.89	12.56	17.21	18.00	16.04	21.54
	Ethylene	10.25	6.13	6.11	5.77	6.35	7.70
	Ethane	17.86	15.74	14.52	14.91	13.57	19.43
Gas	Propylene	11.36	8.00	5.94	9.66	10.27	9.01
(wt%)	Propane	9.05	14.77	13.13	10.34	8.87	12.51
	Mixed C4	20.10	31.52	27.03	26.72	24.37	19.00
	Mixed C5	8.10	11.28	12.12	11.25	14.25	8.12
	C6+	1.39	0.00	3.94	3.35	6.27	2.70
	Methane	3.52	2.77	4.79	4.76	4.14	3.47
	Ethylene	1.65	1.35	1.70	1.52	1.64	1.24
	Ethane	2.87	3.47	4.04	3.94	3.51	3.13
Gas yield	Propylene	1.83	1.76	1.65	2.55	2.65	1.45
(wt%)	Propane	1.45	3.26	3.65	2.73	2.29	2.02
	Mixed C4	3.23	6.95	7.52	7.06	6.30	3.07
	Mixed C5	1.30	2.49	3.37	2.97	3.68	1.31
	C6+	0.22	0.00	1.10	0.89	1.62	0.43

	Name	Non-catalyst	HY	Pd/HY	1PY10B	1PY20B	НВЕТА
	Metal	-	-		I% Pd	<u> </u>	-
Catalysts	Support	-	-	НҮ			-
	Additive	-	-	-	10% HBETA	20% HBETA	-
	Methane	21.89	21.54	19.54	19.91	17.31	12.56
	Ethylene	10.25	7.70	8.65	7.33	7.88	6.13
	Ethane	17.86	19.43	16.89	18.23	15.57	15.74
Gas	Propylene	11.36	9.01	10.98	10.17	10.94	8.00
composition	Propane	9.05	12.51	9.37	10.92	9.71	14.77
(w1%)	Mixed C4	20.10	19.00	19.46	20.41	23.30	31.52
	Mixed C5	8.10	8.12	11.80	9.54	11.54	11.28
	C6+	1.39	2.70	3.30	3.49	3.74	0.00
	Methane	3.52	3.47	3.93	5.47	3.17	2.77
	Ethylene	1.65	1.24	1.74	2.01	1.44	1.35
	Ethane	2.87	3.13	3.40	5.01	2.85	3.47
Gas yield	Propylene	1.83	1.45	2.21	2.79	2.00	1.76
(wt%)	Propane	1.45	2.02	1.89	3.00	1.78	3.26
	Mixed C4	3.23	3.07	3.92	5.61	4.26	6.95
	Mixed C5	1.30	1.31	2.37	2.62	2.11	2.49
	C6+	0.22	0.43	0.66	0.96	0.69	0.00

Table C2 Distribution and yield of gases obtained from pyrolysis with variedpercentages of HBETA in Pd/HY

	Name	Non-catalyst	1PB20Y	1PB20Y10Z	1PB20Y20Z	HZSM-5
	Metal	-		1% Pd	<u> </u>	-
Catalysts	Support	-		HBETA		-
	1 st Additive	-		20% HY		
	2 nd Additive	-	-	10% HZSM-5	20% HZSM-5	-
	Methane	21.89	16.04	13.88	13.87	18.72
	Ethylene	10.25	6.35	6.39	6.11	9.63
6	Ethane	17.86	13.57	17.39	16.86	15.94
Gas	Propylene	11.36	10.27	8.43	7.78	11.07
(wt%)	Propane	9.05	8.87	14.37	16.21	14.49
(~(70)	Mixed C4	20.10	24.37	28.01	29.80	19.48
	Mixed C5	8.10	14.25	11.53	9.37	8.15
	C6+	1.39	6.27	0.00	0.00	2.52
	Methane	3.52	4.14	3.76	4.03	2.97
	Ethylene	1.65	1.64	1.73	1.78	1.53
	Ethane	2.87	3.51	4.71	4.90	2.53
Gas yield	Propylene	1.83	2.65	2.28	2.26	1.76
(wt%)	Propane	1.45	2.29	3.89	4.71	2.30
	Mixed C4	3.23	6.30	7.58	8.66	3.09
	Mixed C5	1.30	3.68	3.12	2.72	1.29
	C6+	0.22	1.62	0.00	0.00	0.40

Table C3 Distribution and yield of gases obtained from pyrolysis with variedpercentages of HZSM-5 in Pd/HBETA mixed with 20%HY

	Name	Non-catalyst	1PY10B	1PY10B10Z	1PY10B20Z	HZSM-
	Metal	-		-		
Catalysts	Support	- HY				-
	1 st Additive	-	10% HBETA			-
	2 nd Additive	-	- 10% HZSM-5 20% HZSN		20% HZSM-5	-
	Methane	21.89	19.91	17.49	15.75	18.72
	Ethylene	10.25	7.33	8.20	8.33	9.63
	Ethane	17.86	18.23	21.21	20.24	15.94
Gas	Propylene	11.36	10.17	9.50	9.05	11.07
composition	Propane	9.05	10.92	13.53	15.66	14.49
(WI %0)	Mixed C4	20.10	20.41	21.69	22.69	19.48
	Mixed C5	8.10	9.54	8.38	8.29	8.15
	C6+	1.39	3.49	0.00	0.00	2.52
	Methane	3.52	5.47	4.95	3.78	2.97
	Ethylene	1.65	2.01	2.32	2.00	1.53
	Ethane	2.87	5.01	6.00	4.86	2.53
Gas yield	Propylene	1.83	2.79	2.69	2.17	1.76
(wt%)	Propane	1.45	3.00	3.83	3.76	2.30
	Mixed C4	3.23	5.61	6.14	5.45	3.09
	Mixed C5	1.30	2.62	2.37	1.99	1.29
9	C6+	0.22	0.96	0.00	0.00	0.40

Table C4Distribution and yield of gases obtained from pyrolysis with variedpercentages of HZSM-5 in Pd/HY mixed with 10%HBETA

Appendix D Amount of Asphaltene in Pyrolysis Oils

Table D1	The amount	of asphaltene	in	pyrolysis	oils

No.	Parameter studied	Detail	Asphaltene in oil (wt%)
1		Non-catalyst	0.097
2		HBETA	0.092
3	D	НҮ	0.112
4	Pure component	HZSM-5	0.074
5		Pd/HBETA	0.014
6		Pd/HY	0.056
7	Additive (HY) in	Pd/HBETA+10%HY	0.054
8	Pd/HBETA	Pd/HBETA+20%HY	0.078
9	Additive (HBETA) in	Pd/HY+10%HBETA	0.092
10	Pd/HY	Pd/HY+20%HBETA	0.054
11	2nd Additive (HZSM-5) in	Pd/HBETA+20%HY+10%HZSM-5	0.090
12	Pd/HBETA+20%HY	Pd/HBETA+20%HY+20%HZSM-5	0.320
13	2nd Additive (HZSM-5) in	Pd/HY+10%HBETA+10%HZSM-5	0.106
14	Pd/HY+10%HBETA	Pd/HY+10%HBETA+20%HZSM-5	0.086

Appendix E Chemical Compositions of Maltenes

Table E1 Chemical compositions of maltenes obtained from pyrolysis with varied percentage of HY in Pd/HBETA

	Name	Non-catalyst	HBETA	Pd/HBETA	1PB10Y	1PB20Y	HY
Catalysta	Metal	-	-		1% Pd		-
	Support	-	-	HBETA			-
	Additive	-	-	-	10% HY	20% HY	-
	Saturated Hydrocarbon	69.79	71.72	78.55	76.52	58.12	73.68
	Mono-Aromatics	6.34	9.84	4.06	5.30	15.38	5.88
Chemical composition	Di-Aromatics	7.85	4.51	6.38	3.03	7.12	7.12
(wt%)	Poly-Aromatics	6.34	1.64	2.90	7.95	6.55	4.95
	Polar-Aromatics	9.67	12.30	8.12	7.20	12.82	8.36
	Total-Aromatics	30.21	28.28	21.45	23.48	41.88	26.32

	Name	Non-catalyst	HY	Pd/HY	1PY10B	1PY20B	НВЕТА
	Metal	-	-		1% Pd		-
Catalysts	Support	-	-		НҮ		-
	Additive	-	-	-	10% HBETA	20% HBETA	-
	Saturated Hydrocarbon	69.79	73.68	75.59	69.25	61.63	71.72
	Mono-Aromatics	6.34	5.88	6.47	7.39	7.45	9.84
Chemical composition	Di-Aromatics	7.85	7.12	3.53	1.12	7.00	4.51
(wt%)	Poly-Aromatics	6.34	4.95	9.41	8.90	7.00	1.64
	Polar-Aromatics	9.67	8.36	5.00	13.34	16.93	12.30
	Total-Aromatics	30.21	26.32	24.41	30.75	38.37	28.28

Table E2 Chemical compositions of maltenes obtained from pyrolysis with varied percentage of HBETA in Pd/HY

Table E3 Chemical compositions of maltenes obtained from pyrolysis with varied percentages of HZSM-5 in Pd/HBETA mixed with20%HY

	Name	Non-catalyst	1PB20Y	1PB20Y10Z	1PB20Y20Z	HZSM-5	
	Metal	-		1% Pd			
Catalysts	Support	-		HBETA			
	1 st Additive	-		20% HY			
	2 nd Additive	-	-	10% HZSM-5	20% HZSM-5	-	
	Saturated Hydrocarbon	69.79	58.12	50.00	58.17	56.33	
Chemical	Mono-Aromatics	6.34	15.38	13.99	12.03	11.62	
composition	Di-Aromatics	7.85	7.12	6.99	7.16	7.14	
(wt%)	Poly-Aromatics	6.34	6.55	5.94	4.30	13.68	
	Polar-Aromatics	9.67	12.82	23.08	18.34	11.23	
	Total-Aromatics	30.21	41.88	50.00	41.83	43.67	

 Table E4
 Chemical compositions of maltenes obtained from pyrolysis with varied percentages of HZSM-5 in Pd/HY mixed with 10%HBETA

	Name	Non-catalyst	1PY10B	1PY10B10Z	1PY10B20Z	HZSM-5		
	Metal	-		1% Pd				
Catalysts	Support	-		НҮ				
	1 st Additive	-		10% HBETA				
	2 nd Additive	-	-	10% HZSM-5	20% HZSM-5	-		
	Saturated Hydrocarbon	69.79	69.25	55.34	56.39	56.33		
Chemical	Mono-Aromatics	6.34	7.39	13.70	15.56	11.62		
composition	Di-Aromatics	7.85	1.12	6.85	8.61	7.14		
(wt%)	Poly-Aromatics	6.34	8.90	4.93	5.56	13.68		
	Polar-Aromatics	9.67	13.34	19.18	13.89	11.23		
	Total-Aromatics	30.21	30.75	44.66	43.61	43.67		

Appendix F True Boiling Point of Maltenes 🗸

 Table F1
 True boiling point of maltenes
 obtained from pyrolysis with varied percentages of HY in Pd/HBETA

9/ 06	Boiling point (°C)									
70 OII	Non-catalyst	НВЕТА	Pd/HBETA	1PB10Y	1PB20Y	HY				
0	55.5	53.7	51.7	53.3	53.8	52.3				
5	65.0	74.3	121.1	64.8	73.0	58.0				
10	69.7	104.2	142.3	69.4	148.4	122.6				
15	122.7	127.5	147.8	98.6	150.1	137.6				
20	154.2	133.8	154.2	148.5	166.3	148.1				
25	172.8	137.6	171.7	165.1	183.7	149.5				
30	199.9	148.6	188.0	183.9	200.0	164.9				
35	226.9	157.9	204.8	205.6	218.9	174.9				
40	247.0	171.7	222.7	223.9	229.5	192.7				
45	259.5	185.1	238.1	237.1	242.5	211.1				
50	275.1	201.5	253.5	252.5	255.1	227.6				
55	294.0	215.4	261.9	259.4	262.7	240.4				
60	313.1	226.8	275.0	273.0	274.4	254.6				
65	330.9	243.2	289.8	286.8	285.9	265.7				
70	355.6	261.1	306.9	305.7	297.6	280.1				
75	378.9	279.7	324.3	328.0	313.2	300.7				
80	408.8	298.3	343.9	361.0	329.6	323.7				
85	469.2	321.3	367.8	414.1	353.7	350.4				
90	509.3	389.9	392.3	501.5	382.2	383.9				
95	538.9	415.5	433.4	536.5	426.8	435.4				
100	581.2	517.2	538.1	580.9	522.9	556.2				

0/ Off	Boiling point (°C)									
70 UII	Non-catalyst	HY	Pd/HY	1PY10B	1PY20B	НВЕТА				
0	55.5	52.3	51.2	53.7	69.4	53.7				
5	65.0	58.0	67.1	83.8	99.4	74.3				
10	69.7	122.6	123.7	125.3	148.7	104.2				
15	122.7	137.6	148.6	148.1	170.1	127.5				
20	154.2	148.1	165.7	149.0	191.3	133.8				
25	172.8	149.5	188.3	159.8	211.2	137.6				
30	199.9	164.9	206.3	172.3	228.7	148.6				
35	226.9	174.9	224.9	189.9	242.6	157.9				
40	247.0	192.7	238.9	210.1	255.5	171.7				
45	259.5	211.1	253.1	229.5	264.9	185.1				
50	275.1	227.6	260.8	245.7	275.7	201.5				
55	294.0	240.4	273.5	257.0	287.4	215.4				
60	313.1	254.6	284.0	268.8	296.9	226.8				
65	330.9	265.7	295.3	284.6	309.8	243.2				
70	355.6	280.1	309.4	389.8	321.2	261.1				
75	378.9	300.7	322.8	409.4	334.6	279.7				
80	408.8	323.7	338.9	427.6	350.6	298.3				
85	469.2	350.4	362.0	447.5	369.1	321.3				
90	509.3	383.9	393.4	473.3	391.9	389.9				
95	538.9	435.4	527.8	528.4	439.2	415.5				
100	581.2	556.2	578.7	581.6	539.3	517.2				

Table F2 True boiling point of maltenes obtained from pyrolysis with varied percentages of HBETA in Pd/HY

0/ 0.66	Boiling point (°C)									
70 OII	Non-catalyst	1PB20Y	1PB20Y10Z	1PB20Y20Z	HZSM-5					
0	55.5	53.8	54.1	54.4	61.4					
5	65.0	73.0	104.0	76.9	62.0					
10	69.7	148.4	129.6	103.8	65.7					
15	122.7	150.1	133.8	131.5	83.2					
20	154.2	166.3	140.9	132.4	117.4					
25	172.8	183.7	148.8	141.5	146.0					
30	199.9	200.0	160.8	153.7	147.8					
35	226.9	218.9	172.1	167.0	154.4					
40	247.0	229.5	187.7	180.1	171.4					
45	259.5	242.5	199.4	194.9	186.3					
50	275.1	255.1	209.7	204.5	206.2					
55	294.0	262.7	221.7	218.2	217.4					
60	313.1	274.4	228.0	228.0	232.2					
65	330.9	285.9	241.6	243.8	242.1					
70	355.6	297.6	254.2	263.8	256.2					
75	378.9	313.2	270.5	285.5	271.8					
80	408.8	329.6	288.2	308.4	290.2					
85	469.2	353.7	309.1	337.5	310.0					
90	509.3	382.2	339.0	396.5	339.8					
95	538.9	426.8	411.5	465.3	415.4					
100	581.2	522.9	530.7	549.0	539.8					

Table F3 True boiling point of maltenes obtained from pyrolysis with varied percentages of HZSM-5 in Pd/HBETA mixed with 20%HY

0/ 055	Boiling point (°C)									
70 OII	Non-catalyst	1PY10B	1PY10B10Z	1PY10B20Z	HZSM-5					
0	55.5	53.7	54.6	54.2	61.4					
5	65.0	83.8	58.7	57.3	62.0					
10	69.7	125.3	103.9	102.0	65.7					
15	122.7	148.1	132.4	121.2	83.2					
20	154.2	149.0	133.3	130.9	117.4					
25	172.8	159.8	140.5	139.4	146.0					
30	199.9	172.3	148.5	150.3	147.8					
35	226.9	189.9	160.4	163.7	154.4					
40	247.0	210.1	173.1	177.9	171.4					
45	259.5	229.5	190.4	194.4	186.3					
50	275.1	245.7	202.0	205.8	206.2					
55	294.0	257.0	215.1	218.8	217.4					
60	313.1	268.8	225.8	227.3	232.2					
65	330.9	284.6	239.1	240.9	242.1					
70	355.6	389.8	258.3	258.2	256.2					
75	378.9	409.4	280.5	276.3	271.8					
80	408.8	427.6	302.1	293.6	290.2					
85	469.2	447.5	330.5	316.7	310.0					
90	509.3	473.3	390.6	343.9	339.8					
95	538.9	528.4	466.0	434.8	415.4					
100	581.2	581.6	554.4	552.2	539.8					

Table F4 - True boiling point of maltenesobtained from pyrolysis with varied percen-tages of HZSM-5 in Pd/HY mixed with 10%HBETA

Appendix G True Boiling Point of Maltenes, Saturated Hydrocarbons, Mono-, Di-, Poly-, and Polar-aromatics in Maltenes

	Boiling point (°C)							
% Off	Maltana	Saturated	Mono-	Di-	Poly-	Polar-		
	Wattene	Hydrocarbons	aromatics	aromatics	aromatics	aromatics		
0	55.5	61.0	58.8	58.0	51.0	47.4		
5	65.0	154.4	64.6	64.1	62.2	65.8		
10	69.7	210.7	69.1	69.7	65.2	71.3		
15	122.7	228.9	94.6	106.1	67.7	202.9		
20	154.2	246.8	170.2	147.8	69.6	231.0		
25	172.8	256.3	221.9	154.6	94.9	235.5		
30	199.9	266.4	247.6	171.5	106.2	236.1		
35	226.9	276.2	267.8	178.6	112.1	252.6		
40	247.0	289.1	357.2	186.2	148.3	264.8		
45	259.5	301.2	377.2	191.9	179.1	279.4		
50	275.1	312.5	388.5	198.8	197.5	286.7		
55	294.0	323.4	399.3	206.6	220.1	307.6		
60	313.1	334.3	411.7	215.4	233.4	324.9		
65	330.9	348.0	424.2	222.2	454.9	351.8		
70	355.6	362.8	438.6	228.6	486.4	377.8		
75	378.9	376.8	458.8	239.2	500.1	426.2		
80	408.8	390.5	481.8	251.8	521.0	479.5		
85	469.2	411.8	502.3	269.7	530.5	501.1		
90	509.3	445.5	527.8	474.6	542.2	526.8		
95	538.9	497.4	547.1	526.0	559.0	545.9		
100	581.2	568.5	584.1	577.1	589.8	584.1		

Table G1 Pyrolysis conditions: Non-catalytic Pyrolysis

	Boiling point (°C)							
% Off		Saturated	Mono-	Di-	Poly-	Polar-		
	Mattene	Hydrocarbons	aromatics	aromatics	aromatics	aromatics		
0	53.7	53.1	52.9	55.0	55.0	55.0		
5	74.3	72.6	60.8	55.5	55.5	55.5		
10	104.2	148.2	103.8	55.8	55.8	55.9		
15	127.5	170.1	211.5	56.3	56.1	56.3		
20	133.8	186.6	240.2	57.2	56.7	57.0		
25	137.6	197.4	259.4	69.0	57.5	64.2		
30	148.6	210.3	277.5	84.0	73.9	158.0		
35	157.9	218.7	293.8	293.2	81.7	208.5		
40	171.7	231.4	302.3	310.1	111.1	250.4		
45	185.1	242.0	314.4	320.5	282.5	289.4		
50	201.5	248.3	322.5	324.4	310.0	315.8		
55	215.4	259.6	329.3	334.9	322.3	333.5		
60	226.8	267.5	338.7	389.7	336.5	390.1		
65	243.2	279.4	347.2	389.9	340.5	390.8		
70	261.1	291.6	354.5	390.3	389.9	409.1		
75	279.7	302.9	363.3	390.7	390.3	431.0		
80	298.3	316.2	373.1	401.0	390.8	437.3		
85	321.3	333.0	383.4	422.7	399.8	451.7		
90	389.9	356.6	396.4	440.1	420.5	480.8		
95	415.5	387.2	420.8	475.7	438.9	504.2		
100	517.2	461.3	491.6	531.5	499.1	543.2		

Table G2 Pyrolysis conditions: HBETA catalyst

	Boiling point (°C)							
% Off		Saturated	Mono-	Di-	Poly-	Polar-		
	Mattene	Hydrocarbons	aromatics	aromatics	aromatics	aromatics		
0	52.3	73.6	67.1	63.1	68.6	69.0		
5	58.0	147.9	71.5	79.2	95.2	89.5		
10	122.6	164.5	79.8	97.5	114.9	110.8		
15	137.6	179.8	87.1	101.2	133.3	130.2		
20	148.1	198.1	98.1	105.9	148.3	143.1		
25	149.5	212.7	103.1	106.6	197.5	164.4		
30	164.9	224.0	110.8	110.3	234.7	198.4		
35	174.9	236.4	116.4	110.6	254.9	232.0		
40	192.7	247.9	128.6	111.0	272.4	251.8		
45	211.1	255.4	136.8	111.3	296.6	276.0		
50	227.6	262.5	147.4	115.6	336.1	305.0		
55	240.4	273.2	182.4	136.1	364.9	334.9		
60	254.6	284.0	274.4	373.8	386.9	356.0		
65	265.7	296.0	402.7	458.9	405.9	377.6		
70	280.1	311.6	433.1	464.8	423.6	397.3		
75	300.7	327.3	459.6	470.5	441.5	420.8		
80	323.7	344.9	476.1	477.2	458.6	445.0		
85	350.4	368.0	497.7	487.0	471.0	466.4		
90	383.9	392.4	527.0	499.1	487.1	487.7		
95	435.4	431.2	547.4	524.4	522.2	526.4		
100	556.2	538.6	583.4	566.2	563.4	565.2		

Table G3 Pyrolysis conditions: HY catalyst

1.00

	Boiling point (°C)								
% Off	Maltana	Saturated	Mono-	Di-	Poly-	Polar-			
	Mattene	Hydrocarbons	aromatics	aromatics	aromatics	aromatics			
0	51.7	80.0	67.5	58.8	67.5	67.3			
5	121.1	153.1	72.9	96.8	71.3	85.5			
10	142.3	173.3	79.0	101.7	85.0	111.6			
15	147.8	191.0	85.5	105.5	97.5	142.7			
20	154.2	205.2	96.9	106.9	100.2	176.6			
25	171.7	221.2	106.6	109.7	103.1	215.5			
30	188.0	232.3	122.5	110.0	106.3	234.6			
35	204.8	247.7	140.7	110.4	110.2	253.5			
40	222.7	255.3	170.8	113.9	110.7	279.8			
45	238.1	265.1	219.6	127.5	111.5	313.0			
50	253.5	275.3	253.9	239.1	127.3	343.9			
55	261.9	288.4	277.1	343.9	152.5	364.8			
60	275.0	303.1	309.1	391.9	273.3	385.2			
65	289.8	316.6	342.7	419.2	352.2	407.5			
70	306.9	333.5	373.3	440.6	395.2	430.2			
75	324.3	354.3	401.4	460.4	429.0	454.1			
80	343.9	375.3	437.3	477.6	459.4	476.0			
85	367.8	397.7	483.1	498.1	487.8	498.4			
90	392.3	427.5	526.9	528.6	525.6	529.4			
95	433.4	464.5	553.8	551.6	550.6	554.0			
100	538.1	536.4	590.6	585.4	587.2	588.9			

Table G4 Pyrolysis conditions: 1%Pd/HBETA catalyst

Boiling point (°C)								
Maltana	Saturated	Mono-	Di-	Poly-	Polar-			
Wattene	Hydrocarbons	aromatics	aromatics	aromatics	aromatics			
53.3	97.5	69.1	69.0	55.7	69.1			
64.8	201.1	71.8	237.0	62.4	235.2			
69.4	222.5	236.6	237.4	64.8	237.1			
98.6	234.4	237.3	237.9	66.7	237.6			
148.5	245.3	237.8	255.4	68.6	239.7			
165.1	254.6	294.5	280.3	69.7	286.9			
183.9	258.6	328.3	328.1	71.5	327.5			
205.6	268.0	336.8	329.4	96.5	329.1			
223.9	274.8	357.3	366.8	102.0	345.1			
237.1	282.5	373.5	373.5	110.9	373.1			
252.5	292.8	373.8	373.8	112.2	373.7			
259.4	303.1	374.1	374.1	198.0	373.9			
273.0	313.2	374.7	374.5	228.7	374.3			
286.8	325.8	404.6	428.2	465.4	384.6			
305.7	336.5	436.5	462.9	495.0	449.3			
328.0	351.9	471.3	485.2	512.9	485.1			
361.0	370.4	490.8	501.1	526.3	503.5			
414.1	381.9	511.1	526.2	535.0	524.9			
501.5	405.6	528.4	540.1	545.9	535.7			
536.5	448.4	543.3	558.4	561.5	552.9			
580.9	549.6	579.9	589.0	589.5	587.9			
	Maltene 53.3 64.8 69.4 98.6 148.5 165.1 183.9 205.6 223.9 237.1 252.5 259.4 273.0 286.8 305.7 328.0 361.0 414.1 501.5 536.5 580.9	MalteneSaturated Hydrocarbons53.397.564.8201.169.4222.598.6234.4148.5245.3165.1254.6183.9258.6205.6268.0223.9274.8237.1282.5252.5292.8259.4303.1273.0313.2286.8325.8305.7336.5328.0351.9361.0370.4414.1381.9501.5405.6536.5448.4580.9549.6	Boiling poMalteneSaturated HydrocarbonsMono- aromatics53.397.569.164.8201.171.869.4222.5236.698.6234.4237.3148.5245.3237.8165.1254.6294.5183.9258.6328.3205.6268.0336.8223.9274.8357.3237.1282.5373.5252.5292.8373.8259.4303.1374.1273.0313.2374.7286.8325.8404.6305.7336.5436.5328.0351.9471.3361.0370.4490.8414.1381.9511.1501.5405.6528.4536.5549.6579.9	Boiling point (°C)MalteneSaturated HydrocarbonsMono- aromaticsDi- aromatics53.397.569.169.064.8201.171.8237.069.4222.5236.6237.498.6234.4237.3237.9148.5245.3237.8255.4165.1254.6294.5280.3183.9258.6328.3328.1205.6268.0336.8329.4223.9274.8357.3366.8237.1282.5373.5373.5252.5292.8373.8373.8259.4303.1374.1374.1273.0313.2374.7374.5286.8325.8404.6428.2305.7336.5436.5462.9328.0351.9471.3485.2361.0370.4490.8501.1414.1381.9511.1526.2501.5405.6528.4540.1536.5448.4543.3558.4580.9549.6579.9589.0	Boiling point (°C) Maltene Saturated Hydrocarbons Mono- aromatics Di- aromatics Poly- aromatics 53.3 97.5 69.1 69.0 55.7 64.8 201.1 71.8 237.0 62.4 69.4 222.5 236.6 237.4 64.8 98.6 234.4 237.3 237.9 66.7 148.5 245.3 237.8 255.4 68.6 165.1 254.6 294.5 280.3 69.7 183.9 258.6 328.3 328.1 71.5 205.6 268.0 336.8 329.4 96.5 223.9 274.8 357.3 366.8 102.0 237.1 282.5 373.5 373.5 110.9 252.5 292.8 373.8 373.8 112.2 259.4 303.1 374.1 374.5 228.7 286.8 325.8 404.6 428.2 465.4 305.7 336.5 436.5			

Table G5 Pyrolysis conditions: 1%Pd/HBETA+10%HY catalyst

	Boiling point (°C)								
% Off	Maltana	Saturated	Mono-	Di-	Poly-	Polar-			
	Mattene	Hydrocarbons	aromatics	aromatics	aromatics	aromatics			
0	53.8	62.0	62.2	61.6	58.8	55.7			
5	73.0	96.5	70.9	101.9	61.8	61.6			
10	148.4	191.9	179.8	163.5	63.9	63.5			
15	150.1	211.2	221.2	177.1	65.8	65.2			
20	166.3	224.2	238.2	188.2	67.7	66.7			
25	183.7	234.1	256.1	193.8	69.2	68.2			
30	200.0	246.5	280.5	201.0	70.2	69.2			
35	218.9	254.7	326.2	206.6	80.0	70.2			
40	229.5	258.4	335.9	214.3	192.7	71.7			
45	242.5	266.5	345.1	221.0	221.7	235.6			
50	255.1	274.1	357.0	225.2	235.2	252.7			
55	262.7	280.4	360.5	231.0	254.2	328.5			
60	274.4	290.5	367.0	237.7	274.1	360.3			
65	285.9	298.6	373.5	245.3	397.6	389.3			
70	297.6	310.1	380.9	253.6	432.3	463.2			
75	313.2	320.5	386.8	260.3	484.2	494.8			
80	329.6	333.4	393.3	275.6	505.5	516.0			
85	353.7	350.5	404.8	351.4	526.5	529.2			
90	382.2	374.2	435.2	386.2	539.4	541.4			
95	426.8	411.2	523.9	433.2	557.7	558.0			
100	522.9	554.5	576.1	566.4	589.5	590.2			

- Table G6 Pyrolysis conditions: 1%Pd/HBETA+20%HY catalyst

	Boiling point (°C)								
% Off	Maltana	Saturated	Mono-	Di-	Poly-	Polar-			
	Manene	Hydrocarbons	aromatics	aromatics	aromatics	aromatics			
0	51.2	60.8	59.7	47.2	59.5	46.4			
5	67.1	70.9	64.8	59.9	68.2	60.8			
10	123.7	188.2	69.5	61.4	107.0	62.7			
15	148.6	209.2	172.7	62.7	111.3	64.3			
20	165.7	224.1	228.5	63.9	112.5	65.8			
25	188.3	235.9	257.5	65.2	126.2	67.3			
30	206.3	248.7	346.8	66.5	127.9	69.0			
35	224.9	256.4	360.6	67.5	129.1	70.1			
40	238.9	262.7	367.9	68.8	134.9	71.6			
45	253.1	273.0	377.1	70.1	142.5	236.0			
50	260.8	279.1	383.1	72.4	154.6	356.2			
55	273.5	289.5	387.2	95.7	172.1	492.5			
60	284.0	296.9	391.0	492.7	183.3	503.6			
65	295.3	308.5	400.0	506.6	194.8	517.6			
70	309.4	317.5	408.5	522.7	208.4	525.8			
75	322.8	328.6	426.6	529.2	223.5	531.7			
80	338.9	341.8	485.1	536.5	237.4	538.5			
85	362.0	360.3	512.5	545.0	258.2	546.6			
90	393.4	383.7	532.1	555.6	446.0	556.5			
95	527.8	504.6	551.4	569.3	527.1	570.0			
100	578.7	571.5	586.0	591.0	577.9	591.8			

 Table G7 Pyrolysis conditions: 1%Pd/HY catalyst

	Boiling point (°C)								
% Off	Maltana	Saturated	Mono-	Di-	Poly-	Polar-			
	Mattene	Hydrocarbons	aromatics	aromatics	aromatics	aromatics			
0	52.1	96.8	68.6	56.9	101.8	68.4			
5	96.8	148.6	86.3	58.6	124.7	128.6			
10	127.1	171.5	106.5	63.3	143.4	166.1			
15	147.9	186.8	131.9	93.3	212.4	207.8			
20	149.5	198.9	168.5	93.9	233.3	234.2			
25	165.1	212.8	221.3	345.9	245.1	235.2			
30	178.8	223.4	256.8	373.3	258.8	252.0			
35	196.9	233.4	306.3	377.8	274.7	269.9			
40	214.0	245.1	335.1	382.8	307.0	288.1			
45	228.2	253.2	351.3	391.3	340.9	314.0			
50	240.8	258.6	360.9	401.2	360.0	339.7			
55	253.7	267.9	371.9	407.2	375.4	355.1			
60	262.2	275.2	382.9	416.0	392.7	373.1			
65	274.0	286.3	391.3	424.5	405.2	389.8			
70	288.9	296.0	404.8	433.7	419.7	415.8			
75	307.2	310.3	434.5	444.8	432.7	445.2			
80	327.8	325.5	491.8	456.7	447.3	480.9			
85	357.5	344.2	516.8	469.1	464.2	501.7			
90	397.0	375.7	532.7	494.2	479.7	527.2			
95	491.4	432.4	551.7	530.9	509.3	546.5			
100	571.5	548.1	589.3	590.7	567.0	588.3			

Table G8 Pyrolysis conditions: 1%Pd/HY+10%HBETA catalyst

	Boiling point (°C)									
% Off	Maltana	Saturated	Mono-	Di-	Poly-	Polar-				
	Mattene	Hydrocarbons	aromatics	aromatics	aromatics	aromatics				
0	55.3	67.5	62.2	64.3	61.8	61.2				
5	70.7	148.4	67.3	69.3	67.1	66.0				
10	123.4	165.8	70.6	71.9	69.8	69.4				
15	148.2	184.6	87.9	277.0	98.1	71.5				
20	148.5	199.8	356.5	354.2	101.6	235.5				
25	154.4	218.7	493.4	381.5	106.9	493.3				
30	165.8	229.0	501.1	401.0	111.8	500.6				
35	182.8	242.9	510.2	424.1	494.0	509.4				
40	206.1	254.5	520.6	445.1	502.6	519.5				
45	230.7	261.2	525.0	462.2	513.1	524.6				
50	250.5	272.0	528.7	473.2	522.9	528.1				
55	260.3	280.7	532.5	481.7	526.8	531.8				
60	275.3	292.9	536.5	489.2	531.0	535.8				
65	295.2	306.0	540.8	496.0	535.5	540.1				
70	490.6	319.4	545.5	508.2	540.3	544.6				
75	511.6	337.3	550.5	522.4	545.6	549.7				
80	527.4	368.0	556.1	528.2	551.5	555.3				
85	537.5	422.9	562.5	535.4	558.2	561.6				
90	549.5	491.3	570.1	545.1	566.2	569.2				
95	565.4	531.5	579.9	559.6	576.8	579.2				
100	591.6	577.8	595.7	588.8	594.2	595.4				

 Table G9
 Pyrolysis conditions:
 1%Pd/HY+10%HBETA catalyst (repeated)

	Boiling point (°C)								
% Off	Maltana	Saturated	Mono-	Di-	Poly-	Polar-			
	Manene	Hydrocarbons	aromatics	aromatics	aromatics	aromatics			
0	69.4	83.7	110.6	79.5	98.2	71.3			
5	99.4	168.9	253.1	111.1	198.6	111.5			
10	148.7	191.8	318.4	148.2	239.6	219.9			
15	170.1	210.5	331.5	171.7	265.8	235.6			
20	191.3	224.3	341.2	189.8	311.3	244.2			
25	211.2	238.0	350.9	205.4	351.5	261.5			
30	228.7	250.0	357.7	227.7	372.8	280.4			
35	242.6	257.4	361.0	255.4	388.0	305.8			
40	255.5	265.0	366.9	344.5	398.8	327.4			
45	264.9	273.8	370.6	361.5	407.3	347.5			
50	275.7	281.6	376.4	375.8	417.4	356.3			
55	287.4	291.4	382.8	379.0	423.7	373.0			
60	296.9	301.5	386.2	385.5	432.1	384.3			
65	309.8	311.3	390.3	392.5	440.4	399.9			
70	321.2	322.0	396.9	402.0	448.7	422.2			
75	334.6	334.0	402.3	410.1	459.6	442.2			
80	350.6	349.0	411.7	421.6	469.7	462.5			
85	369.1	368.9	424.5	433.8	479.7	479.5			
90	391.9	392.5	442.5	454.1	493.9	499.1			
95	439.2	432.9	473.5	484.9	526.3	530.0			
100	539.3	495.3	544.7	554.5	571.8	573.0			

Table G10 Pyrolysis conditions: 1%Pd/HY+20%HBETA catalyst

	Boiling point (°C)								
% Off	Maltana	Saturated	Mono-	Di-	Poly-	Polar-			
	Manene	Hydrocarbons	aromatics	aromatics	aromatics	aromatics			
0	54.1	57.9	59.1	55.9	55.5	55.6			
5	104.0	71.3	114.2	196.6	74.4	178.0			
10	129.6	133.8	188.8	223.1	89.4	209.7			
15	133.8	148.7	210.5	223.6	182.3	239.2			
20	140.9	161.1	215.8	224.7	224.0	258.0			
25	148.8	171.6	219.6	239.2	239.2	265.9			
30	160.8	182.7	237.5	244.5	244.7	277.1			
35	172.1	192.1	242.6	247.1	249.1	285.3			
40	187.7	199.2	245.2	248.7	258.3	293.4			
45	199.4	207.4	246.3	261.7	265.8	301.8			
50	209.7	215.2	256.7	264.5	273.5	309.0			
55	221.7	222.2	262.9	276.7	280.1	318.0			
60	228.0	230.3	269.1	282.1	287.0	324.4			
65	241.6	239.2	279.4	291.3	297.6	334.5			
70	254.2	252.1	290.5	301.4	307.8	389.7			
75	270.5	266.7	303.3	314.1	321.9	390.2			
80	288.2	285.3	318.6	333.9	339.8	392.3			
85	309.1	306.1	343.0	390.4	390.4	429.0			
90	339.0	389.7	375.6	425.7	418.5	450.2			
95	411.5	439.7	425.2	460.4	458.3	485.6			
100	530.7	524.2	523.3	523.1	540.3	542.8			

 Table G11
 Pyrolysis conditions:
 1%Pd/HBETA+20%HY+10%HZSM-5
 catalyst

	Boiling point (°C)								
% Off	Maltana	Saturated	Mono-	Di-	Poly-	Polar-			
	Manene	Hydrocarbons	aromatics	aromatics	aromatics	aromatics			
0	54.4	58.5	58.5	58.1	58.1	58.1			
5	76.9	68.9	76.8	64.2	58.5	58.9			
10	103.8	130.7	170.9	76.8	62.6	163.1			
15	131.5	146.8	206.2	215.6	76.5	207.1			
20	132.4	157.9	223.8	246.4	80.6	266.6			
25	141.5	169.2	236.5	269.7	88.2	292.6			
30	153.7	180.3	243.5	279.2	243.0	307.9			
35	167.0	192.1	250.2	288.4	288.2	318.5			
40	180.1	198.8	256.8	295.8	305.0	327.3			
45	194.9	205.7	263.8	303.8	319.8	337.3			
50	204.5	215.5	273.4	310.6	333.1	389.8			
55	218.2	221.7	279.3	318.5	389.7	390.4			
60	228.0	228.8	283.2	324.8	390.2	392.6			
65	243.8	240.4	292.3	334.1	390.8	420.9			
70	263.8	256.4	299.9	342.8	412.4	439.4			
75	285.5	273.6	308.7	390.3	438.2	458.0			
80	308.4	291.6	320.3	398.0	460.6	478.4			
85	337.5	315.6	336.0	438.0	488.2	497.7			
90	396.5	390.0	390.3	476.3	509.4	514.5			
95	465.3	453.9	453.7	515.2	531.7	533.4			
100	549.0	547.0	549.0	561.6	568.8	569.0			

 Table G12
 Pyrolysis conditions:
 1%Pd/HBETA+20%HY+20%HZSM-5
 catalyst

	Boiling point (°C)									
% Off	Maltene	Saturated	Mono-	Di-	Poly-	Polar-				
		Hydrocarbons	aromatics	aromatics	aromatics	aromatics				
0	54.6	55.6	56.8	55.5	55.6	55.8				
5	58.7	59.8	63.2	57.4	56.4	56.9				
10	103.9	74.3	160.9	88.7	57.0	57.7				
15	132.4	132.5	200.4	237.5	57.5	58.4				
20	133.3	147.9	218.5	249.1	58.0	60.8				
25	140.5	159.8	225.3	260.4	58.9	175.6				
30	148.5	170.5	234.2	273.8	74.0	207.4				
35	160.4	182.1	241.9	280.2	78.3	238.2				
40	173.1	194.2	247.8	285.2	82.4	276.7				
45	190.4	200.9	258.3	294.3	88.4	297.9				
50	202.0	209.8	264.5	300.5	97.0	313.5				
55	215.1	217.9	276.0	306.5	280.5	322.4				
60	225.8	224.9	284.7	312.5	299.8	334.1				
65	239.1	232.6	290.8	321.6	313.3	389.8				
70	258.3	244.8	300.8	329.1	327.7	390.4				
75	280.5	263.1	311.3	338.1	342.8	407.6				
80	302.1	281.5	325.7	390.0	390.6	447.0				
85	330.5	301.4	342.6	390.8	505.6	496.5				
90	390.6	336.0	390.7	431.5	525.4	517.5				
95	466.0	433.1	455.2	491.7	542.9	537.2				
100	554.4	555.1	555.2	558.4	573.6	571.7				

 Table G13
 Pyrolysis conditions:
 1%Pd/HY+10%HBETA+10%HZSM-5
 catalyst

			int (°C)			
% Off	Maltana	Saturated	Mono-	Di-	Poly-	Polar-
}	Mattene	Hydrocarbons	aromatics	aromatics	aromatics	aromatics
0	54.2	55.8	55.8	55.9	58.1	55.3
5	57.3	66.7	68.7	75.1	59.5	56.1
10	102.0	129.9	153.9	208.6	75.2	56.7
15	121.2	139.5	194.0	240.2	80.2	57.3
20	130.9	152.7	210.5	257.3	88.2	57.9
25	139.4	167.1	221.3	272.8	262.9	59.8
30	150.3	176.3	231.0	279.5	283.3	156.3
35	163.7	189.3	238.1	290.5	297.5	206.8
40	177.9	196.9	245.2	298.7	308.6	317.0
45	194.4	205.2	255.7	306.8	318.4	328.8
50	205.8	214.0	262.3	315.0	328.0	496.7
55	218.8	220.7	273.4	323.7	337.5	504.5
60	227.3	226.8	281.8	334.1	389.9	511.1
65	240.9	236.0	289.6	343.5	390.4	519.1
70	258.2	246.2	299.0	390.3	392.6	525.1
75	276.3	261.5	310.0	391.0	425.8	530.4
80	293.6	276.7	326.8	419.2	453.5	536.4
85	316.7	293.0	389.8	438.9	488.5	543.2
90	343.9	318.8	400.1	457.1	511.1	551.5
95	434.8	390.6	452.4	483.0	532.8	562.2
100	552.2	534.7	536.1	543.7	567.9	579.8

Table G14 Pyrolysis conditions: 1%Pd/HY+10%HBETA+20%HZSM-5 catalyst

-

Appendix H Petroleum Fractions of Derived Oils

 Table H1
 Petroleum fractions in derived oils obtained from pyrolysis with varied percentages of HY in Pd/HBETA

Catalysts	Name	Non-catalyst	НВЕТА	Pd/HBETA	1PB10Y	1PB20Y	HY	
	Metal	-	-		1% Pd			
	Support	-	-	HBETA			-	
	Additive		-	-	10% HY	20% HY	-	
	Naphtha	30.02	49.54	33.57	33.71	30.00	41.98	
Petroleum	Kerosene	11.18	17.36	15.29	15.48	17.98	16.40	
Fraction	Light gas oil	15.37	13.47	19.12	19.30	22.79	16.45	
(wt%)	Heavy gas oil	16.52	8.18	17.47	12.36	17.09	13.10	
	Residues	26.91	11.45	14.55	19.15	12.14	12.07	

	Name	Non-catalyst	HY	Pd/HY	1PY10B	1PY20B	НВЕТА
Catalysts	Metal	-	-		1% Pd		
	Support	-	-	НҮ			-
	Additive	-	-	-	10% HBETA	20% HBETA	-
	Naphtha	30.02	41.98	28.25	37.30	22.19	49.54
Petroleum	Kerosene	11.18	16.40	15.66	14.42	15.68	17.36
Fraction	Light gas oil	15.37	16.45	22.76	17.36	23.33	13.47
(wt%)	Heavy gas oil	16.52	13.10	19.61	7.67	24.00	8.18
	Residues	26.91	12.07	13.73	23.25	14.80	11.45

Table H2 Petroleum fractions in derived oils obtained from pyrolysis with varied per-centages of HBETA in Pd/HY

Table H3 Petroleum fractions in derived oils obtained from pyrolysis with varied per-centages of HZSM-5 in Pd/HBETA mixed with 20%HY

Catalysts	Name	Non-catalyst	1PB20Y	1PB20Y10Z	1PB20Y20Z	HZSM-5
	Metal	-	1% Pd			-
	Support	-	HBETA			~
	1 st Additive	-	20% HY			-
	2 nd Additive	-	3 - 3	10% HZSM-5	20% HZSM-5	-
Petroleum Fraction (wt%)	Naphtha	30.02	30.00	45.29	47.66	48.44
	Kerosene	11.18	17.98	23.04	18.89	19.36
	Light gas oil	15.37	22.79	14.49	11.62	14.67
	Heavy gas oil	16.52	17.09	9.31	9.59	9.52
	Residues	26.91	12.14	7.86	12.25	8.00

Catalysts	Name	Non-catalyst	1PY10B	1PY10B10Z	1PY10B20Z	HZSM-5
	Metal	-	1% Pd			-
	Support	-	НҮ			-
	1 st Additive	-	10% HBETA			-
	2 nd Additive	-	-	10% HZSM-5	20% HZSM-5	-
Petroleum Fraction (wt%)	Naphtha	30.02	37.30	49.14	47.46	48.44
	Kerosene	11.18	14.42	18.70	20.17	19.36
	Light gas oil	15.37	17.36	11.68	13.76	14.67
	Heavy gas oil	16.52	7.67	8.77	10.05	9.52
	Residues	26.91	23.25	11.71	8.56	8.00

Table H4 Petroleum fractions in derived oils obtained from pyrolysis with varied per-centages of HZSM-5 in Pd/HY mixed with 10%HBETA

CURRICULUM VITAE

Name: Mr. Nateetorn Manchantrarat

- **Date of Birth:** September 06, 1988
- Nationality: Thai

University Education:

2006-2010 Bachelor Degree of Science (Industrial Chemistry), Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand

Work Experience:

2009	Position:	Student Internship		
	Company name:	Pan Asia Co.,Ltd		

Presentations:

- Nateetorn, M. and Jitkarnka, S. (2012, April 24) Impact of HBETA as Additive in Pd-loaded HY Catalysts on Waste Tire Pyrolysis Products. Paper presented at the 3rd Research Symposium on Petrochemical and Materials Technology and the 18th PPC Symposium on Petroleum, Petrochemicals, and Polymers, Bangkok, Thailand.
- Nateetorn, M. and Jitkarnka, S. (2012, August 25-29) Impact of HY as an additive in Pd/HBETA catalyst on waste tire pyrolysis products. Paper presented at the 20th International Congress of Chemical and Process Engineering CHISA 2012 joint with 15th Conference PRES, Prague, Czech Republic.