

REFERENCES

- Abuluwefa, H., R. I. L. Guthrie, et al. (1996). "The effect of oxygen concentration on the oxidation of low-carbon steel in the temperature range 1000 to 1250°C." Oxidation of Metals 46(5): 423-440.
- Abuluwefa, H. T. (1996). <u>Characterization of Oxide (Scale) Growth of Low Carbon</u> Steel During Reheating. Doctor of Philosophy, McGill University.
- Addach, H., P. Berçot, et al. (2005). "Hydrogen permeation in iron at different temperatures." Materials Letters 59(11): 1347-1351.
- Bruzzoni, P., R. M. Carranza, et al. (1999). "A pressure modulation method to study surface effects in hydrogen permeation through iron base alloys." <u>Electrochimica Acta</u> 44(24): 4443-4452.
- Bruzzoni, P., R. M. Carranza, et al. (1999). "Hydrogen transport through α-iron studies using a current modulation method." <u>International Journal of</u> <u>Hydrogen Energy</u> 24(11): 1093-1099.
- Cheng, Y. F. and F. R. Steward (2004). "Corrosion of carbon steels in hightemperature water studied by electrochemical techniques." <u>Corrosion</u> <u>Science</u> 46(10): 16.
- Cornell, R. M. and U. Schwertmann (2003). <u>The iron oxides: structure, properties,</u> <u>reactions, occurrences, and uses</u>, Wiley-VCH.
- Davies, M. H., M. T. Simnad, et al. (1951). "Transactions of the Metallurgical Society of AIME." Journal of Metals 3.
- Davis, J. R., J. D. Destefani, et al. (1987). <u>Metals Handbook</u>. Metals Park, Ohio, USA, Corrosion ASM International.
- Fontana, M. G. (1988). Corrosion Engineering, McGraw-Hill.
- Gaskell, D. R. (1981). <u>Introduction to metallurgical thermodynamics</u>, Taylor & Francis.
- Gulbransen, E. A. and R. Ruka (1952). "Role of Crystal Orientation in the Oxidation of Iron." Journal of The Electrochemical Society 99(9): 360-368.
- Hansen, M., K. Anderko, et al. (1965). Constitution of binary alloys, McGraw-Hill.
- Kofstad, P. (1988). High Temperature Corrosion, Elsiver Applied Science.

- Lecourt, S. (1996). Pickling. <u>The book of steel</u>. G. Béranger, G. Henry and G. Sanz. Andover, UK, Intercept: 584-595.
- Leelasangsai, C. (2009). <u>Measurement of the hydrogen diffusion through various</u> steels with and without oxide films. M.Sc, Chulalongkorn University.
- Lister, D. H., N. Arbeau, et al. (1994). "Erosion and Cavitation in the CANDU Primary Heat Transport System." <u>Atomic Energy Control Board Report</u> <u>RSP-009</u>.
- Lister, D. H., J. Slade, et al. (1997). The accelerated corrosion of CANDU outlet feeders - Observations, possible mechanisms and potential remedies. <u>CAN/CNS Annual Conference</u>. Toronto, Ontario, Canada.
- McKeen, K., M. Lalonde, et al. (2007). Hydrogen Effusion Probe development and installation at the Point Lepreau Nuclear Generating Station. <u>28th Annual</u> <u>Canadian Nuclear Society Conference</u>. Canada.
- Piggott, M. R. and A. C. Siarkowski (1972). "Hydrogen diffusion through oxide films on steel." Journal of the Iron and Steel Institute: 4.
- Potter, E. C. and G. M. W. Mann (1962). Oxidation of Mild Steel in High Temperature Aqueous Systems. <u>First International Congress on Metallic</u> <u>Corrosion</u>. Butterworth, London.
- Potter, E. C. and G. M. W. Mann (1963). Mechanism of magnetite growth on lowcarbon steel in steam and aqueous solutions up to 550 degrees C. 2nd <u>International congress on metallic corrosion</u>. Houston.
- Pyun, S.-I. and R. A. Oriani (1989). "The permeation of hydrogen through the passivating films on iron and nickel." <u>Corrosion Science</u> 29(5): 485-496.
- SCHOMBERG, K. and H. J. GRABKE (1996). <u>Hydrogen permeation through oxide</u> <u>and passive films on iron</u>. Düsseldorf, ALLEMAGNE, Stahleisen.
- Smithells, C. J. and C. E. Ransley (1935). "The Diffusion of Gases through Metals." <u>Proceedings of the Royal Society of London. Series A, Mathematical and</u> <u>Physical Sciences</u> 150(869): 172-197.
- Stone, J. M. (1981). Deuterium permeation and surface effects.
- Tomlinson, L. (1981). "Mechanism of corrosion of carbon and low alloy ferritic steels by high temperature water." <u>Corrosion-NACE</u> 39(10): 6.

Tomlinson, L. and N. J. Cory (1989). "Hydrogen emission during the steam oxidation of ferritic steels: Kinetics and mechanism." <u>Corrosion Science</u> 29(8): 939-965.

APPENDICES

Appendix A Cavity Volume and Amount of Oxygen in Each Test Section

The amount of oxygen in each test section was calculated from volume of the cavity in the test section using the ideal gas law.

Exp.	RUN #	TAG	Sample	Material	cavity Vol	Amount of	O2 in cavity		
						n = PV/RT			
						T at install	P at install	R	
					(m3)	(K)	(Pa)	(m3*Pa/mol*K)	O2 in Air
						298.15	101325	8.314472	0.206836
						mol AIR	mol O2	weight O2 (g)	
	1	P5	Membrane+Wire	CS	1.30015E-05	0.000531423	0.000109917	0.003517354	
	400C, 4days	P6	Membrane+Wire	SS	1.31944E-05	0.000539308	0.000111548	0.003569547	
	Labelled 3.0	P7	Membrane+Wire	NI	1.32228E-05	0.000540468	0.000111788	0.003577226	
A	2	P5	Membrane+Wire	CS	1.30015E-05	0.000531423	0.000109917	0.003517354	
	400C, 7days	P6	Membrane+Wire	SS	1.31974E-05	0.000539429	0.000111573	0.003570346	
	Labelled 2.0	P7	Membrane+Wire	NI	1.32241E-05	0.000540521	0.000111799	0.003577574	
	3	P5	Membrane+Wire	CS	1.30015E-05	0.000531423	0.000109917	0.003517354	
	400C, 1day	P6	Membrane+Wire	SS	1.32096E-05	0.00053993	0.000111677	0.003573664	
	Labelled 1.0	P7	Membrane+Wire	NI	1.32315E-05	0.000540824	0.000111862	0.003579583	
	4	P5	Membrane+Wire	CS	1.33293E-05	0.000544821	0.000112689	0.003606034	
	90C, 14days	P6	Membrane+Wire	SS	1.34166E-05	0.000548389	0.000113427	0.003629648	
	Labelled 4.0	P7	-	-	0	0	0	0	
	5	P5	Membrane+Wire	CS	1.33293E-05	0.000544821	0.000112689	0.003606034	
	90C, 7days	P6	Membrane+Wire	SS	-2.02204E-05	-0.00082649	-0.000170948	-0.00547033	
	Labelled 5.0	Р7	-	-	0	0	0	0	
	6	P5	Membrane+Wire	CS	1.33293E-05	0.000544821	0.000112689	0.003606034	
	90C, 1day	P6	Membrane+Wire	SS	1.3473E-05	0.000550697	0.000113904	0.003644925	
	Labelled 6.0	P7	-	-	0	0	0	0	

 Table A1
 Cavity volume and amount of oxygen in experimental set 1

Exp.	RUN #	TAG	Sample	Material	cavity Vol	Amount of O2 in cavity			
						n = PV/RT			
						T at install	P at install	R	
					(m3)	(K)	(Pa)	(m3*Pa/mol*K)	O2 in Air
						298.15	101325	8.314472	0.206836
						mol AIR	mol O2	weight O2 (g)	
				Empty					
A-2	7	P5	-	tube	1.32694E-05	0.000542373	0.000112182	0.003589831	
	400C, 7days	P6	Membrane+Wire	CS	1.46768E-05	0.000599899	0.000124081	0.003970581	
	Labelled 7.0	P7	Wire	CS	1.25363E-05	0.000512408	0.000105984	0.0033915	
	Test section	P5	-	-	0	0	0	0	
	Preparation	P6	-	-	0	0	0	0	
	+	Ρ7	EXTRA WIRE	CS	1.29128E-05	0.000527797	0.000109167	0.003493356	
	WIRE TEST	Р5	WIRE-03	CS	1.28542E-05	0.000525404	0.000108673	0.00347752	
		Р5	WIRE-01	CS	1.28542E-05	0.000525404	0.000108673	0.00347752	
		P7	WIRE-02	CS	1.29128E-05	0.000527797	0.000109167	0.003493356	
	8	P5	(nitrogen filled)	Nitrogen	1.40089E-05	0.0005726	0.000118434	0.003789899	
	400C, 1day	P6	Membrane+WIRE04	CS	1.27031E-05	0.000519226	0.000107395	0.003436631	
	labelled 14.0	P7	WIRE-05	CS	1.29128E-05	0.000527797	0.000109167	0.003493356	
	9	P5	WIRE-11	CS	1.34954E-05	0.000551612	0.000114093	0.003650981	
	400C, 5 hr	P6	Membrane+WIRE07	CS	1.27031E-05	0.000519226	0.000107395	0.003436631	
	labelled14.FP	P7	-						

Table A2 Cavity volume and amount of oxygen in experimental set 2

Appendix B Raman Spectra of Each Wire in Table A1 and Table A2

Figure B1 Raman spectra of wire in run 7.

Figure B2 Raman spectra of WIRE-01.

Figure B3 Raman spectra of WIRE-02.

Figure B4 Raman spectra of WIRE-03.

Figure B5 Raman spectra of WIRE-05.

Figure B6 Raman spectra of WIRE-07.

Figure B7 Raman spectra of WIRE-11.

CURRICULUM VITAE

Name:	Ms. Sarita Weeraku		
Date of Birth:	April 24, 1988		
Nationality:	Thai		

University Education:

2010 - 2012 Master Degree of Science, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand

2011 - 2012 Graduate Exchange Student in Chemical Engineering, University of New Brunswick, New Brunswick, Canada

2006 - 2010 Bachelor Degree of Science, Department of Chemistry, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand

Work Experience:

2011-2012	Position:	Student (Researcher)			
	Company name:	Centre for Nuclear Energy Research			
		(CNER)			

Proceedings:

 Weerakul, S.; Rirksomboon, T.; and Steward, F. R. (2012, April 24) Kinetics of oxide formation on various steel surfaces in the presence of oxygen-nitrogen mixtures. Proceedings of <u>the 3rd Research Symposium on Petrochemical and Materials Technology and the 18th PPC Symposium on Petroleum, <u>Petrochemicals, and Polymers</u>, Bangkok, Thailand.
</u>

